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Abstract
The main object of this paper is to investigate some properties of σ -type polynomials
in one and two variables.
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1 Introduction
In , Thorne [] obtained an interesting characterization of Appell polynomials by
means of the Stieltjes integral. Srivastava and Manocha [] discussed the Appell sets and
polynomials. Dattoli et al. [] studied the properties of the Sheffer polynomials. Recently
Pintér and Srivastava [] gave addition theorems for the Appell polynomials and the as-
sociated classes of polynomial expansions and some cases have also been discussed by
Srivastava and Choi [] in their book.
Appell sets may be defined by the following equivalent condition: {Pn(x)}, n = , , , . . .

is an Appell set [–] (Pn being of degree exactly n) if either
(i) P′

n(x) = Pn–(x), n = , , , . . . , or
(ii) there exists a formal power series A(t) =

∑∞
n= antn (a �= ) such that

A(t) exp(xt) =
∞∑
n=

Pn(x)tn.

Sheffer’s A-type classification
Let φn(x) be a simple set of polynomials and let φn(x) belong to the operator

J(x,D) =
∞∑
k=

Tk(x)Dk+,

with Tk(x) of degree ≤ k. If the maximum degree of the coefficients Tk(x) is m, then the
set φn(x) is of Sheffer A-typem. If the degree of Tk(x) is unbounded as k → ∞, we say that
φn(x) is of Sheffer A-type ∞.

Polynomials of Sheffer A-type zero
Let φn(x) be of Sheffer A-type zero. Then φn(x) belong to the operator

J(D) =
∞∑
k=

ckDk+,
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in which ck are constants. Here c �=  and Jφn = φn–. Furthermore, since ck are indepen-
dent of x for every k, a function J(t) exists with the formal power series expansion

J(t) =
∞∑
k=

cktk+, c �= .

Let H(t) be the formal inverse of J(t); that is,

H
(
J(t)

)
= J

(
H(t)

)
= t.

Theorem (Rainville []) Anecessary and sufficient condition thatφn(x) be of ShefferA-type
zero is that φn(x) possess the generating function indicated in

A(t) exp
(
xH(t)

)
=

∞∑
n=

φn(x)tn,

in which H(t) and A(t) have (formal) expansions

H(t) =
∞∑
n=

hntn+, h �= , A(t) =
∞∑
n=

antn, a �= .

Theorem (Al-Salam and Verma []) Let {Pn(x)} be a polynomial set. In order for {Pn(x)}
to be a Sheffer A-type zero, it is necessary and sufficient that there exist (formal) power
series

H(t) =
∞∑
j=

hjtj, h �= , As(t) =
∞∑
j=

a(s)j tj
(
not all a(s) are zero

)

and

r∑
j=

Aj(t) exp
(
xH(εjt)

)
=

∞∑
n=

Pn(x)tn,

where

J(D)Pn(x) = Pn–r(x) (n = r, r + , . . .) where J(D) =
∞∑
k=

akDk+r ,a �= 

and r is a fixed positive integer. The function A(t) may be called the determining function
for the set {Pn(x)}.

Polynomial of σ -type zero [9, 11]
Let {pn(x)} be a simple set of polynomials that belongs to the operator

J(x,σ ) =
∞∑
k=

Tk(x)σ k+,

σ =D
q∏
i=

(xD + bi – ), D =
d
dx

,
(
J(x,σ )pn(x) = pn–(x)

)
,
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where bi are constants, not equal to zero or a negative integer, and Tk(x) are polynomials
of degree ≤ k. We can say that this set is of σ -type m if the maximum degree of Tk(x) is
m,m = , , , . . . .
A necessary and sufficient condition that φn(x) be of σ -type zero, with

σ =D
q∏
i=

(xD + bi – ),

is that φn(x) possess the generating function

A(t)Fq
(
–;b,b, . . . ,bq;xH(t)

)
=

∞∑
n=

φn(x)tn,

in which H(t) and A(t) have (formal) expansions

H(t) =
∞∑
n=

hntn+, h �= ,

and

A(t) =
∞∑
n=

antn, a �= .

Since φn(x) belongs to the operator J(σ ) =
∑∞

k= ckσ k+, where ck are constant and c �= .

2 Main results
Theorem  If pn(x) is a polynomial set, then pn(x) is of σ -type zero with σ =D

∏q
m=(xD+

bm – ). It is necessary and sufficient condition that there exist formal power series

H(t) =
∞∑
n=

hntn+, h �= ,

and

Ai(t) =
∞∑
n=

a(i)n t
n (

not all a(i) are zero
)

such that

r∑
i=

Ai(t)Fq
(
–;b,b, . . . ,bq;xH(εit)

)
=

∞∑
n=

pn(x)tn, ()

where θ = xD.

Proof Let yi = Fq(–;b,b, . . . ,bq; zi), where i = , , . . . , r, be a solution of the following
differential equation:

[
θ

q∏
m=

(xD + bm – ) – zi

]
yi = , θ = xD, D =

d
dx

.
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On substituting zi = xH(εit) and keeping t as a constant, where

σ =D
q∏

m=

(xD + bm – ), θ = xD,

we get

[
xD

q∏
m=

(θ + bm – ) – xH(zi)

]
yi = .

