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Abstract
In (Das et al. in J. Inequal. Appl. 2013:44, 2013), a new graph Γ (SM) on monogenic
semigroups SM (with zero) having elements {0, x, x2, x3, . . . , xn} was recently defined.
The vertices are the non-zero elements x, x2, x3, . . . , xn and, for 1≤ i, j ≤ n, any two
distinct vertices xi and xj are adjacent if xixj = 0 in SM. As a continuing study, in an
unpublished work, some well-known indices (first Zagreb index, second Zagreb
index, Randić index, geometric-arithmetic index, atom-bond connectivity index,
Wiener index, Harary index, first and second Zagreb eccentricity indices, eccentric
connectivity index, the degree distance) over Γ (SM) were investigated by the same
authors of this paper.
In the light of the above references, our main aim in this paper is to extend these

studies to the lexicographic product over Γ (SM). In detail, we investigate the
diameter, radius, girth, maximum and minimum degree, chromatic number, clique
number and domination number for the lexicographic product of any two (not
necessarily different) graphs Γ (S1

M) and Γ (S2
M).
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1 Introduction and preliminaries
The base of the graph Γ (SM) is actually zero-divisor graphs (cf. []). In fact, the history
of studying zero-divisor graphs began over commutative rings by the paper [], and then
it was followed over commutative and noncommutative rings by some of the joint papers
[–]. After that the same terminology has been converted to commutative and noncom-
mutative semigroups [, ].
In a recent study [], the graph Γ (SM) is defined by changing the adjacency rule of ver-

tices and not destroying the main idea. Detailed, the authors considered a finite multi-
plicative monogenic semigroup with zero as the set

SM =
{
,x,x,x, . . . ,xn

}
. ()

Then, by following the definition given in [], an undirected (zero-divisor) graph Γ (SM)
associated to SM was obtained as in the following. The vertices of the graph are labeled
by the nonzero zero-divisors (in other words, all nonzero element) of SM , and any two
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distinct vertices xi and xj, where (≤ i, j ≤ n) are connected by an edge in the case xixj = 
with the rule xixj = xi+j =  if and only if i + j ≥ n + . The fundamental spectral properties
such as the diameter, girth, maximum and minimum degree, chromatic number, clique
number, degree sequence, irregularity index and dominating number for this new graph
are presented in []. Furthermore, in an unpublished work, the same authors of this paper
studied the first and second Zagreb indices, Randić index, geometric-arithmetic index and
atom-bond connectivity index, Wiener index, Harary index, the first and second Zagreb
eccentricity indices, eccentric connectivity index and the degree distance to indicate the
importance of the graph Γ (SM).
It is known that studying the extension of graphs is also an important tool (see, for in-

stance, [, ]) since there are so many applications in science. With this idea, the lexico-
graphic product G[H] of any two simple graphs G and H (in some references, it is also
called composition product []) is defined which has the vertex set V (G) × V (H) such
that any two vertices u = (u,u) and v = (v, v) are connected to each other by an edge
if and only if uv ∈ E(G) or u = v and uv ∈ E(H) (see, for instance, [–]). In here,
we replace G by Γ (S

M) and G by Γ (S
M) (as defined in ()), where S

M = {x,x,x, . . . ,xn}
with  and S

M = {y, y, y, . . . , ym} with  such that n ≥ m. Hence, the lexicographic prod-
uct Γ (S

M)[Γ (S
M)] has a vertex set V (Γ (S

M)[Γ (S
M)]) = V (Γ (S

M))× V (Γ (S
M)) which is

given by

{(x, y), (x, y), . . . , (xn, y), (x, y), (x, y), . . . , (xn, y),
...

...
(x, ym–), (x, ym–), . . . , (xn, ym–), (x, ym), (x, ym), . . . , (xn, ym)}

⎫⎪⎪⎬
⎪⎪⎭ . ()

Here, any two vertices (xi, yj) and (xa, yb) are connected to each other if and only if

xixa ∈ E(Γ (S
M)) ⇐⇒ xixa =  ⇐⇒ i + a ≥ n +  or

xi = xa and yjyb ∈ E(Γ (S
M)) ⇐⇒ xi = xa and j + b ≥ m + 

}
. ()

In this paper, by considering Γ (S
M)[Γ (S

M)], we present some certain results for the
diameter, radius, girth, maximum and minimum degrees, and finally chromatic, clique
and domination numbers.

