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Abstract
In this paper, we present an extension of some classes of difference sequences by
considering them in a base space X , a real linear n-normed space via a sequence of
Orlicz functions. We investigate the spaces for linearity, existence of norms and
completeness under different conditions. We also show that they are convex spaces
and compute their topologically equivalent spaces. Further some results on
equivalence of various norms on such extended spaces are presented.
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1 Introduction and preliminaries
Let w denote the space of all real or complex sequences. By c, c and �∞, we denote the
Banach spaces of convergent, null and bounded sequences x = (xk), respectively, normed
by

‖x‖ = sup
k

|xk|.

AnOrlicz function is a functionM : [,∞)→ [,∞) which is continuous, non-decreasing
and convex withM() = ,M(x) >  for x >  andM(x)→ ∞ as x→ ∞.
Lindenstrauss and Tzafriri [] used the Orlicz function and introduced the sequence

space �M as follows:

�M =

{
(xk) ∈ w :

∞∑
k=

M
( |xk|

ρ

)
< ∞ for some ρ > 

}
.

They proved that �M is a Banach space normed by

‖x‖ = inf

{
ρ >  :

∞∑
k=

M
( |xk|

ρ

)
≤ 

}
.

The study ofOrlicz sequence spaceswas initiatedwith a certain specific purpose in Banach
space theory. Indeed, Lindberg got interested in Orlicz spaces in connection with finding
Banach spaces with symmetric Schauder bases having complementary subspaces isomor-
phic to c or �p ( ≤ p < ∞). Subsequently, Lindenstrauss and Tzafriri [] studied these
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Orlicz sequence spaces in more detail, and solved many important and interesting struc-
tural problems in Banach spaces. Later on, different classes of sequence spaces defined by
anOrlicz functionwere studied by different authors. For details, onemay refer to Kamthan
and Gupta [].
The notion of a difference sequence space was introduced by Kizmaz [] who studied

the difference sequence spaces �∞(�), c(�) and c(�). The notion was further generalized
by Et and Colak [] by introducing the spaces �∞(�s), c(�s) and c(�s). Another type of
generalization of the difference sequence spaces is due to Tripathy and Esi [] who studied
the spaces �∞(�m), c(�m) and c(�m). Tripathy et al. [] generalized the above notions
and unified these as follows.
Let m, s be non-negative integers. Then, for a given sequence space Z, we have

Z
(
�s

m
)
=

{
x = (xk) ∈ w :

(
�s

mxk
) ∈ Z

}
,

where �s
mx = (�s

mxk) = (�s–
m xk –�s–

m xk+m) and �
mxk = xk for all k ∈ N , which is equiva-

lent to the following binomial representation:

�s
mxk =

s∑
υ=

(–)υ
(
s
υ

)
xk+mυ .

Taking m = , we get the spaces �∞(�s), c(�s) and c(�s) studied by Et and Colak [].
Taking s = , we get the spaces �∞(�m), c(�m) and c(�m) studied by Tripathy and Esi
[]. Taking m = s = , we get the spaces �∞(�), c(�) and c(�) introduced and studied by
Kizmaz [].
Let m, s be non-negative integers. Then, for a given sequence space Z, Dutta [] intro-

duced the following spaces:

Z
(
�m

(s)
)
=

{
x = (xk) ∈ w :

(
�m

(s)xk
) ∈ Z

}
,

where �m
(s)x = (�m

(s)xk) = (�m–
(s) xk –�m–

(s) xk–s) and �
(s)xk = xk for all k ∈N , which is equiv-

alent to the following binomial representation:

�m
(s)xk =

m∑
v=

(–)v
(
m
v

)
xk–sv.