This can also be written as

σyi =H(εit)yi

or

σ Fq
(
–;b,b, . . . ,bq;xH(εit)

)
=H(εit)Fq

(
–;b,b, . . . ,bq;xH(εit)

)
.

Operating J(σ ) on both sides of Equation () yields

J(σ )
∞∑
n=

pn(x)tn = J(σ )
r∑
i=

Ai(t)Fq
(
–;b,b, . . . ,bq;xH(εit)

)

=
r∑
i=

Ai(t)J
(
H(εit)

)
Fq

(
–;b,b, . . . ,bq;xH(εit)

)

= t
∞∑
n=

pn(x)tn

=
∞∑
n=

pn–(x)tn.

Therefore, J(σ )p(x) =  and J(σ )pn(x) = pn–(x), n≥ .
Since J(σ ) is independent of x, using the definition of σ -type [, ], we arrive at the

conclusion that pn(x) is σ -type zero.
Conversely, suppose pn(x) is of σ -type zero and belongs to the operator J(σ ). Now qn(x)

is a simple set of polynomials, we can write

r∑
i=

Fq
(
–;b,b, . . . ,bq;xH(εit)

)
=

∞∑
n=

pn(x)tn, ()

where ε, ε, . . . , εr are the roots of unity.
Since qn(x) is a simple set, there exists a sequence ck [], independent of n, such that

pn(x) =
n∑

k=

cn–kqk(x)
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and

∞∑
n=

pn(x)tn =
∞∑
n=

n∑
k=

cn–kqk(x)tn.

On replacing n by n + k, this becomes

∞∑
n=

pn(x)tn =
∞∑
n=

∞∑
k=

cnqk(x)tn+k

=
∞∑
k=

qk(x)tk
∞∑
n=

cntn.

Setting cn = a(i)n (i is independent of n, where i = , , . . . , r), this becomes

∞∑
n=

pn(x)tn =
∞∑
k=

qk(x)tk
∞∑
n=

a(i)n t
n, by using Equation (), we get

=
r∑
i=

Ai(t)Fq
(
–;b,b, . . . ,bq;xH(εit)

)
.

This completes the proof. �

Theorem  A necessary and sufficient condition that pn(x) be of σ -type zero and there
exist a sequence hk , independent of x and n, such that

r∑
i=

εni hn–ψ(εit) = σpn(x), ()

where ψ(εit) = Ai(t)Fq(–;b,b, . . . ,bq;xH(εit)).

Proof If pn(x) is of σ -type zero, then it follows from Theorem  that

∞∑
n=

pn(x)tn =
r∑
i=

Ai(t)Fq
(
–;b,b, . . . ,bq;xH(εit)

)
.

This can be written as

∞∑
n=

σpn(x)tn =
r∑
i=

Ai(t)σ Fq
(
–;b,b, . . . ,bq;xH(εit)

)

=
r∑
i=

H(εit)Ai(t)Fq
(
–;b,b, . . . ,bq;xH(εit)

)

=
r∑
i=

( ∞∑
n=

hnεn+i tn+
)
Ai(t)Fq

(
–;b,b, . . . ,bq;xH(εit)

)

=
∞∑
n=

r∑
i=

(
εni hn–

)
ψ(εit)tn.
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Thus

σpn(x) =
r∑
i=

εni hn–ψ(εit).

This completes the proof. �

3 Sheffer polynomials in two variables [12]
Let pn(x, y) be of σ -type zero. Then pn(x, y) belongs to an operator J(σ ) =

∑∞
k= ckσ k+, in

which ck are constants and c �= .
Since

J(σ )pn(x, y) = pn–(x, y), n≥ ,

where

Dx =
∂

∂x
, Dy =

∂

∂y
, θ = x

∂

∂x
, φ = y

∂

∂y
,

σx =Dx

p∏
m=

(θ + bm – ), σy =Dy

q∏
s=

(θ + bs – ),

and

J
(
(G +H)(t)

)
=

(
(G +H)J(t)

)
= t, σ = σx + σy.

Theorem  A necessary and sufficient condition that pn(x, y) be of σ -type zero, with

σx =Dx

p∏
m=

(θ + bm – ), σy =Dy

q∏
s=

(θ + bs – ), σ = σx + σy,

is that pn(x, y) possess a generating function in

r∑
i=

Ai(t)Fp
(
–;b,b, . . . ,bp;xG(εit)

)
Fq

(
–; c, c, . . . , cq; yH(εit)

)
=

∞∑
n=

pn(x, y)tn, ()

in which

G(t) =
∞∑
n=

gntn+, g �= ,

H(t) =
∞∑
n=

hntn+, h �= ,

Ai(t) =
∞∑
n=

a(i)n t
n (

not all a(i) are zero
)

and i is independent of n.
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Proof Let ui = Fp(–;b,b, . . . ,bp; zi) and vi = Fq(–; c, c, . . . , cq;wi) be the solutions of the
following differential equations:

[
θz

p∏
m=

(θz + bm – ) – zi

]
ui = , θz = z

∂

∂z
,

and

[
φw

q∏
s=

(φw + cs – ) – zi

]
wi = , φw = w

∂

∂w
.