2 Main results
It is known that the girth of a simple graph G is the length of the shortest cycle contained
in that graph. However, if G does not contain any cycle, then the girth of it is assumed to
be infinity. Thus the first theorem of this paper is the following.

Theorem 

girth
(
Γ

(
S
M

)[
Γ

(
S
M

)])
= .

Proof By considering (), we easily conclude that
(i) xnxn– =  implies (xn, ym) ∼ (xn–, ym),
(ii) xn–x =  implies (xn–, ym) ∼ (x, ym),
(iii) xxn =  implies (x, ym) ∼ (xn, ym).
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Then, thinking the above steps at the same time, we get
(
xn, ym

) ∼ (
xn–, ym

) ∼ (
x, ym

) ∼ (
xn, ym

)
,

as desired. �

The degree degG(v) of a vertex v of G is the number of vertices adjacent to v. Among all
degrees, the maximum Δ(G) (or the minimum δ(G)) degrees of G is the number of the
largest (or the smallest) degree in G [].

Theorem  The maximum and minimum degrees of Γ (S
M)[Γ (S

M)] are

Δ
(
Γ

(
S
M

)[
Γ

(
S
M

)])
= nm –  and δ

(
Γ

(
S
M

)[
Γ

(
S
M

)])
=m + ,

respectively.

Proof It is obvious that the vertex set V (Γ (S
M)[Γ (S

M)]) in () has a total of nm vertices.
Among these vertices, let us take the vertex (xn, ym). So, the maximum degree Δ of the
graph Γ (S

M)[Γ (S
M)] is equal to

nm – 

since the vertex (xn, ym) is adjacent to all the other vertices.
On the other hand, let us take the vertex (x, y). Then, again by (), the adjacency of (x, y)

with a vertex (xi, yj) holds only if we have i = n or i =  and j =m. That means the vertex
(x, y) is connected to (xn, y), (xn, y), . . . , (xn, ym) and (x, ym). Thus δ(Γ (S

M)[Γ (S
M)]) =m+,

as required. �

We recall that the distance (length of the shortest path) between two vertices u and v of
G is denoted by dG(u, v). Moreover, the diameter of a simple graph G is defined by

diam(G) =max
{
dG(u, v) : u and v are vertices of G

}
.

We then have the next result.

Theorem 

diam
(
Γ

(
S
M

)[
Γ

(
S
M

)])
= .

Proof Obviously, the vertex (x, y) in () has at least one neighborhood, and so the diam-
eter can be figured out by considering the distance between (x, y) and one of the other
vertices in the vertex set. Therefore, by (), the vertex (x, y) is adjacent only to the ver-
tices (xn, y), (xn, y), . . . , (xn, ym) and (x, ym). However (xn, ym) is adjacent to all the vertices
defined in (). Therefore the diameter should be obtained by considering the distance be-
tween (x, y) and (xi, yj), where  ≤ i ≤ n – ,  ≤ j ≤ m. In here, we must assume that the
case i =  and j =m does not hold at the same time since there exists an adjacency

(x, y) ∼ (
xn, ym

) ∼ (
xi, yj

)
.

Hence the result. �
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The eccentricity of a vertex v, denoted by ε(v), in a connected graph G is the maximum
distance between v and any other vertex u of G. (For a disconnected graph, all vertices
are defined to have infinite eccentricity.) It is clear that diam(G) is equal to themaximum
eccentricity among all the vertices of G. On the other hand, the minimum eccentricity is
called the radius [, ] of G and denoted by

rad(G) =min
u

{
max

v

{
dG(u, v)

}}
.

Theorem 

rad
(
Γ

(
S
M

)[
Γ

(
S
M

)])
= .

Proof We know that the vertex (xn, ym) is adjacent to all the vertices in (). Thus the ra-
dius can be figured out by considering the distance between (xn, ym) and one of the other
vertices in the set (). So,

(
xn, ym

) ∼ (
xi, yj

)
,  ≤ i≤ n,  ≤ j ≤ m.

