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Abstract
The stabilizability concept for bivariate means has been introduced and studied in
(Raïssouli in Appl. Math. E-Notes, 11:159-174, 2011). It has been proved to be a useful
tool for theoretical viewpoint as well as for practical purposes (Raïssouli in Appl. Math.
E-Notes, 11:159-174, 2011). In the present paper, we give an extension of the
stabilizability concept, the so-called generalized stabilizability. Our paper will be
completed by some applications and examples illustrating the above extension and
showing the interest of this work.

1 Introduction
In this section, we state some basic notions about bivariate means, see []. A function
m : (,∞)× (,∞)→ (,∞) is called a (bivariate) mean if

∀a,b >  min(a,b)≤ m(a,b)≤ max(a,b).

It is clear that every mean is with positive values and reflexive, that is, m(a,a) = a for all
a > . The maps (a,b) �→min(a,b) and (a,b) �→max(a,b) are (trivial) means which will be
denoted bymin andmax, respectively. The standard examples of means are as follows []:

A := A(a,b) =
a + b


; G :=G(a,b) =
√
ab; H :=H(a,b) =

ab
a + b

;

L := L(a,b) =
b – a

lnb – lna
, L(a,a) = a;

I := I(a,b) =

e

(
bb

aa

)/(b–a)

, I(a,a) = a;

S := S(a,b) = aa/(a+b)bb/(a+b); C := C(a,b) =
a + b

a + b
;

they are known in the literature as the arithmetic, geometric, harmonic, logarithmic, iden-
tric, weighted geometric and contra-harmonic means, respectively. It is well known that

H(a,b)≤ G(a,b)≤ L(a,b)≤ I(a,b)≤ A(a,b)≤ S(a,b)≤ C(a,b)

for all a,b >  with equalities if and only if a = b.
A mean m is symmetric if m(a,b) =m(b,a) and homogeneous if m(ta, tb) = tm(a,b) for

all a,b, t > . The above means are all symmetric and homogeneous. A mean m is called
monotone if (a,b) �→m(a,b) is increasing in a and in b, that is, a ≤ a and b ≤ b imply
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m(a,b) ≤m(a,b) andm(a,b)≤ m(a,b). It is not hard to check that the means A, G, H ,
L, I are monotone but S and C are not.
Let m be a homogeneous mean. Writing m(a,b) = am(,b/a), we then associate to m a

unique positive function f defined by f (x) = m(,x) for all x > . The function f will be
called an associated function to the mean m, or we simply say that f corresponds to the
mean m. It follows that f corresponds to a homogeneous mean if and only if min(,x) ≤
f (x) ≤ max(,x) for every x > . Clearly, f () =  and if, moreover, m is symmetric, then
f (x) = xf (/x) for each x > . It is obvious that a mean m is monotone if and only if its
associated function is increasing. For example, and as pointed in [], the contraharmonic
mean C is not monotone because its associated function f (x) = (x + )/(x + ) satisfies
(x + )f ′(x) = x + x – , and it is easy to see that f is not increasing for all x > , but only
for x >

√
 – .

In the literature, there are some families of means, called power means, which include
the above familiar means. Let p and q be two real numbers. The Stolarsky mean Ep,q of
order (p,q) is defined by []

Ep,q := Ep,q(a,b) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( pq
bq–aq
bp–ap )

/(q–p) if pq(p – q) 	= ,

exp(– 
p +

ap lna–bp lnb
ap–bp ) if p = q 	= ,

( p
bp–ap
lnb–lna )

/p if p 	= ,q = ,√
ab if p = q = 

with Ep,q(a,a) = a.
It is understood that this family of means includes some interesting cases as well:
• The power binomial mean

⎧⎨
⎩Ep,p(a,b) := Bp(a,b) = Bp = ( ap+bp )/p,

B–∞ =min, B– =H , B = A, B := limp→ Bp =G, B∞ =max .