On substituting zi = xG(εit),wi = yH(εit) and keeping t as a constant, where θ = x ∂
∂x = θz,

φ = y ∂
∂y = φw, we get

θ

p∏
m=

(θ + bm – )ui = xG(εit)ui

and

φ

q∏
s=

(φ + cs – )wi = yH(εit)wi.

This can also be written as

σ Fp
(
–;b,b, . . . ,bp;xG(εit)

)
Fq

(
–; c, c, . . . , cq; yH(εit)

)
=

{
G(εit) +H(εit)

}
Fp

(
–;b,b, . . . ,bp;xG(εit)

)
Fq

(
–; c, c, . . . , cq; yH(εit)

)
.

Operating J(σ ) on both sides of Equation () yields

J(σ )
∞∑
n=

pn(x, y)tn

= J(σ )
r∑
i=

Ai(t)Fp
(
–;b,b, . . . ,bp;xG(εit)

)
Fq

(
–; c, c, . . . , cq; yH(εit)

)

=
r∑
i=

Ai(t)J
(
(G +H)(εit)

)
Fp

[
–;b,b, . . . ,bp;xG(εit)

]
Fq

[
–; c, c, . . . , cq; yH(εit)

]

= t
∞∑
n=

pn(x, y)tn

=
∞∑
n=

pn–(x, y)tn.

Therefore, J(σ )p(x, y) =  and J(σ )pn(x, y) = pn–(x, y), n≥ .
Since J(σ ) is independent of x and y, thus we arrive at the conclusion that pn(x, y) is of

σ -type zero.
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Conversely, suppose pn(x, y) is of σ -type zero and belongs to the operator J(σ ). Now
qn(x, y) is a simple set of polynomials. We can write

r∑
i=

Fp
(
–;b,b, . . . ,bp;xG(εit)

)
Fq

(
–; c, c, . . . , cq; yH(εit)

)
=

∞∑
n=

pn(x, y)tn. ()

Since qn(x, y) is a simple set, there exists a sequence ck , independent of n, such that

pn(x, y) =
n∑

k=

cn–kqk(x, y)

and

∞∑
n=

pn(x, y)tn =
∞∑
n=

n∑
k=

cn–kqk(x, y)tn.

On replacing n by n + k, this becomes

=
∞∑
n=

∞∑
k=

cnqk(x, y)tn+k

=
∞∑
k=

qk(x, y)tk
∞∑
n=

cntn.

Setting cn = a(i)n (i is independent of n, where i = , , . . . , r), this becomes

=
∞∑
k=

qk(x, y)tk
∞∑
n=

a(i)n t
n

=
r∑
i=

Ai(t)Fp
(
–;b,b, . . . ,bp;xG(εit)

)
Fq

(
–; c, c, . . . , cq; yH(εit)

)
.

This completes the proof. �

Theorem  A necessary and sufficient condition that pn(x, y) be of σ -type zero and there
exist sequences gk and hk , independent of x, y and n, such that

r∑
i=

εni (gn– + hn–)υ(εit) = σpn(x, y), ()

where υ(εit) = Ai(t)Fp(–;b,b, . . . ,bp;xG(εit))Fq(–; c, c, . . . , cq; yH(εit)).

Proof If pn(x, y) is of σ -type zero, then it follows from Theorem  that

∞∑
n=

pn(x, y)tn =
r∑
i=

Ai(t)Fp
(
–;b,b, . . . ,bp;xG(εit)

)
Fq

(
–; c, c, . . . , cq; yH(εit)

)
.
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This can be written as

∞∑
n=

σpn(x, y)tn =
r∑
i=

Ai(t)σ Fp
(
–;b,b, . . . ,bp;xG(εit)

)
Fq

(
–; c, c, . . . , cq; yH(εit)

)

=
r∑
i=

(G +H)(εit)Ai(t)Fp
(
–;b,b, . . . ,bp;xG(εit)

)

× Fq
(
–; c, c, . . . , cq; yH(εit)

)
=

r∑
i=

( ∞∑
n=

(gn + hn)εn+i tn+
)
Ai(t)Fp

(
–;b,b, . . . ,bp;xG(εit)

)

× Fq
(
–; c, c, . . . , cq; yH(εit)

)
=

∞∑
n=

r∑
i=

(
εni (gn– + hn–)

)
υ(εit)tn.

Thus

σpn(x, y) =
r∑
i=

εni (gn– + hn–)υ(εit),

where υ(εit) = Ai(t)Fp(–;b,b, . . . ,bp;xG(εit))Fq(–; c, c, . . . , cq; yH(εit)). This completes
the proof. �
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