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Abstract
In this paper, some new Gronwall-Bellman-type integral inequalities in two indepen-
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MSC: 26E70; 26D15; 26D10

Keywords: integral inequality; time scale; dynamic equation; qualitative property;
quantitative property

1 Introduction
It is well known that Gronwall-Bellman inequality [, ] plays an important role in the re-
search of boundedness, global existence, stability of solutions of differential and integral
equations as well as difference equations. During the past decades, a lot of generations
of Gronwall-Bellman inequality have been discovered; see, for example, [–]. On the
other hand, in the s, Hilger created the theory of time scales [] as a theory capable
to contain both difference and differential calculus in a consistent way. Since then many
authors have expounded on various aspects of the theory of dynamic equations on time
scales. See, for example, [–] and the references therein. In these investigations, in-
tegral inequalities on time scales have been paid much attention by many authors, and
a lot of integral inequalities on time scales have been established, for example, [–],
which have been designed in order to unify continuous and discrete analysis. But to our
knowledge,Gronwall-Bellman-type integral inequalities containing integration on infinite
intervals on time scales have been paid little attention in the literature so far.
In this paper, we establish some newGronwall-Bellman-type integral inequalities in two

independent variables containing integration on infinite intervals on time scales, which
unify some of the continuous inequalities in [] and the corresponding discrete analysis
in [].

2 Some preliminaries
Throughout the paper, R denotes the set of real numbers and R+ = [,∞). Z denotes the
set of integers. For two given sets G, H , we denote the set of maps from G to H by (G,H).
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A time scale is an arbitrary nonempty closed subset of real numbers. In this paper, T
denotes an arbitrary time scale. On Twe define the forward and backward jump operators
σ ∈ (T,T) and ρ ∈ (T,T) such that σ (t) = inf{s ∈ T, s > t}, ρ(t) = sup{s ∈ T, s < t}.

Definition . The graininess μ ∈ (T,R+) is defined by μ(t) = σ (t) – t.

Remark . Obviously, μ(t) =  if T =R, while μ(t) =  if T = Z.

Definition . A point t ∈ T with t > infT is said to be left-dense if ρ(t) = t and right-
dense if σ (t) = t, left-scattered if ρ(t) < t and right-scattered if σ (t) > t.

Definition . The set Tκ is defined to be T if T does not have a left-scattered maximum;
otherwise, it is T without the left-scattered maximum.

Definition . A function f (t) ∈ (T,R) is called rd-continuous if it is continuous in right-
dense points and if the left-sided limits exist in left-dense points, while f is called regressive
if  +μ(t)f (t) �= . Crd denotes the set of rd-continuous functions, whileR denotes the set
of all regressive and rd-continuous functions, andR+ = {f |f ∈R,  +μ(t)f (t) > ,∀t ∈ T}.

Definition . For some t ∈ T
κ , and a function f (t) ∈ (T,R), the delta derivative of f is

denoted by f �(t) and satisfies∣∣f (σ (t)) – f (s) – f �(t)
(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣, ∀ε > ,

where s ∈ U, and U is a neighborhood of t. The function f (t) is called delta differential
on T

κ .
Similarly, for some x ∈ T

κ , and a function f (x, y) ∈ (T×T,R), the partial delta derivative
of f (x, y) with respect to x is denoted by (f (x, y))�x and satisfies∣∣f (σ (x), y) – f (s, y) –

(
f (x, y)

)�

x

(
σ (x) – s

)∣∣ ≤ ε
∣∣σ (x) – s

∣∣, ∀ε > ,

where s ∈ U, and U is a neighborhood of x. The function f (x, y) is called partial delta
differentiable with respect to x on T

κ .

Remark . If T =R, then f �(t) becomes the usual derivative f ′(t), while f �(t) = f (t+)–
f (t) if T = Z, which represents the forward difference.

Definition . If F�(t) = f (t), t ∈ T
κ , then F is called an antiderivative of f , and the

Cauchy integral of f is defined by∫ b

a
f (t)�t = F(b) – F(a), where a,b ∈ T.

Similarly, for a,b ∈ T and a function f (x, y) : T× T → R, the Cauchy partial integral of
f (x, y) with respect to x is defined by∫ b

a
f (x, y)�x = F(b, y) – F(a, y), where

(
F(x, y)

)�

x = f (x, y),x ∈ T
κ .

The following two theorems include some important properties for partial delta deriva-
tive and Cauchy partial integral on time scales.
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Theorem . If f (x, y), g(x, y) ∈ (T×T,R), and x ∈ T
κ , then

(i)

(
f (x, y)

)�

x =

⎧⎨⎩
f (σ (x),y)–f (x,y)

μ(x) if μ(x) �= ,

lims→x
f (x,y)–f (s,y)

x–s if μ(x) = .

(ii) If f , g are partial delta differentiable at x, then fg is also partial delta differentiable at
x, and(

f (x, y)g(x, y)
)�

x =
(
f (x, y)

)�

x g(x, y) + f
(
σ (x), y

)(
g(x, y)

)�

x .