• The power logarithmic mean

⎧⎨
⎩E,p+ := Lp(a,b) = Lp = ( ap+–bp+(p+)(a–b) )

/p, Lp(a,a) = a,

L–∞ =min, L– =G, L– = L, L = I, L = A, L∞ =max .

It is easy to see that Ep,q is homogeneous and symmetric for all fixed real numbers p
and q. Further, it is clear that Ep,q is symmetric in p and q, and it is well known that Ep,q

is strictly increasing in both p and q. In particular the power means Bp and Lp are strictly
increasing in p.
The reminder of this paper is organized as follows. Section  displays a class of means,

the so-called parameterized means that will be needed later. Section  is focused on in-
troducing a new definition that includes a lot of standard means. Section  is devoted to
extending the resultant mean-map, introduced by the second author in an earlier paper
for means, to positive maps in the aim to state conveniently the generalized stabilizability
in Section . This latter concept is then applied to standard (power) means. In Section ,
application to mean inequalities is investigated and interesting examples are discussed.
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2 Parameterized bivariate means
This section is focused on stating a special class of means depending on a real parameter,
the so-called parameterized means, defined as follows.

Definition . Let (mt)≤t≤ be a family of maps with mt : (,∞) × (,∞) → (,∞) for
fixed t ∈ [, ]. We say that (mt) is a parameterized (or weighted) mean if the following
assertions are satisfied:

(i) mt is a mean for all fixed t ∈ [, ],
(ii) For all a,b > ,m(a,b) = a andm(a,b) = b or,m(a,b) = b andm(a,b) = a,
(iii) mt(a,b) =m–t(b,a) for all a,b >  and t ∈ [, ].

From the above definition, we deduce that m/ is a symmetric mean which we call the
associated (symmetric) mean of the parameterized mean (mt). The following

At(a,b) = ( – t)a + tb, Gt(a,b) = a–tbt , Ht(a,b) =
(
( – t)a– + tb–

)–
are known in the literature as the parameterized arithmetic, geometric and harmonic
means, respectively. For all t ∈ [, ], At , Gt and Ht are homogeneous monotone, but not
symmetric unless t = /. Clearly, A/ = A, G/ = G and H/ = H which are the associ-
ated symmetric means of (At), (Gt) and (Ht) respectively. The parameterized weighted
geometric and contra-harmonic means are given by

St(a,b) =
(
atab(–t)b

)/At , Ct(a,b) =
At(a,b)
At(a,b)

.

It is easy to see that S/ = S and C/ = C.
The parameterized logarithmic mean was introduced in [] as follows:

Lt(a,b) =
∞∏
n=

At
(
a/

n
,b/

n)
:=

∞∏
n=

(
( – t)a/

n
+ tb/

n)
,

while the parameterized identric mean can be inspired from [] as well

It(a,b) =
∞∏
n=

St
(
a/

n
,b/

n)
.

It is proved in [] that L/ = L and in [] that I/ = I .
The above parameterized means satisfy the following chain of inequalities (see []):

min(a,b) ≤ Ht(a,b)≤ Gt(a,b)≤ Lt(a,b)≤ It(a,b)

≤ At(a,b)≤ St(a,b)≤ Ct(a,b)≤ max(a,b),

with strict inequalities if and only if a 	= b and t ∈ (, ).
The parameterized power binomial mean can be immediately given by

Bp,t(a,b) =
(
( – t)ap + tbp

)/p,

http://www.journalofinequalitiesandapplications.com/content/2013/1/233
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for p 	= , with B,t(a,b) = a–tbt =Gt(a,b). The parameterized Stolarskymean Ep,q,t can be
also inspired from [] by setting

Ep,q,t(a,b) =
∞∏
n=

Gp,q,t
(
a/

n
,b/

n)
,

where Gp,q,t refers to the parameterized Gini mean defined through

Gp,q,t(a,b) :=

⎧⎪⎪⎨
⎪⎪⎩
( (–t)a

q+tbq
(–t)ap+tbp )

/(q–p) if p 	= q,

exp( (–t)a
p lna+tbp lnb

(–t)ap+tbp ) if p = q 	= ,

a–tbt if p = q = .