The concept of -normed spaces was introduced and studied by Gähler, a GermanMath-
ematician who worked at German Academy of Science, Berlin, in a series of papers in the
German language published in Mathematische Nachrichten; see, for example, references
[–]. This notion, which is nothing but a two-dimensional analogue of a normed space,
got the attention of a wider audience after the publication of a paper byWhite [] in 
entitled -Banach spaces. In the same year Gähler published another paper on this theme
in the same journal. Siddiqi delivered a series of lectures on this theme in various confer-
ences in India and Iran. His joint paper with Gähler and Gupta [] of  also provided
valuable results related to the theme of this paper. The notion of n-normed spaces can
be found in Misiak []. Since then, many others have studied this concept and obtained
various results; see, for instance, Gunawan [, ], Gunawan and Mashadi [, ], Dutta
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[–] and Gürdal et al. []. For some related and recent works in this area, one may
refer to Chu and Ku [] and Tanaka and Saito [].
Let n ∈ N and X be a real vector space of dimension d, where n ≤ d. A real-valued

function ‖·, . . . , ·‖ on Xn satisfying the following four conditions:
(N) ‖x,x, . . . ,xn‖ =  if and only if x,x, . . . ,xn are linearly dependent,
(N) ‖x,x, . . . ,xn‖ is invariant under permutation,
(N) ‖αx,x, . . . ,xn‖ = |α|‖x,x, . . . ,xn‖ for any α ∈ R,
(N) ‖x + x′,x, . . . ,xn‖ ≤ ‖x,x, . . . ,xn‖ + ‖x′,x, . . . ,xn‖ is called an n-norm on X , and

the pair (X,‖·, . . . , ·‖) is called an n-normed space.
A trivial example of an n-normed space isX =R

n equippedwith the following Euclidean
n-norm:

‖x,x, . . . ,xn‖E = abs

⎛
⎜⎜⎝

∣∣∣∣∣∣∣∣
x · · · xn
...

. . .
...

xn · · · xnn

∣∣∣∣∣∣∣∣

⎞
⎟⎟⎠ ,

where xi = (xi , . . . ,xin ) ∈R
n for each i = , , . . . ,n.

If (X,‖·, . . . , ·‖) is an n-normed space of dimension d ≥ n ≥  and {a,a, . . . ,an} is a
linearly independent set in X, then the following function ‖·, . . . , ·‖∞ on Xn– defined by

‖x,x, . . . ,xn–‖∞ =max
{‖x,x, . . . ,xn–,ai‖ : i = , , . . . ,n

}
(.)

defines an (n – )-norm on X with respect to {a,a, . . . ,an}, and this is known as derived
(n – )-norm on X.
The standard n-norm on X, which is a real inner product space of dimension d ≥ n, is

given as follows:

‖x, . . . ,xn‖S =

∣∣∣∣∣∣∣∣
〈x,x〉 · · · 〈x,xn〉

...
. . .

...
〈xn,x〉 · · · 〈xn,xn〉

∣∣∣∣∣∣∣∣




,

where 〈·, ·〉 denotes the inner product on X. IfX =R
n, then this n-norm is exactly the same

as the Euclidean n-norm ‖x,x, . . . ,xn‖E mentioned earlier. For n = , this n-norm is the
usual norm ‖x‖ = 〈x,x〉 

 .
A sequence (xk) in an n-normed space (X,‖·, . . . , ·‖) is said to converge to some L ∈ X in

the n-norm if

lim
k→∞

‖xk – L,u, . . . ,un‖ =  for every u, . . . ,un ∈ X.

A sequence (xk) in an n-normed space (X,‖·, . . . , ·‖) is said to be Cauchy with respect to
the n-norm if

lim
k,l→∞

‖xk – xl,u, . . . ,un‖ =  for every u, . . . ,un ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, thenX is said to be complete with
respect to the n-norm. Any complete n-normed space is said to be an n-Banach space.

http://www.journalofinequalitiesandapplications.com/content/2013/1/232


Dutta Journal of Inequalities and Applications 2013, 2013:232 Page 4 of 13
http://www.journalofinequalitiesandapplications.com/content/2013/1/232

Now we state the following useful results on the n-norm as lemmas which were given
in [].

Lemma . Every n-normed space is an (n – r)-normed space for all r = , , . . . ,n – . In
particular, every n-normed space is a normed space.