Theorem . If a,b, c ∈ T, α ∈ R, and f (x, y), g(x, y) ∈ Crd(T×T,R), then
(i)

∫ b
a [f (x, y) + g(x, y)]�x =

∫ b
a f (x, y)�x +

∫ b
a g(x, y)�x,

(ii)
∫ b
a (αf )(x, y)�x = α

∫ b
a f (x, y)�x,

(iii)
∫ b
a f (x, y)�x = –

∫ a
b f (x, y)�x,

(iv)
∫ b
a f (x, y)�x =

∫ c
a f (x, y)�x +

∫ b
c f (x, y)�x,

(v)
∫ a
a f (x, y)�x = ,

(vi) if f (x, y) ≥  for all a≤ x ≤ b, then
∫ b
a f (x, y)�x≥ .

Remark . If b = ∞, then all the conclusions of Theorem . still hold.

Definition . The cylinder transformation ξh is defined by

ξh(z) =

⎧⎨⎩
Log(+hz)

h if h �=  (for z �= – 
h ),

z if h = ,

where Log is the principal logarithm function.

Definition . For p(x, y) ∈ R with respect to x, the exponential function is defined by

ep(x, s) = exp

(∫ x

s
ξμ(τ )

(
p(τ , y)

)
�τ

)
, s,x, y ∈ T.

Definition . If supx∈T x = ∞, p(x, y) ∈R with respect to x, then we define

ep(∞, s) = exp

(∫ ∞

s
ξμ(τ )

(
p(τ , y)

)
�τ

)
, s, y ∈ T.

Remark . If T =R, then for x ∈R⎧⎨⎩ep(x, s) = exp(
∫ x
s p(τ , y)dτ ), s, y ∈R,

ep(∞, s) = exp(
∫ ∞
s p(τ , y)dτ ), s, y ∈R.

If T = Z, then for x ∈ Z⎧⎨⎩ep(x, s) =
∏x–

τ=s[ + p(τ , y)], s, y ∈ Z and s < x,

ep(∞, s) =
∏∞

τ=s[ + p(τ , y)], s, y ∈ Z.

The following two theorems include some known properties on the exponential func-
tion.
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Theorem . If p(x, y) ∈R with respect to x, then the following conclusions hold:
(i) ep(x,x)≡  and e(x, s)≡ ,
(ii) ep(σ (x), s) = ( +μ(x)p(x, y))ep(x, s),
(iii) if p ∈R+ with respect to x, then ep(x, s) > , ∀s,x ∈ T,
(iv) if p ∈R+ with respect to x, then �p ∈R+,
(v) ep(x, s) = 

ep(s,x) = e�p(s,x),

where (�p)(x, y) = – p(x,y)
+μ(x)p(x,y) .

Remark . If s = ∞, then Theorem .(v) still holds.

Theorem. If p(x, y) ∈Rwith respect to x,x ∈ T is a fixed number, then the exponential
function ep(x,x) is the unique solution of the following initial value problem:⎧⎨⎩(z(x, y))�x = p(x, y)z(x, y),

z(x, y) = .

Remark . Theorems .-. are similar to the corresponding theorems in [, ].

Remark . For more details about time scales, we advise the reader to refer to [].

3 Main results
First we give some important lemmas as follows.

Lemma . Suppose supx∈Tκ x = ∞. For every fixed y ∈ T
κ , u(x, y),q(x, y) ∈ Crd(Tκ ×

T
κ ,R), p(x, y) ∈ R+ with respect to x, and u(x, y) is partial delta differentiable at x ∈ T

κ ,
then (

u(x, y)
)�

x ≥ p(x, y)u(x, y) – q(x, y), x, y ∈ T
κ , (.)

implies

u(x, y) ≤ u(∞, y)e�p(∞,x) +
∫ ∞

x
q(s, y)ep

(
x,σ (s)

)
�s, x, y ∈ T

κ . (.)

Proof Fix Y ∈ T
κ , since p(x,Y ) ∈ R+, then from Theorem .(iv) we have �p(x,Y ) ∈ R+;

furthermore, from Theorem .(iii) we obtain e�p(x,α) > , ∀α ∈ T
κ .

According to Theorem .(ii),[
u(x,Y )e�p(x,α)

]�

x =
[
e�p(x,α)

]�

x u(x,Y ) + e�p
(
σ (x),α

)(
u(x,Y )

)�

x . (.)

On the other hand, from Theorem . we have[
e�p(x,α)

]�

x = (�p)(x,Y )e�p(x,α). (.)