In particular, the parameterized power logarithmic mean is given by

Lp,t(a,b) =
∞∏
n=

Mp,t
(
a/

n
,b/

n)
,

whereMp,t stands for the parameterized mean defined through

Mp,t(a,b) =
(
( – t)ap+ + tbp+

( – t)a + tb

)/p

.

Let (α,β) be a (closed or open) interval of R. Since there exists a homeomorphism be-
tween (, ) and (α,β), we then can define a parameterizedmean (mt) indexed by t ∈ (α,β)
in the following sense:

(j) mt is a mean for all fixed t ∈ (α,β),
(jj) for all a,b > ,mα(a,b) = a andmβ (a,b) = b or, mα(a,b) = b and mβ (a,b) = a,
(jjj) mt(a,b) =mα+β–t(b,a) for all a,b >  and t ∈ [α,β].

The associated symmetric mean of (mt)α≤t≤β ism(α+β)/. Let us observe the next example
explaining this latter situation.

Example . Let p be a fixed real number. For a,b >  and  ≤ t ≤ π/, we set

mp,t(a,b) =
(
ap cos t + bp sin t

)/p.
It is easy to verify that (mp,t)≤t≤π/ satisfies (j),(jj) and (jjj), then it is a parameterizedmean.
The associated symmetric meanmp,π/ is the power (binomial) mean Bp.

By the simple transformation s = ( – t)α + tβ , it is always possible to reduce (ms)α≤s≤β

into (mt)≤t≤. Henceforth, when we consider a parameterized mean (mt), it will be in-
dexed by t ∈ [, ].

3 Class of (�,φ)m-means
Let (mt)≤t≤ be a given parameterized mean. Assume thatmt is continuous with respect
to the variable t ∈ [, ], then it is easy to sketch that the maps

E(a,b) =
∫ 


mt(a,b)dt and F(a,b) = exp

∫ 


ln

(
mt(a,b)

)
dt (.)

define two bivariate symmetric means. The following examples illustrate this situation.

http://www.journalofinequalitiesandapplications.com/content/2013/1/233
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Example . It is well known that

L(a,b) =
∫ 


a–tbt dt =

∫ 


Gt(a,b)dt, (.)

I(a,b) = exp
∫ 


ln

(
( – t)a + tb

)
dt

= exp
∫ 


lnAt(a,b)dt (.)

and

L∗(a,b) =
∫ 


Ht(a,b)dt, (.)

where

L∗ := L∗(a,b) =
(
L
(
a–,b–

))– (.)

refers to the dual of the logarithmic mean L.

Example . The following

F(a,b) = exp
∫ 


lnLt(a,b)dt

defines a symmetric mean. It is proved in [] that

F(a,b) =
∞∏
n=

I
(
a/

n
,b/

n)
.

See also [] for a general approach including the above expansion.

Example . For a,b >  and  ≤ t ≤ , we set

mt(a,b) =
√
a cos tπ/ + b sin tπ/.

It is easy to verify that (mt)≤t≤ defines a parameterized mean. Then the expression

T(a,b) =
∫ 



√
a cos tπ/ + b sin tπ/dt

defines a symmetric mean. Taking θ = tπ/, we see that T(a,b) is the Toader mean intro-
duced in [].

In what follows we are interested in extending the situation of the two above examples.
We may then state the next definition.

http://www.journalofinequalitiesandapplications.com/content/2013/1/233
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Definition . Let m := (mt)≤t≤ be a parameterized mean, continuous with respect to
t ∈ [, ]. A mean M, for which there exist two continuous strictly monotonic functions
� : (,∞)→ �((,∞)) and φ : (,∞) → (,∞) such that

∀a,b >  �
(
M(a,b)

)
=

∫ 


� ◦ φ– ◦mt

(
φ(a),φ(b)

)
dt, (.)

will be called a (�,φ)m-mean.