Hence, the eccentricity ε[(xn, ym)] is equal to , which implies the required result. �

A subset D of the vertex set V (G) of a graph G is called a dominating set if every vertex
V (G)\D is joined to at least one vertex of D by an edge. Additionally, the domination
number γ (G) is the number of vertices in the smallest dominating set for G. (We may
refer to [] for the fundamentals of a domination number.)
In our case, by (), the dominating set is defined by {(xn, ym)} since the vertices (xn, ym)

are adjacent to all the other vertices. Hence we obtain the next result.

Theorem  γ (Γ (S
M)[Γ (S

M)]) = .

Basically, the coloring of G is to be an assignment of colors (elements of some set) to
the vertices of G, one color to each vertex, so that adjacent vertices are assigned distinct
colors. If n colors are used, then the coloring is referred to as an n-coloring. If there exists
an n-coloring of G, then G is called n-colorable. The minimum number n for which G is
n-colorable is called the chromatic number of G and is denoted by χ (G).
In addition, there exists another graph parameter, namely the clique of a graph G. In

fact, depending on the vertices, each of the maximal complete subgraphs of G is called
a clique. Moreover, the largest number of vertices in any clique of G is called the clique
number and denoted by ω(G). In general, by [], it is well known that χ (G) ≥ ω(G) for
any graph G. For every induced subgraph H of G, if χ (H) = ω(H) holds, then G is called a
perfect graph [].
By constructing the next result (see Theorem  below) for the chromatic number over

the lexicographic product of the graphs Γ (S
M) and Γ (S

M), we shall present a negative
answer of a result given in [] (see Remark ).
We recall that for a real number r, the notation �r	 denotes the least integer ≥ r. This

fact will be needed for some of our results below.
The proof of the following lemma can be found in [, Theorem ].

http://www.journalofinequalitiesandapplications.com/content/2013/1/238
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Lemma  ([]) For amonogenic semigroup SM as in (), the chromatic number of the graph
Γ (SM) is given by

 +
⌈
n – 


⌉
.

The next result is an extension of the above lemma to the lexicographic product.

Theorem  The chromatic number of Γ (S
M)[Γ (S

M)] is equal to

(
 +

⌈
n – 


⌉)(
 +

⌈
m – 


⌉)
.

In other words, χ (Γ (S
M)[Γ (S

M)]) = χ (Γ (S
M))χ (Γ (S

M)).

Proof First step: The list of vertices that the vertex (xn, ym) is adjacent to all the other ver-
tices was given in (). That means the color that was used for (xn, ym) cannot be used for
any other vertices. So, let us suppose that the color used for the vertex (xn ,xm ) is labeled
by C

 . Secondly, if we consider the vertex (xn, ym–), then it is easy to see that (xn, ym–) is
adjacent to all the vertices except the vertex (xn, y). Thus, the color for (xn, ym–), say C

 ,
can be also used only for (xn, y). As a similar idea, the vertex (xn, ym–) is adjacent to all
the vertices except the vertices (xn, y) and (xn, y). Thus the color, say C

 , for (xn, ym–) can
be also used only for the vertex (xn, y). (Notice that the color C

 has been already used
for (xn, y) in the previous step.) After that, following the same progress, we see that the
total of  + �m–

 	 different colors is needed to handle the coloring of all vertices in the set
{(xn, yj);  ≤ j ≤m}.
Second step: Except the set of vertices {(x, y), (x, y), . . . , (x, ym)}, the vertex (xn–, ym) is

adjacent to all the other vertices defined in (). On the other hand, while each element in
the sets

{
(x, y),

(
x, y

)
, . . . ,

(
x, y�m 	)} and

{(
x, y�m 	+), (x, y�m 	+), . . . , (x, ym)}

is adjacent to each other, there also exists an adjacency among the vertices

(
x, y�m 	+), (x, y�m 	+), . . . , (x, ym)

.

That means the color used for (xn–, ym) can be also used for the vertices

{
(x, y),

(
x, y

)
, . . . ,

(
x, y�m 	)}.

So, let us suppose that the color used for (xn–, ym) and the vertices

(x, y),
(
x, y

)
, . . . ,

(
x, y�m 	)

is labeled by C
.