So, combining (.), (.) and Theorem ., it follows that[
u(x,Y )e�p(x,α)

]�

x

= (�p)(x,Y )e�p(x,α)u(x,Y ) + e�p
(
σ (x),α

)(
u(x,Y )

)�

x
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= e�p
(
σ (x),α

)[ (�p)(x,Y )
 +μ(x)(�p)(x,Y )

u(x,Y ) +
(
u(x,Y )

)�

x

]
= e�p

(
σ (x),α

)[(
u(x,Y )

)�

x – p(x,Y )u(x,Y )
]
. (.)

Substituting x with s and integration for (.) with respect to s from α to ∞ yield

u(∞,Y )e�p(∞,α) – u(α,Y )e�p(α,α)

=
∫ ∞

α

e�p
(
σ (s),α

)[(
u(s,Y )

)�

x – p(s,Y )u(s,Y )
]
�s. (.)

Considering e�p(α,α) = , from (.) and (.), we have

u(∞,Y )e�p(∞,α) – u(α,Y ) ≥ –
∫ ∞

α

e�p
(
σ (s),α

)
q(s,Y )�s

= –
∫ ∞

α

ep
(
α,σ (s)

)
q(s,Y )�s,

which is followed by

u(α,Y )≤ u(∞,Y )e�p(∞,α) +
∫ ∞

α

ep
(
α,σ (s)

)
q(s,Y )�s. (.)

Since α ∈ T
κ is arbitrary, then after substituting α with x, we obtain

u(x,Y ) ≤ u(∞,Y )e�p(∞,x) +
∫ ∞

x
q(s,Y )ep

(
x,σ (s)

)
�s, x ∈ T

κ . (.)

Considering Y is selected from T
κ arbitrarily, then in fact (.) holds for every y in T

κ ,
that is,

u(x, y) ≤ u(∞,Y )e�p(∞,x) +
∫ ∞

x
q(s, y)ep

(
x,σ (s)

)
�s, x, y ∈ T

κ ,

which is the desired inequality. �

Lemma . [] Assume that a ≥ , p≥ q ≥ , and p �= , then for any K > 

a
q
p ≤ q

p
K

q–p
p a +

p – q
p

K
q
p .

Lemma . If supx∈T x = ∞, p(x, y) ∈ R with respect to x, then∫ ∞

x
f (s, y)ef

(
x,σ (s)

)
�s =  – ef (x,∞) =  – e�f (∞,x). (.)

Proof According to [, Theorems . and .(i)], we have∫ x

x
f (s, y)ef

(
x,σ (s)

)
�s = –

∫ x

x
f (s, y)ef

(
x,σ (s)

)
�s =  – ef (x,x). (.)

Then by Theorem .(v) and after letting x → ∞, we obtain the desired result. �
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Theorem . Suppose supx∈Tκ x = ∞, u,a, f , g ∈ Crd(T × T,R+), p is a positive number
with p ≥ . If u(x, y) satisfies the following inequality:

up(x, y) ≤ a(x, y) + b(x, y)
∫ ∞

x

∫ ∞

y

[
f (s, t)u(s, t) + g(s, t)

]
�t�s, x, y ∈ T

κ , (.)

then

u(x, y) ≤
{
a(x, y) + b(x, y)

[
H(x, y) +

∫ ∞

x
H(s, y)H(s, y)e–H

(
x,σ (s)

)
�s

]} 
p
,

x, y ∈ T
κ , (.)

provided that  –μ(x)H(x, y) > , where⎧⎨⎩H(x, y) =
∫ ∞
x

∫ ∞
y {f (s, t)[ pK

–p
p a(s, t) + p–

p K

p ] + g(s, t)}�t�s,

H(x, y) =
∫ ∞
y f (x, t) pK

–p
p b(x, t)�t, ∀K > .

(.)

Proof Let

v(x, y) =
∫ ∞

x

∫ ∞

y

[
f (s, t)u(s, t) + g(s, t)

]
�t�s, x, y ∈ T

κ . (.)

Then

u(x, y) ≤ [
a(x, y) + b(x, y)v(x, y)

] 
p , x, y ∈ T

κ . (.)

On the other hand, from Lemma . we have

(
a(x, y) + b(x, y)v(x, y)

) 
p ≤ 

p
K

–p
p

(
a(x, y) + b(x, y)v(x, y)

)
+
p – 
p

K

p . (.)

Combining (.), (.), and (.), we obtain

v(x, y) ≤
∫ ∞

x

∫ ∞

y

[
f (s, t)

(
a(s, t) + b(s, t)v(s, t)

) 
p + g(s, t)

]
�t�s

≤
∫ ∞

x

∫ ∞

y

{
f (s, t)

[

p
K

–p
p

(
a(s, t) + b(s, t)v(s, t)

)
+
p – 
p

K

p

]
+ g(s, t)

}
�t�s

≤
∫ ∞

x

∫ ∞

y

{
f (s, t)

[

p
K

–p
p a(s, t) +

p – 
p

K

p

]
+ g(s, t)

}
�t�s

+
∫ ∞

x

[∫ ∞

y
f (s, t)


p
K

–p
p b(s, t)�t

]
v(s, y)�s

= H(x, y) +
∫ ∞

x
H(s, y)v(s, y)�s, (.)