We explicitly notice that, by virtue of Definition .(iii) and with the change of variable
t =  – s in (.), we deduce that every (�,φ)m-mean is symmetric. For this, we need to
assume that the involved means, in the announced theoretical results, are symmetric.
If in the above definition we have � = φ, then (.) becomes

�
(
M(a,b)

)
=

∫ 


mt

(
�(a),�(b)

)
dt.

In particular, withmt = At we obtain

�
(
M(a,b)

)
= A

(
�(a),�(b)

)
,

as a special class of means known in the literature as quasi-arithmetic means. The power
binomial mean Bp is quasi-arithmetic with �(x) = xp for p 	=  and �(x) = lnx for p = .
In summary, the means A, G, H are included in the above definition. Following (.) and
(.) the means L and I are also included in the above. More generally, the power mean
Ep,q, for all real numbers p and q, can be also obtained as a particular case of the above
definitionwhen convenient functions� and φ are chosen. Let us observe the next example
explaining this latter situation.

Example . Let p and q be two fixed real numbers. Assume that p 	=  and p 	= q.
(i) Let us choosem = (mt) = (At) and φ(x) = xp, �(x) = xq–p. In this case the symmetric

mean obtained through (.) is given by

(
M(a,b)

)q–p = ∫ 



(
( – t)ap + tbp

)(q–p)/p dt.
A simple computation shows thatM(a,b) coincides with Ep,q(a,b). This, with
Definition ., means that the Stolarsky mean Ep,q is a (�,φ)m-mean with �, φ and
m previously defined.

(ii) We can obtain the same as in (i) by choosingm = (mt) = (Bp,t) and φ(x) = x,
�(x) = xq–p and so Ep,q is a (�, id)m-mean.

For p =  or p = q, we left the reader to choose the convenient functions φ and � for E,q

and Ep,p in a similar manner as a previous one.

Remark. Formula (.) in the particular casem = (mt) = (At) was considered byToader
and Sándor [] in the aim to obtain some mean-inequalities when convenient hypotheses
on φ and� are assumed. Here, we consider (.) in its general form in the aim to introduce
some mean-concepts and investigate some related applications.

http://www.journalofinequalitiesandapplications.com/content/2013/1/233
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4 Resultant functional-map
In [], the author defined the resultant mean-map concept for bivariate means as a good
tool for introducing the stability and stabilizability notions. This concept can be extended
for functionals instead of means as well.

Definition . Let f , g,h : (,∞)× (,∞)→ (,∞) be three given functions. For a,b > ,
define

R(f , g,h)(a,b) = f
(
g
(
a,h(a,b)

)
, g

(
h(b,a),b

))
, (.)

which we call the resultant functional-map of f , g and h.

We explicitly notice thatR is a map with three functionals variables f , g , h (which justi-
fies the chosen terminology), whileR(f , g,h) is a functional with two positive real variables
a, b. If f , g , h are bivariate symmetric means, the above definition coincides with that in-
troduced in []. In our next study, we will be restricted by the case where the functionals
f and h are bivariate symmetric means, while g is such that g = � ◦m, where m is a sym-
metric mean and � : (,∞)→ �((,∞)) is a continuous strictly monotonic function. For
the sake of simplicity, we write �(m) instead of � ◦m. For all three given means m, m,
m, we also use the following notation:

R�(m,m,m) := �– ◦R(
m,�(m),m

)
.

With this, the next result may be stated.

Proposition . Let m,m,m be three symmetricmeans withm andm monotone, and
let � : (,∞)→ �((,∞)) be a continuous strictly monotonic function. Then the following
assertions are satisfied:

(i) R�(m,m,m) is a mean.
(ii) If m′

, m′
,m′

 are three means such that m ≤ m′
,m ≤ m′

,m ≤ m′
, then we have

R�(m,m,m) ≤R�

(
m′

,m
′
,m

′

)
.