Now let us secondly consider the vertex (xn–, ym–). Since (xn–, ym–) is not adjacent to
vertices (x, y), (x, y), . . . , (x, ym) and (xn–, y), the color, say C

 , for (xn–, ym–) can be also

http://www.journalofinequalitiesandapplications.com/content/2013/1/238
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used only for

(
x, y�m 	+) and

(
xn–, y

)
.

(The color C
 has been already used for the vertices (x, y), (x, y), . . . , (x, y�m 	) in the pre-

vious step.) Similarly, it is easy to see that the vertex (xn–, ym–) is not adjacent to the
vertices

(x, y),
(
x, y

)
, . . . ,

(
x, ym

)
,
(
xn–, y

)
and

(
xn–, y

)
.

Thus the color, say C
 , for (xn–, ym–) can be also used only for the vertices (x, y�m 	+) and

(xn–, y). (Again, notice that the color C
 has been already used for (xn–, y) previously.)

Finally, we need the total of  + �m–
 	 different colors for the coloring of vertices in the

set
{(

xn–, yj
)
,
(
x, yi

)
;  ≤ j ≤ m,

⌈
m


⌉
+  ≤ i ≤ m

}
.

Third step: The vertex (xn–, ym) cannot be adjacent to the vertices

{
(x, y),

(
x, y

)
, . . . ,

(
x, ym

)
,
(
x, y

)
,
(
x, y

)
, . . . ,

(
x, ym

)}
in the set (). In the second step, we have already colored the vertices (x, y), (x, y), . . . ,
(x, ym). Furthermore, again similarly as in the second step, the vertices

{(
x, y

)
,
(
x, y

)
, . . . ,

(
x, y�m 	)} and

{(
x, y�m

 	+), (x, y�m 	+), . . . , (x, ym)}
are adjacent to each other, and also there exists an adjacency among the vertices

(
x, y�m

 	+), (x, y�m 	+), . . . , (x, ym)
.

That means the color that used for (xn–, ym) can be also used for the vertices

{(
x, y

)
,
(
x, y

)
, . . . ,

(
x, y�m 	)}.

So, let us suppose that the color used for (xn–, ym) and (x, y), (x, y), . . . , (x, y�m 	) is la-
beled by C

. Moreover, if we consider the vertex (xn–, ym–), then it is clear that it is not
adjacent to the vertices

(
x, y

)
,
(
x, y

)
, . . . ,

(
x, ym

)
and

(
xn–, y

)
.

Hence, the color, say C
 , for the vertex (xn–, ym–) can be also used only for

(
x, y�m

 	+) and
(
xn–, y

)
.

(We note that the color C
 has been already used for

(
x, y

)
,
(
x, y

)
, . . . ,

(
x, y�m 	)

http://www.journalofinequalitiesandapplications.com/content/2013/1/238
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previously.) Finally, the vertex (xn–, ym–) is not adjacent to the vertices

(
x, y

)
,
(
x, y

)
, . . . ,

(
x, ym

)
,
(
xn–, y

)
and

(
xn–, y

)
.

Thus the color, say C
 , for (xn–, ym–) can be also used only for the vertices

(
x, y�m

 	+) and
(
xn–, y

)
.

(Note that the color C
 has been already used for (xn–, y).) Following a similar process as

in the third step, one can see that the total of + �m–
 	 different colors is needed to handle

the coloring of all the vertices in the set

{(
xn–, yj

)
,
(
x, yi

)
;  ≤ j ≤ m,

⌈
m


⌉
+  ≤ i≤ m

}
.

By applying the same procedure as in the above steps, one can see that to handle the
coloring of all the vertices in the set (), we need the total of  + � n–

 	 steps. In fact, each
step has  + �m–

 	 different colors. Therefore we obtain

χ
(
Γ

(
S
M

)[
Γ

(
S
M

)])
=

(
 +

⌈
n – 


⌉)(
 +

⌈
m – 


⌉)
,

as desired. �

Remark  It is clear that χ (G[H]) ≤ χ (G)χ (H). This trivial upper bound is attained for
any G and H with χ (G) = ω(G) and χ (H) = ω(H). However, in Theorem , we obtained
an equality between χ (Γ (S

M)[Γ (S
M)]) and χ (Γ (S

M))χ (Γ (S
M)). But it was shown in [],

that there is not any product ∗ of graphs for which the equality χ (G∗H) = χ (G)χ (H) holds
for all graphs G and H .