where H, H are defined in (.).
Let z(x, y) =

∫ ∞
x H(s, y)v(s, y)�s, then

v(x, y)≤ H(x, y) + z(x, y), x, y ∈ T
κ (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/234
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and

(
z(x, y)

)�

x = –H(x, y)v(x, y)

≥ –H(x, y)
[
H(x, y) + z(x, y)

]
= –H(x, y)z(x, y) –H(x, y)H(x, y), (.)

where H,H are defined in (.).
Since –μ(x)H(x, y) > , then in fact –H ∈R+, and a suitable application of Lemma .

to (.) yields

z(x, y) ≤ z(∞, y)e�–H (∞,x)

+
∫ ∞

x
H(s, y)H(s, y)e–H

(
x,σ (s)

)
�s, x, y ∈ T

κ . (.)

Since z(∞, y) = , then combining (.) and (.) gives

v(x, y)≤ H(x, y) +
∫ ∞

x
H(s, y)H(s, y)e–H

(
x,σ (s)

)
�s, x, y ∈ T

κ . (.)

Combining (.) and (.), we can obtain the desired inequality (.). �

SinceT is an arbitrary time scale, then if we takeT for some peculiar cases, we can obtain
some corollaries immediately. Especially, if we let T =R or T = Z, we obtain the following
two corollaries.

Corollary . Suppose T = R, u,a, f , g ∈ C(R×R,R+). If u(x, y) satisfies the following in-
equality:

up(x, y) ≤ a(x, y) + b(x, y)
∫ ∞

x

∫ ∞

y

[
f (s, t)u(s, t) + g(s, t)

]
dt ds, x, y ∈R, (.)

then

u(x, y) ≤
{
a(x, y) + b(x, y)

[
H(x, y) +

∫ ∞

x
H(s, y)H(s, y) exp

(∫ s

x
H(τ , y)dτ

)
�s

]} 
p
,

x, y ∈ R, (.)

where⎧⎨⎩H(x, y) =
∫ ∞
x

∫ ∞
y {f (s, t)[ pK

–p
p a(s, t) + p–

p K

p ] + g(s, t)}dt ds,

H(x, y) =
∫ ∞
y f (x, t) pK

–p
p b(x, t)dt, ∀K > .

(.)

Corollary . Suppose T = Z and u,a, f , g ∈ (Z × Z,R+). If u(m,n) satisfies the following
inequality:

u(m,n) ≤ a(m,n) +
∞∑
s=m

∞∑
t=n

[
f (s, t)u(s, t) + g(s, t)

]
, m,n ∈ Z, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/234
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then

u(m,n) ≤
{
a(m,n) + b(m,n)

[
H(m,n) +

∞∑
s=m

H(s,n)H(s,n)
s∏

τ=m


 –H(τ ,n)

]} 
p

,

m,n ∈ Z, (.)

provided that H(m,n) < ,m,n ∈ Z, where⎧⎨⎩H(m,n) =
∑∞

s=m
∑∞

t=n{f (s, t)[ pK
–p
p a(s, t) + p–

p K

p ] + g(s, t)},

H(m,n) =
∑∞

t=n f (m, t) pK
–p
p b(m, t), ∀K > .

(.)

Theorem . Under the conditions of Theorem ., if u(x, y) satisfies (.), then

u(x, y) ≤ {
a(x, y) + b(x, y)H(x, y)e�(–H)(∞,x)

} 
p , x, y ∈ T

κ , (.)

where H, H are the same as in Theorem ..

Proof By Lemma . we have∫ ∞

x
H(s, y)e–H

(
x,σ (s)

)
�s = e–H (x,∞) –  = e�(–H)(∞,x) – . (.)

On the other hand, considering H(x, y) is decreasing in x, from (.) we have

u(x, y) ≤
{
a(x, y) + b(x, y)

[
H(x, y) +

∫ ∞

x
H(s, y)H(s, y)e–H

(
x,σ (s)

)
�s

]} 
p

≤
{
a(x, y) + b(x, y)H(x, y)

[
 +

∫ ∞

x
H(s, y)e–H

(
x,σ (s)

)
�s

]} 
p

=
{
a(x, y) + b(x, y)H(x, y)e�(–H)(∞,x)

} 
p ,

which is the desired result. �

If we let T =R or T = Z in Theorem ., then we obtain the following two corollaries.

Corollary . Under the conditions of Corollary ., if u(x, y) satisfies (.), then

u(x, y) ≤
{
a(x, y) + b(x, y)H(x, y) exp

(∫ ∞

x
H(s, y)ds

)} 
p
, x, y ∈R, (.)

where H, H are defined the same as in (.).