Proof We limit our attention in this proof to � strictly increasing, since the case of �

strictly decreasing can be stated in a similar manner.
(i) Sincem is a mean, then by definition, for all a,b > , we have

min(a,b)≤ m
(
a,m(a,b)

) ≤ max(a,b)

and

min(a,b)≤ m
(
m(a,b),b

) ≤ max(a,b).

This, with the fact that � is increasing, yields

min
(
�(a),�(b)

) ≤ �(m)
(
a,m(a,b)

) ≤ max
(
�(a),�(b)

)
,

http://www.journalofinequalitiesandapplications.com/content/2013/1/233
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and

min
(
�(a),�(b)

) ≤ �(m)
(
m(a,b),b

) ≤ max
(
�(a),�(b)

)
.

By the monotonicity ofm, we get

min
(
�(a),�(b)

) ≤ m
(
�(m)

(
a,m(a,b)

)
,�(m)

(
m(a,b),b

)) ≤ max
(
�(a),�(b)

)
.

Using the fact that �– is increasing too, we obtain

min(a,b)≤R�(m,m,m)(a,b)≤ max(a,b),

which means thatR�(m,m,m) is a mean.
(ii) Sincem(a,b)≤ m′

(a,b), we deduce, with the monotonicity ofm,

m
(
a,m(a,b)

) ≤ m
(
a,m′

(a,b)
)
.

It follows that

m
(
a,m(a,b)

) ≤ m′

(
a,m′

(a,b)
)

and

m
(
m(a,b),b

) ≤ m′

(
m′

(a,b),b
)
.

The increased monotonicity of � implies that

�(m)
(
a,m(a,b)

) ≤ �
(
m′


)(
a,m′

(a,b)
)
,

and so

�(m)
(
m(a,b),b

) ≤ �
(
m′


)(
m′

(a,b),b
)
.

Now, fromm ≤ m′
 with the monotonicity ofm, we infer that

m
(
�(m)

(
a,m(a,b)

)
,�(m)

(
m(a,b),b

))
≤ m′


(
�

(
m′


)(
a,m′

(a,b)
)
,�

(
m′


)(
m′

(a,b),b
))
.

Finally, using the fact that�– is increasingwith the definition ofR�, we obtain the desired
result, which completes the proof. �

Now, let us observe the following example illustrating the above.

Example . Let �(x) = x – . An elementary computation gives R�(A,A,A) = A. Note
that here the function � is the inverse of the associated function of the homogeneous
mean A, i.e., �–(x) = A(,x). Similarly, we verify thatR�(G,G,G) =G with �(x) = x, and
an analogous remark as the previous one holds.

http://www.journalofinequalitiesandapplications.com/content/2013/1/233
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Example . () Let �(x) = /x, x > . Then relationships (.) and (.) can be summa-
rized byR�(A,L,A) = L.
() Let �(x) = lnx, x > . Expression (.) can be written asR�(A, I,A) = I .
These relationships, and a lot of others, will be seen and interpreted in a general point

of view. See section below.

Now, let us state the next example which will be needed later. We omit the computation
details for the reader.

Example . Take �(x) = /x, x > . It is not hard to establish that

R�(A,G,A) =G
(

A
A +G

)/

, (.)

R�

(
A,

A +G


,A
)
=


(A+G + (A+AG

 )/)

A + (A+AG
 )/

. (.)

5 Generalized stabilizability
As already pointed before, this section will be focused on presenting an extension of the
stabilizability concept already introduced in []. We then may state the following defini-
tion.

Definition . Let M be a given symmetric mean. Assume that there exist two nontriv-
ial symmetric means m, m and a continuous strictly monotonic function � : (,∞) →
�((,∞)) such that

R�(m,M,m) =M.