Lemma. A standard n-normed space is complete if and only if it is complete with respect
to the usual norm ‖ · ‖S = 〈·, ·〉 

 .

Lemma . On a standard n-normed space X, the derived (n–)-norm ‖·, . . . , ·‖∞, defined
with respect to an orthonormal set {e, e, . . . , en}, is equivalent to the standard (n–)-norm
‖·, . . . , ·‖S. Precisely, we have

‖x, . . . ,xn–‖∞ ≤ ‖x, . . . ,xn–‖S ≤ √
n‖x, . . . ,xn–‖∞

for all x, . . . ,xn–, where ‖x, . . . ,xn–‖∞ =max{‖x, . . . ,xn–, ei‖S : i = , . . . ,n}.

Let (X,‖·, . . . , ·‖X) be a real linear n-normed space and let w(X) denote an X-valued se-
quence space. Then, for a sequence of Orlicz functionsM = (Mk), we define the following
difference sequence spaces:

c
(
X,M,�m

(s)
)
=
{
(xk) ∈ w(X) : lim

k→∞
Mk

(∥∥∥∥�m
(s)xk
ρ

, z, . . . , zn–
∥∥∥∥
X

)
= 

for every non-zero z, . . . , zn– ∈ X and for some ρ > 
}
,

c
(
X,M,�m

(s)
)
=
{
(xk) ∈ w(X) : lim

k→∞
Mk

(∥∥∥∥�m
(s)xk
ρ

– L, z, . . . , zn–
∥∥∥∥
X

)
= 

for every non-zero z, . . . , zn– ∈ X and for some L ∈ X,ρ > 
}
,

�∞
(
X,M,�m

(s)
)
=
{
(xk) ∈ w(X) : sup

k
Mk

(∥∥∥∥�m
(s)xk
ρ

, z, . . . , zn–
∥∥∥∥
X

)
< ∞

for every non-zero z, . . . , zn– ∈ X and for some ρ > 
}
.

Similarly, we can define c(X,M,�m
s ), c(X,M,�m

s ) and �∞(X,M,�m
s ).

In the above definition of spaces, the n-norm ‖·, . . . , ·‖X onX is either a standard n-norm
or a non-standard n-norm. In general, wewrite ‖·, . . . , ·‖X , and for a standard case, wewrite
‖·, . . . , ·‖S. For a derived norm, we use ‖·, . . . , ·‖∞.
It is obvious that c(X,M,�m

(s)) ⊂ c(X,M,�m
(s)). Again, c(X,M,�m

(s)) ⊂ �∞(X,M,�m
(s)) fol-

lows from the following inequality:

Mk

(∥∥∥∥�m
(s)xk
ρ

, z, . . . , zn–
∥∥∥∥
X

)

≤ 

Mk

(∥∥∥∥�m
(s)xk – L

ρ
, z, . . . , zn–

∥∥∥∥
X

)
+


Mk

(∥∥∥∥Lρ , z, . . . , zn–
∥∥∥∥
X

)
.
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Similarly, we have c(X,M,�m
s ) ⊂ c(X,M,�m

s ) ⊂ �∞(X,M,�m
s ). Also, it is obvious that

for Z = c, c and �∞, Z(X,M,�i
s) ⊂ Z(X,M,�m

s ), i = , , . . . ,m –  and Z(X,M,�i
(s)) ⊂

Z(X,M,�m
(s)), i = , , . . . ,m – .

When X = R, m = , s =  and Mk(x) = |x| for all x ∈ [,∞) and k ≥ , the above spaces
deduce to the famous and very useful spaces c, c and �∞.

2 Main results
In this section we investigate some results on the n-norm as well as the main results
of this article involving the sequence spaces c(X,M,�m

(s)), c(X,M,�m
(s)), �∞(X,M,�m

(s)),
c(X,M,�m

s ), c(X,M,�m
s ) and �∞(X,M,�m

s ).
The proofs of the following two propositions are easy and so they are omitted.