Corollary . Under the conditions of Corollary ., if u(m,n) satisfies (.), then

u(m,n) ≤
{
a(m,n) + b(m,n)H(m,n)

∞∏
s=m


 –H(s,n)

} 
p

, m,n ∈ Z, (.)

provided that H(m,n) < ,m,n ∈ Z, where H, H are defined the same as in (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/234
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Remark . Corollary . is equivalent to [, Theorem ], while Corollary . is equiv-
alent to [, Theorem ] with a slight difference.

Theorem . Suppose supx∈Tκ x = ∞, u,a, f , g,h ∈ Crd(T× T,R+), p is a positive number
with p ≥ . If u(x, y) satisfies the following inequality:

up(x, y) ≤ a(x, y) +
∫ ∞

x
f (s, y)up(s, y)�s

+
∫ ∞

x

∫ ∞

y

[
g(s, t)u(s, t) + h(s, t)

]
�t�s, x, y ∈ T

κ , (.)

then

u(x, y) ≤
{[

a(x, y) + H̃(x, y) +
∫ ∞

x
H̃(s, y)H̃(s, y)e–H̃

(
x,σ (s)

)
�s

]

× e�(–f )(∞,x)
} 

p
, (.)

provided that –f ∈R+, where

⎧⎪⎪⎨⎪⎪⎩
H̃(x, y) =

∫ ∞
x

∫ ∞
y {g(s, t)[e�(–f )(∞, s)]


p

× [ pK
–p
p a(s, t) + p–

p K

p ] + h(s, t)}�t�s,

H̃(x, y) =
∫ ∞
y g(x, t)[e�(–f )(∞,x)]


p 
pK

–p
p �t, ∀K > .

(.)

Proof Let

v(x, y) = a(x, y) +
∫ ∞

x

∫ ∞

y

[
g(s, t)u(s, t) + h(s, t)

]
�t�s (.)

and

z(x, y) =
∫ ∞

x
f (s, y)up(s, y)�s. (.)

Then

up(x, y) ≤ v(x, y) + z(x, y), x, y ∈ T
κ . (.)

Furthermore,

(
z(x, y)

)�

x = –f (x, y)up(x, y)

≥ –f (x, y)
[
v(x, y) + z(x, y)

]
= –f (x, y)z(x, y) – f (x, y)v(x, y).

Since  –μ(x)f (x, y) > , then –f ∈R+, and an application of Lemma . yields

z(x, y) ≤ z(∞, y)e�–f (∞,x) +
∫ ∞

x
f (s, y)v(s, y)e–f

(
x,σ (s)

)
�s, x, y ∈ T

κ . (.)
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Considering z(∞, y) = , and v(x, y) is decreasing in x, combining (.) and (.), we
obtain

up(x, y) ≤ v(x, y) + z(x, y)

≤ v(x, y) + z(∞, y)e�–f (∞,x) +
∫ ∞

x
f (s, y)v(s, y)e–f

(
x,σ (s)

)
�s

= v(x, y) +
∫ ∞

x
f (s, y)v(s, y)e–f

(
x,σ (s)

)
�s

≤ v(x, y)
[
 +

∫ ∞

x
f (s, y)e–f

(
x,σ (s)

)
�s

]
= v(x, y)e�(–f )(∞,x), x, y ∈ T

κ , (.)

where Lemma . is used in the last step.
By (.), (.) and Lemma ., we have

v(x, y) ≤ a(x, y) +
∫ ∞

x

∫ ∞

y

{
g(s, t)

[
v(s, t)e�(–f )(∞, s)

] 
p + h(s, t)

}
�t�s

≤ a(x, y) +
∫ ∞

x

∫ ∞

y

{
g(s, t)

[
e�(–f )(∞, s)

] 
p

×
[

p
K

–p
p v(s, t) +

p – 
p

K

p

]
+ h(s, t)

}
�t�s

= a(x, y) +w(x, y), (.)

where

w(x, y) =
∫ ∞

x

∫ ∞

y

{
g(s, t)

[
e�(–f )(∞, s)

] 
p

×
[

p
K

–p
p v(s, t) +

p – 
p

K

p

]
+ h(s, t)

}
�t�s. (.)

Considering w(x, y) is decreasing in y, it follows that

w(x, y) ≤
∫ ∞

x

∫ ∞

y

{
g(s, t)

[
e�(–f )(∞, s)

] 
p

×
[

p
K

–p
p

(
a(s, t) +w(s, t)

)
+
p – 
p

K

p

]
+ h(s, t)

}
�t�s

≤
∫ ∞

x

∫ ∞

y

{
g(s, t)

[
e�(–f )(∞, s)

] 
p

[

p
K

–p
p a(s, t) +

p – 
p

K

p

]
+ h(s, t)

}
�t�s

+
∫ ∞

x

{∫ ∞

y
g(s, t)

[
e�(–f )(∞, s)

] 
p 
p
K

–p
p �t

}
w(s, y)�s

= H̃(x, y) +
∫ ∞

x
H̃(s, y)w(s, y)�s, (.)

where H̃, H̃ are defined in (.).
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Wenotice that the structure of (.) is similar to that of (.). So, following in a similar
manner to the process of (.)-(.), we obtain

w(x, y) ≤ H̃(x, y) +
∫ ∞

x
H̃(s, y)H̃(s, y)e–H̃

(
x,σ (s)

)
�s, x, y ∈ T

κ . (.)