Then we say thatM is (m,m)�-stabilizable.
Ifm =m =M, that is,R�(M,M,M) =M, we then sayM is �-stable.

In other words,M is (m,m)φ-stabilizable if and only ifM is a mean-fixed point of the
mapm �→R�(m,m,m).
If � = Id the identity function, then the above definition coincides with that of stabiliz-

ability, and in this case, we simply sayM is (m,m)-stabilizable.
Now, let us observe the next example illustrating the above definition.

Example . Following Example .we can say thatA is�-stablewith�(x) = x– and,G
is �-stable with �(x) = x. We left the reader to show thatH is �-stable with a convenient
function � to be defined.

Example . According to Example ., the logarithmic mean L is (A,A)�-stabilizable
with �(x) = /x, while the identric mean I is (A,A)�-stabilizable with �(x) = lnx.

We now are in a position to state the next result which will be with interest of giving
other examples of means satisfying the situation of the above definition.

http://www.journalofinequalitiesandapplications.com/content/2013/1/233
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Theorem . Let m := (mt)≤t≤ be a parameterized mean such that

∀a,b > ,∀t ∈ [, ] mt
(
a,m/(a,b)

)
=mt/(a,b). (.)

Let �, φ be as in Definition . and let us set

mφ(a,b) = φ–(m/
(
φ(a),φ(b)

))
. (.)

Then every (�,φ)m-mean M is (A,mφ)�-stabilizable, that is,R�(A,M,mφ) =M.

Proof Definition . with (.) yields

�(M)
(
a,mφ(a,b)

)
=

∫ 


� ◦ φ– ◦mt

(
φ(a),m/

(
φ(a),φ(b)

))
dt. (.)

Making the change of variable u = t/ in (.), we get

�(M)
(
a,mφ(a,b)

)
= 

∫ 



� ◦ φ– ◦mu

(
φ(a),m/

(
φ(a),φ(b)

))
du. (.)

This, with condition (.), yields

�(M)
(
a,mφ(a,b)

)
= 

∫ 



� ◦ φ– ◦mu

(
φ(a),φ(b)

)
du. (.)

Similarly, the change of variable u = (t + )/ leads to the following:

�(M)
(
mφ(a,b),b

)
=

∫ 


� ◦ φ– ◦mt

(
m/

(
φ(a),φ(b)

)
,φ(b)

)
dt

= 
∫ 




� ◦ φ– ◦mu–
(
m/

(
φ(a),φ(b)

)
,φ(b)

)
du.

According to (iii) of Definition ., we can write

mu–
(
m/

(
φ(a),φ(b)

)
,φ(b)

)
=m(–u)

(
φ(b),m/

(
φ(b),φ(a)

))
.

Using (.), we obtain

�(M)
(
mφ(a,b),b

)
= 

∫ 




� ◦ φ– ◦mu
(
φ(a),φ(b)

)
du. (.)

Combining (.) with (.), we get

R
(
A,�(M),mφ

)
(a,b) = A

(
�(M)

(
a,mφ(a,b)

)
,�(M)

(
mφ(a,b),b

))
= �(M)(a,b).

The proof of the theorem is completed. �
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Remark . If the parameterized mean (mt) is homogeneous with its associated function
ft , i.e., ft(x) :=mt(,x), then condition (.) can be simplified and is equivalent to

∀t ∈ [, ] ft ◦ f/ = ft/.

It is easy to see that the parameterized mean of Example . satisfies the above condition.

Notation Inwhat follows, if�(x) = xp for some real number p 	= , thenwewrite (m,m)p
instead of (m,m)� and Rp instead of R�. For �(x) = lnx, we write (m,m)ln and Rln.
With Example ., we then have L is (A,A)–-stabilizable, i.e., R–(A,L,A) = L, and I is
(A,A)ln-stabilizable, i.e.,Rln(A, I,A) = I .

Corollary . Let p, q be two real numbers. Then we have
() If p 	= q, then Ep,q is (A,Bp)q–p-stabilizable.
() Ep,p is (A,Bp)ln-stabilizable.