Proposition . Let n ∈ N and X be a real vector space of dimension d, where  ≤ n ≤ d.
Let βn– be the collection of linearly independent sets B with n –  elements. For B ∈ βn–,
let us define

pB(x) = ‖x,x, . . . ,xn‖, x ∈ X.

Then pB is a seminorm on X and the family P = {pB : B ∈ βn–} of seminorms generates a
locally convex topology on X.

Proposition . The seminorms pB’s have the following properties:
(i) ker(pB) = linear span of B,
(ii) for B ∈ βn–, y ∈ B and x ∈ X\linear span of B, we have

pB∪{x}\y(y) = pB(x).

Hence we have the following proposition.

Proposition . The seminorms defined by Proposition . satisfy the axiom of an n-norm.

Example . Consider the linear space Pm of real polynomials of degree ≤ m on the in-
terval [, ]. Let {xi}nmi= be nm+  arbitrary but distinct fixed points in [, ]. For f, f, . . . , fn
in Pm, let us define

‖f, f, . . . , fn‖ =
⎧⎨
⎩, if f, f, . . . , fn are linearly dependent,∑nm

i= |f(xi)f(xi) · · · fn(xi)|, if f, f, . . . , fn are linearly independent.

Then ‖·, . . . , ·‖ is an n-norm on Pm.

Proof The proof is a routine verification and so it is omitted. �

Theorem. The spaces c(X,M,�m
(s)), c(X,M,�m

(s)), �∞(X,M,�m
(s)), c(X,M,�m

s ), c(X,M,
�m

s ) and �∞(X,M,�m
s ) are linear.

Proof The proof is a routine verification and thus it is omitted. �
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Theorem . (i) c(X,M,�m
(s)), c(X,M,�m

(s)) and �∞(X,M,�m
(s)) are normed linear spaces

by

‖x‖(s) = inf

{
ρ >  : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)xk
ρ

, z, . . . , zn–
∥∥∥∥
X

)
≤ 

}
, (.)

(ii) c(X,M,�m
s ), c(X,M,�m

s ) and �∞(X,M,�m
s ) are normed linear spaces by

‖x‖s =
ms∑
k=

‖xk‖∞ + inf

{
ρ >  : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
s xk
ρ

, z, . . . , zn–
∥∥∥∥
X

)
≤ 

}
, (.)

where ‖ · ‖∞ is the derived -norm (norm) on X.

Proof (i) If x = θ , then clearly ‖x‖(s) = . Conversely, assume ‖x‖(s) = . Then using (.),
we have

inf

{
ρ >  : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)xk
ρ

, z, . . . , zn–
∥∥∥∥
X

)
≤ 

}
= .

This implies that for a given ε > , there exists some ρε ( < ρε < ε) such that

sup
k≥,z,...,zn–∈X

Mk

(∥∥∥∥�m
(s)xk
ρε

, z, . . . , zn–
∥∥∥∥
X

)
≤ .

So,

Mk

(∥∥∥∥�m
(s)xk
ρε

, z, . . . , zn–
∥∥∥∥
X

)
≤  for every z, . . . , zn– ∈ X and k ≥ .

Hence, for every z, . . . , zn– ∈ X,

Mk

(∥∥∥∥�m
(s)xk
ε

, z, . . . , zn–
∥∥∥∥
X

)
≤ Mk

(∥∥∥∥�m
(s)xk
ρε

, z, . . . , zn–
∥∥∥∥
X

)
≤  for every k ≥ .

Suppose �m
(s)xni �=  for some i. Let ε → , then ‖�m

(s)xni
ε

, z, . . . , zn–‖X → ∞.