Combining (.), (.), and (.), we get the desired inequality (.). �

Theorem . Under the conditions of Theorem ., if u(x, y) satisfies (.), then

u(x, y) ≤ {[
a(x, y) + H̃(x, y)e�(–H̃)(∞,x)

]
e�(–f )(∞,x)

} 
p , x, y ∈ T

κ , (.)

where H̃, H̃ are defined the same as in (.).

The proof of Theorem . is similar to that of Theorem ., and we omit it here.

Corollary . Suppose T = R, u,a, f , g ∈ C(R×R,R+). If u(x, y) satisfies the following in-
equality:

up(x, y) ≤ a(x, y) +
∫ ∞

x
f (s, y)up(s, y)ds

+
∫ ∞

x

∫ ∞

y

[
g(s, t)u(s, t) + h(s, t)

]
dt ds, x, y ∈R, (.)

then

u(x, y) ≤
{[

a(x, y) + H̃(x, y) exp
(∫ ∞

x
H̃(s, y)ds

)]
exp

(∫ ∞

x
f (s, y)ds

)} 
p
, (.)

where⎧⎪⎪⎨⎪⎪⎩
H̃(x, y) =

∫ ∞
x

∫ ∞
y {g(s, t)[exp(∫ ∞

s f (τ , y)dτ )]

p

× [ pK
–p
p a(s, t) + p–

p K

p ] + h(s, t)}dt ds,

H̃(x, y) =
∫ ∞
y g(x, t)[exp(

∫ ∞
x f (s, y)ds)]


p 
pK

–p
p dt, ∀K > .

(.)

The proof for Corollary . is similar to that for Corollary ..

Remark . Corollary . is equivalent to [, Theorem ].

Remark . If we take T =R in Theorem ., or T = Z in Theorems . and ., then we
can obtain another three corollaries, which are omitted here. Especially, if we take T = Z

in Theorem ., then Theorem . reduces to [, Theorem ] with a slight difference,
which is one case of discrete inequality.

Remark . The inequalities with two independent variables established in (.) and
(.) are essentially different from the cases with a single variable. As these inequalities
can be used in deriving bounds for solutions of certain dynamic equations in two inde-
pendent variables, which are shown in Section , while inequalities with a single variable
can only be used to the boundedness analysis for solutions of certain dynamic equations
in a single variable.
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Remark . The inequalities established above are related to infinite intervals. The main
difference between the results here and those of finite intervals lies in their applications.
The results above are valid in the qualitative analysis of certain dynamic equations includ-
ing integrals on infinite intervals, which are shown in the two examples in Section , while
results of finite intervals are invalid in such cases.

4 Some applications
In this section, we present some applications for the results established above.

Example  Consider the following dynamic equation:

(
up(x, y)

)�

x = –
∫ ∞

y
F
(
s, t,u(s, t)

)
�t, x, y ∈ T

κ , (.)

with the condition u(∞, y) = ϕ(y), where u ∈ Crd(T× T,R), ϕ ∈ Crd(T,R), and p is a con-
stant with p≥ .

Theorem . If u(x, y) is a solution of (.), and suppose |F(s, t,u)| ≤ f (s, t)|u| + g(s, t),
where f , g ∈ Crd(T×T,R+), then we have

u(x, y) ≤
{∣∣ϕ(y)∣∣ + [

H(x, y) +
∫ ∞

x
H(s, y)H(s, y)e–H

(
x,σ (s)

)
�s

]} 
p
,

x, y ∈ T
κ , (.)

provided that  –μ(x)H(x, y) > , where

⎧⎨⎩H(x, y) =
∫ ∞
x

∫ ∞
y {f (s, t)[ pK

–p
p |ϕ(t)| + p–

p K

p ] + g(s, t)}�t�s,

H(x, y) =
∫ ∞
y f (x, t) pK

–p
p �t, ∀K > .

(.)

Proof Considering u(∞, y) = ϕ(y), then the equivalent integral equation of (.) can be
denoted by

up(x, y) = ϕ(y) +
∫ ∞

x

∫ ∞

y
F
(
s, t,u(s, t)

)
�t�s, x, y ∈ T

κ . (.)

So, we have

∣∣u(x, y)∣∣p ≤ ∣∣ϕ(y)∣∣ + ∫ ∞

x

∫ ∞

y

∣∣F(
s, t,u(s, t)

)∣∣�t�s

≤ ∣∣ϕ(y)∣∣ + ∫ ∞

x

∫ ∞

y

[
f (s, t)

∣∣u(s, t)∣∣ + g(s, t)
]
�t�s. (.)