In particular, for p 	=  the power logarithmic mean Lp is (A,A)p-stabilizable.

Proof It is sufficient to combine Theorem . with Example .. Details are omitted here
for the reader. �

We end this section by stating the following remark which highlights the interest of the
above results.

Remark . To characterize a mean M as an (A,m)�-mean is of great importance since
the involved arithmetic mean A is the simplest analytic mean further with a linear affine
character. In particular, in the computation context, the relationship

R
(
A,

n∑
i=

αifi,m

)
=

n∑
i=

αiR(A, fi,m) (.)

holds for all functions f, f, . . . , fn, all means m and every vector (α,α, . . . ,αn) ∈ R
n. See

section below for a more explicit explanation.

6 Application for mean-inequalities
In this section we present some applications of the above theoretical study for obtaining
mean-inequalities. Following Theorem . and Remark ., we may state the following.

Theorem . Let M be a (�,φ)m-mean where �, φ and m are as in Theorem .. Let
(mi)ni= be n symmetric means such that

�(M) ≤ (≥)
n∑
i=

αi�(mi) (.)

for some probability vector (α,α, . . . ,αn). Then the following holds:

�(M) ≤ (≥)
n∑
i=

αiR
(
A,�(mi),mφ

)
. (.)
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Proof According to Theorem ., the mean M is (A,mφ)�-stabilizable. This, when com-
bined with relationship (.) and Proposition .(ii), yields the desired result after simple
manipulation. �

Theorem ., when combined with Corollary ., immediately gives the next result.

Corollary . Let p 	=  be a fixed real number. Let (mi)ni= be n symmetric means such
that

Lpp ≤ (≥)
n∑
i=

αim
p
i (.)

for some probability vector (α,α, . . . ,αn). Then we have

Lpp ≤ (≥)
n∑
i=

αiR
(
A,mp

i ,A
)
. (.)

Taking p = – in the above corollary, with the fact that L– = L, we immediately obtain
the next result.

Corollary . Let (mi)ni= be n symmetric means such that

/L ≤ (≥)
n∑
i=

(αi/mi) (.)

for some probability vector (α,α, . . . ,αn). Then one has

/L ≤ (≥)
n∑
i=

αiR(A, /mi,A). (.)

Now, we present an example illustrating the above results.

Example . The inequality


L

≤ 


A
+



H

(.)

is well known in the literature, see []. If we apply Corollary . with n = , α = /, α =
/ andm = A,m =H , we obtain, after simple computation,


L

≤ 


A
+



H

+



(


A +



H

)–

. (.)

Using the convexity of the real-function x �→ /x on (,∞), the reader can easily verify
that the inequality (.) refines (.), in this way proving the desired aim.
More importance to this example is given by Corollary .. We can apply it again with

n = , α = α = /, α = / andm = A,m =H ,m = 
A + 

H . We then obtain


L

≤ 

R(A, /A,A) +



R(A, /H ,A) +



R

(
A,

(


A +



H

)–

,A
)
. (.)
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We left to the reader the routine task of computing the right-hand side of (.), to ensure
that the obtained upper bound of /L refines that of (.) and to show how we can repeat
the application of Corollary . for n =  with convenient means and related coefficients.

Example . The inequality


L

≤ 
G

+


A +G
, (.)

proved in [] by Neuman and Sándor, is a refinement of (.). If we apply Corollary . to
(.), with n = , α = /, α = / andm =G,m = A+G

 , we obtain


L

≤ 

R

(
A,


G
,A

)
+


R

(
A,


A +G

,A
)
.

This, with the help of Example . and a simple reduction, yields the following inequality:


L

≤ 


G

(
A +G
A

)/

+



A + (A+AG
 )/

(A+G + (A+AG
 )/)

.

It is easy to verify that this latter inequality refines (.), in this way proving the interest
of our approach.
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