It follows that Mk(‖�m
(s)xni
ε

, z, . . . , zn–‖X) → ∞ as ε →  for some ni ∈ N . This is a con-
tradiction.
So, we must have �m

(s)xk =  for all k ≥ . Let k = , then �m
(s)x =

∑m
v=(–)v

(m
v
)
x–sv = 

and so x = , by taking x–sv = , for v = , . . . ,m. Thus, taking k = , . . . ,ms, . . . , we can
easily conclude that xk =  for all k ≥ .
Thus x = θ .
Let x = (xk) and y = (yk) be any two elements. Then there exist ρ,ρ >  such that

sup
k≥,z,...,zn–∈X

Mk

(∥∥∥∥�m
(s)xk
ρ

, z, . . . , zn–
∥∥∥∥
X

)
≤ 

and

sup
k≥,z,...,zn–∈X

Mk

(∥∥∥∥�m
(s)yk
ρ

, z, . . . , zn–
∥∥∥∥
X

)
≤ .
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Let ρ = ρ + ρ. Then, by the convexity ofM, we have

sup
k≥,z,...,zn–∈X

Mk

(∥∥∥∥�m
(s)(xk + yk)

ρ
, z, . . . , zn–

∥∥∥∥
X

)

≤
(

ρ

ρ + ρ

)
sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)xk
ρ

, z, . . . , zn–
∥∥∥∥
X

)

+
(

ρ

ρ + ρ

)
sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)yk
ρ

, z, . . . , zn–
∥∥∥∥
X

)

≤ .

Now

‖x + y‖(s) = inf

{
ρ : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)(xk + yk)

ρ
, z, . . . , zn–

∥∥∥∥
X

)
≤ 

}

≤ inf

{
ρ : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)xk
ρ

, z, . . . , zn–
∥∥∥∥
X

)
≤ 

}

+ inf

{
ρ : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)yk
ρ

, z, . . . , zn–
∥∥∥∥
X

)
≤ 

}
.

Thus

‖x + y‖(s) ≤ ‖x‖(s) + ‖y‖(s).

Finally, let α be any scalar. Then

‖αx‖(s) = inf

{
ρ >  : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)αxk
ρ

, z, . . . , zn–
∥∥∥∥
X

)
≤ 

}

= inf

{(|α|λ)
>  : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)xk
λ

, z, . . . , zn–
∥∥∥∥
X

)
≤ 

}

= |α|‖x‖(s),

where λ = ρ

|α| .
This completes the proof.
(ii) The proof follows by applying similar arguments as above. �

Remark It is obvious that (xk) ∈ Z(X,M,�m
(s)) if and only if (xk) ∈ Z(X,M,�m

s ) for Z =
c, c and �∞. Moreover, it is clear that the norms ‖ · ‖(s) and ‖ · ‖s are equivalent.

Theorem . (i) The spaces c(X,M,�m
(s)), c(X,M,�m

(s)) and �∞(X,M,�m
(s)) are topologi-

cally isomorphic with the spaces c(X,M), c(X,M) and �∞(X,M), respectively.
(ii)The spaces Sc(X,M,�m

s ), Sc(X,M,�m
s ) and S�∞(X,M,�m

s ) are topologically isomor-
phic with the spaces c(X,M), c(X,M) and �∞(X,M), respectively, where SZ(X,M,�m

s ) =
{x = (xk) : x ∈ Z(X,M,�m

s ),x = x = · · · = xms = } is a subspace of Z(X,�m
s ), Z =

c, c and �∞.

http://www.journalofinequalitiesandapplications.com/content/2013/1/232
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(iii) c(X,M,�m
(s)), c(X,M,�m

(s)), �∞(X,M,�m
(s)), c(X,M,�m

s ), c(X,M,�m
s ) and �∞(X,M,

�m
s ) are convex sets.

Proof (i) For Z = c, c and �∞, let us consider the mapping T : Z(X,M,�m
(s)) → Z(X,M),

defined by

Tx = y =
(
�m

(s)xk
)

for every x = (xk) ∈ Z
(
X,M,�m

(s)
)
.

Clearly T is linear homeomorphism.
(ii) In this case we consider the mapping T ′ : SZ(X,M,�m

s )→ Z(X,M), defined by

T ′x = y =
(
�m

s xk
)

for every x = (xk) ∈ SZ
(
X,M,�m

s
)
.