Then a suitable application of Theorem . yields the desired inequality (.). �

In the last step of Theorem ., if we apply Theorem . to (.), then we can obtain the
following theorem.
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Theorem . Under the conditions of Theorem ., if u(x, y) is a solution of (.), then

u(x, y) ≤ {∣∣ϕ(y)∣∣ +H(x, y)e�(–H)(∞,x)
} 
p , x, y ∈ T

κ , (.)

where H, H are defined in (.).

Theorem . Suppose p =  in (.) and |F(s, t,u)| – |F(s, t,u)| ≤ f (s, t)|u – u| + g(s, t),
where f , g are defined the same as in Theorem ., then under the condition u(∞, y) = ϕ(y),
Eq. (.) has at most one solution.

Proof Let u(x, y) and u(x, y) be two solutions of Eq. (.). Then we have

(
u(x, y)

)�

x = –
∫ ∞

y
F
(
s, t,u(s, t)

)
�t, x, y ∈ T

κ (.)

and

(
u(x, y)

)�

x = –
∫ ∞

y
F
(
s, t,u(s, t)

)
�t, x, y ∈ T

κ . (.)

From (.) and (.), we obtain

(
u(x, y) – u(x, y)

)�

x = –
∫ ∞

y

[
F
(
s, t,u(s, t)

)
– F

(
s, t,u(s, t)

)]
�t, x, y ∈ T

κ . (.)

On the other hand, since u(∞, y) = u(∞, y) = ϕ(y), then an integration for (.) with
respect to x from x to ∞ yields

u(x, y) – u(x, y) =
∫ ∞

x

∫ ∞

y

[
F
(
s, t,u(s, t)

)
– F

(
s, t,u(s, t)

)]
�t�s, x, y ∈ T

κ . (.)

Then∣∣u(x, y) – u(x, y)
∣∣ ≤

∫ ∞

x

∫ ∞

y

∣∣F(
s, t,u(s, t)

)
– F

(
s, t,u(s, t)

)∣∣�t�s

≤
∫ ∞

x

∫ ∞

y

[
f (s, t)

∣∣u(s, t) – u(s, t)
∣∣ + g(s, t)

]
�t�s. (.)

A suitable application of Theorem . yields∣∣u(x, y) – u(x, y)
∣∣ ≤ ,

that is, u(x, y) ≡ u(x, y), and the proof is complete. �

Example  Consider the following dynamic equation:

up(x, y) = ϕ(y) +
∫ ∞

x
F

(
s, y,u(s, y)

)
�s

+
∫ ∞

x

∫ ∞

y
F

(
s, t,u(s, t)

)
�t�s, x, y ∈ T

κ , (.)

where u ∈ Crd(T×T,R), ϕ ∈ Crd(T,R), and p≥  is a constant.
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Theorem . Let u(x, y) be a solution of (.). If |F(x, y,u)| ≤ f (x, y)|u|p, |F(x, y, z)| ≤
g(x, y)|z| + h(x, y), where f , g,h ∈ Crd(T× T̃,R+), then the following estimate holds:

u(x, y) ≤
{[∣∣ϕ(y)∣∣ + H̃(x, y) +

∫ ∞

x
H̃(s, y)H̃(s, y)e–H̃

(
x,σ (s)

)
�s

]
e�(–f )(∞,x)

} 
p
,

x, y ∈ T
κ , (.)

where⎧⎪⎪⎨⎪⎪⎩
H̃(x, y) =

∫ ∞
x

∫ ∞
y {g(s, t)[e�(–f )(∞, s)]


p

× [ pK
–p
p |ϕ(t)| + p–

p K

p ] + h(s, t)}�t�s,

H̃(x, y) =
∫ ∞
y g(x, t)[e�(–f )(∞,x)]


p 
pK

–p
p �t, ∀K > .

(.)

Proof From (.) we have

∣∣up(x, y)∣∣ ≤ ∣∣ϕ(y)∣∣ + ∫ ∞

x

∣∣F(s, y,u(s, y))∣∣�s +
∫ ∞

x

∫ ∞

y

∣∣F(s, t,u(s, t))∣∣�t�s

≤ ∣∣ϕ(y)∣∣ + ∫ ∞

x
f (s, y)

∣∣u(s, y)∣∣p�s

+
∫ ∞

x

∫ ∞

y

[
g(s, t)

∣∣u(s, t)∣∣ + h(s, t)
]
�t�s, x, y ∈ T

κ . (.)

Then using Theorem . in (.), we can obtain the desired result. �

5 Conclusions
We have established several new Gronwall-Bellman-type integral inequalities containing
integration on infinite intervals on time scales, which unify some known continuous and
discrete results in the literature. As one can see from the present applications, the inequal-
ities established are useful in the investigation of qualitative and quantitative properties
of solutions of certain dynamic equations on time scales.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
QF and FX carried out the main part of this article. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank the referees very much for their valuable suggestions on improving this paper.