In [, Theorem .], the authors proved that the clique number is preserved under the
lexicographic product for any graphs G and H . In the following, we deal with this result
by considering our special graphs. Before that, we need to present the following lemma,
the truthfulness of which is quite clear.

Lemma  For any m ∈N
+, there always exists

m –
⌈
m


⌉
=

⌈
m – 


⌉
.

Theorem  The clique number of Γ (S
M)[Γ (S

M)] is equal to

ω
(
Γ

(
S
M

)[
Γ

(
S
M

)])
=

(
 +

⌈
n – 


⌉)(
 +

⌈
m – 


⌉)
.

Proof In the proof, we must first check whether the subgraph is complete or not (which
means any two distinct vertices in the vertex set of this subgraph are adjacent). Now let us

http://www.journalofinequalitiesandapplications.com/content/2013/1/238
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consider the graph Γ (S
M)[Γ (S

M)]. According to the definition, a subgraph will be com-
plete if, for all distinct vertices (xi, yj) and (xa, yb),

xi ∼ xa
(
i.e., xi · xa = 

)
or xi = xa and yj ∼ yb

(
i.e., yj · yb = 

)
()

i.e., (xi, yj) ∼ (xa, yb) for all i, j, a, b.
On the other hand, the equality in () will hold only in case the sum i + a would be at

least equal to the n +  or the sum j + b would be at least equal to the m +  and i = a.
Therefore, for any two vertices (xi, yj) and (xa, yb), we must have at least

i =
⌈
n


⌉
, a =

⌈
n


⌉
+  or i = a, j =

⌈
m


⌉
, b =

⌈
m


⌉
+ 

since � n
 	+ � n

 	+  = n+  and �m
 	+ �m

 	+  =m+ . This process will be given a maximal
complete subgraph, say A, with the vertex set

V (A) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x� n 	, y�m 	), (x� n 	, y�m 	+), . . . , (x� n 	, ym),
(x� n 	+, y�m

 	), (x� n 	+, y�m
 	+), . . . , (x� n 	+, ym),

...
(xn, y�m 	), (xn, y�m 	+), . . . , (xn, ym)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

Note that the number of elements in the set V (A) is given by

(
n –

⌈
n


⌉
+ 

)(
m –

⌈
m


⌉
+ 

)
=

(
 +

⌈
n – 


⌉)(
 +

⌈
m – 


⌉)
(by Lemma ).

Hence we obtain ω(Γ (S
M)[Γ (S

M)]) = ( + � n–
 	)( + �m–

 	), as required. �

Remark  By Theorems  and ,

χ
(
Γ

(
S
M

)[
Γ

(
S
M

)])
= ω

(
Γ

(
S
M

)[
Γ

(
S
M

)])
=

(
 +

⌈
n – 


⌉)(
 +

⌈
m – 


⌉)
, ()

which implies that the lexicographic product preserves the perfectness property for the
special graphs Γ (S

M) and Γ (S
M). We note that each graph in here is perfect by []. Ac-

tually, Eq. () implies a special case of the result in [] since in this reference the authors
proved that the lexicographic product G[H] is perfect iff G and H are perfect.

Example  For the semigroups

S
M =

{
x,x,x,x,x

}
and S

M =
{
y, y, y, y

}
as in (), let us consider the graph Γ (S

M) ⊗ Γ (S
M). Depending on the results presented

in this paper, we can state the following equalities:
(i) girth(Γ (S

M)[Γ (S
M)]) =  (by Theorem ).

(ii) Δ(Γ (S
M)[Γ (S

M)]) =  and δ(Γ (S
M)⊗ Γ (S

M)) =  (by Theorem ).
(iii) diam(Γ (S

M)[Γ (S
M)]) =  (by Theorem ).

(iv) rad(Γ (S
M)[Γ (S

M)]) =  (by Theorem ).

http://www.journalofinequalitiesandapplications.com/content/2013/1/238
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(v) γ (Γ (S
M)[Γ (S

M)]) =  (by Theorem ).
(vi) χ (Γ (S

M)[Γ (S
M)]) =  (by Theorem ).

(vii) ω(Γ (S
M)[Γ (S

M)]) =  (by Theorem ).
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