Received: 30 January 2013 Accepted: 23 April 2013 Published: 8 May 2013

References
1. Gronwall, TH: Note on the derivatives with respect to a parameter of solutions of a system of differential equations.

Ann. Math. 20, 292-296 (1919)
2. Bellman, R: The stability of solutions of linear differential equations. Duke Math. J. 10, 643-647 (1943)
3. Ou-Iang, L: The boundedness of solutions of linear differential equations y′′ + A(t)y′ = 0. Shuxue Jinzhan 3, 409-418

(1957)
4. Li, WN, Han, MA, Meng, FW: Some new delay integral inequalities and their applications. J. Comput. Appl. Math. 180,

191-200 (2005)
5. Lipovan, O: A retarded integral inequality and its applications. J. Math. Anal. Appl. 285, 436-443 (2003)
6. Ma, QH, Yang, EH: Some new Gronwall-Bellman-Bihari type integral inequalities with delay. Period. Math. Hung. 44(2),

225-238 (2002)

http://www.journalofinequalitiesandapplications.com/content/2013/1/234


Wang et al. Journal of Inequalities and Applications 2013, 2013:234 Page 15 of 15
http://www.journalofinequalitiesandapplications.com/content/2013/1/234

7. Cheung, WS, Ren, JL: Discrete non-linear inequalities and applications to boundary value problems. J. Math. Anal.
Appl. 319, 708-724 (2006)

8. Ma, QH: Estimates on some power nonlinear Volterra-Fredholm type discrete inequalities and their applications.
J. Comput. Appl. Math. 233, 2170-2180 (2010)

9. Li, LZ, Meng, FW, He, LL: Some generalized integral inequalities and their applications. J. Math. Anal. Appl. 372,
339-349 (2010)

10. Lipovan, O: Integral inequalities for retarded Volterra equations. J. Math. Anal. Appl. 322, 349-358 (2006)
11. Hilger, S: Analysis on measure chains - a unified approach to continuous and discrete calculus. Results Math. 18,

18-56 (1990)
12. Bohner, M, Erbe, L, Peterson, A: Oscillation for nonlinear second order dynamic equations on a time scale. J. Math.

Anal. Appl. 301, 491-507 (2005)
13. Xing, Y, Han, M, Zheng, G: Initial value problem for first-order integro-differential equation of Volterra type on time

scales. Nonlinear Anal. TMA 60(3), 429-442 (2005)
14. Agarwal, RP, Bohner, M, O’Regan, D, Peterson, A: Dynamic equations on time scales: a survey. J. Comput. Appl. Math.

141(1-2), 1-26 (2006)
15. Liu, WJ, Li, CC, Hao, YM: Further generalization of some double integral inequalities and applications. Acta Math. Univ.

Comen. 77(1), 147-154 (2008)
16. Cheng, XL: Improvement of some Ostrowski-Grüss type inequalities. Comput. Math. Appl. 42, 109-114 (2001)
17. Bohner, M, Matthews, T: The Grüss inequality on time scales. Commun. Math. Anal. 3(1), 1-8 (2007)
18. Ngô, QA: Some mean value theorems for integrals on time scales. Appl. Math. Comput. 213, 322-328 (2009)
19. Liu, WJ, Ngô, QA: Some Iyengar-type inequalities on time scales for functions whose second derivatives are bounded.

Appl. Math. Comput. 216, 3244-3251 (2010)
20. Liu, WJ, Ngô, QA: A generalization of Ostrowski inequality on time scales for k points. Appl. Math. Comput. 203,

754-760 (2008)
21. Meng, FW, Li, WN: On some new integral inequalities and their applications. Appl. Math. Comput. 148, 381-392 (2004)
22. Meng, FW, Li, WN: On some new nonlinear discrete inequalities and their applications. J. Comput. Appl. Math. 158,

407-417 (2003)
23. Agarwal, PR, Bohner, M, Peterson, A: Inequalities on time scales: a survey. Math. Inequal. Appl. 4(4), 535-557 (2001)
24. Li, WN: Some new dynamic inequalities on time scales. J. Math. Anal. Appl. 319, 802-814 (2006)
25. Bohner, M, Peterson, A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston

(2001)
26. Jiang, FC, Meng, FW: Explicit bounds on some new nonlinear integral inequality with delay. J. Comput. Appl. Math.

205, 479-486 (2007)

doi:10.1186/1029-242X-2013-234
Cite this article as:Wang et al.: Some new generalized Gronwall-Bellman-type integral inequalities in two
independent variables on time scales. Journal of Inequalities and Applications 2013 2013:234.

http://www.journalofinequalitiesandapplications.com/content/2013/1/234

	Some new generalized Gronwall-Bellman-type integral inequalities in two independent variables on time scales
	Abstract
	MSC
	Keywords

	Introduction
	Some preliminaries
	Main results
	Some applications
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References