Clearly T ′ is a linear homeomorphism.
(iii) The proof follows by using the convexity of Orlicz functions. �

Remark Let {a,a, . . . ,an} be a linearly independent set in X. Then ‖�m
(s)xk , z, . . . ,

zn–r–‖∞ = max{‖�m
(s)xk , z, . . . , zn–r–,ai , . . . ,air‖X}, {i, . . . , ir} ⊆ {, . . . ,n} is a derived

(n – r)-norm on X for each r = , . . . ,n –  and for each k ≥ .

Hence we have the following theorem.

Theorem . Let {a,a, . . . ,an} be any linearly independent set in X. Then c(X,M,�m
(s)),

c(X,M,�m
(s)) and �∞(X,M,�m

(s)) are normed linear spaces by

‖x‖r(s) = inf

{
ρ >  : sup

k≥,z,...,zn–r–∈X
Mk

(∥∥∥∥�m
(s)xk
ρ

, z, . . . , zn–r–
∥∥∥∥∞

)
≤ 

}

for each r = , . . . ,n – . (.)

We call these norms derived norms.

Proof Proof is similar to that of Theorem .. �

Theorem. Let X be an n-Banach space.Then c(X,M,�m
(s)), c(X,M,�m

(s)) and �∞(X,M,
�m

(s)) are Banach spaces under the norm (.).

Proof Let Y be any one of the spaces c(X,M,�m
(s)), c(X,M,�m

(s)) and �∞(X,M,�m
(s)). Let

(xi) be any Cauchy sequence Y . Let x >  be fixed and t >  be such that for a  < ε < ,
ε
xt

>  and xt ≥ . Then there exists a positive integer n such that

∥∥xi – xj
∥∥
(s) <

ε

xt
for all i, j ≥ n.

Using (.), we get

inf

{
ρ : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)(x

i
k – xjk)
ρ

, z, . . . , zn–
∥∥∥∥
X

)
≤ 

}
<

ε

xt
for all i, j ≥ n.
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Hence we have

sup
k≥,z,...,zn–∈X

Mk

(∥∥∥∥�m
(s)(x

i
k – xjk)

‖xi – xj‖(s)
, z, . . . , zn–

∥∥∥∥
X

)
≤  for all i, j ≥ n.

It follows that for every z, . . . , zn– ∈ X,

Mk

(∥∥∥∥�m
(s)(x

i
k – xjk)

‖xi – xj‖(s)
, z, . . . , zn–

∥∥∥∥
X

)
≤  for each k ≥  and for all i, j ≥ n.

For t >  withMk( tx ) ≥ , for all k ≥ , we have

Mk

(∥∥∥∥�m
(s)(x

i
k – xjk)

‖xi – xj‖(s)
, z, . . . , zn–

∥∥∥∥
X

)
≤ Mk

(
tx


)
for every non-zero z, . . . , zn– ∈ X.

This implies that

∥∥�m
(s)

(
xik – xjk

)
, z, . . . , zn–

∥∥
X ≤ tx


· ε

tx
=

ε


for every non-zero z, . . . , zn– ∈ X.

Hence (�m
(s)x

i
k) is a Cauchy sequence in X for all k ∈ N . Since X is an n-Banach space,

(�m
(s)x

i
k) is convergent in X for all k ∈ N . For simplicity, let limi→∞ �m

(s)x
i
k = yk for each

k ∈N . By taking k = , , . . . ,ms, . . . , we can conclude that

lim
i→∞xik = xk (say) exist for each k ∈N .

Now we can find that

lim
j→∞

[
inf

{
ρ : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)(x

i
k – xjk)
ρ

, z, . . . , z
∥∥∥∥
X

)
≤ 

}]
< ε for all i≥ n.

Then, using the continuity of Orlicz functions, we have

lim
j→∞

[
inf

{
ρ : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)(x

i
k – limj→∞ xjk)

ρ
, z, . . . , zn–

∥∥∥∥
X

)
≤ 

}]

< ε for all i≥ n.

Hence we have

inf

{
ρ : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)(x

i
k – xk)
ρ

, z, . . . , z
∥∥∥∥
X

)
≤ 

}
< ε for all i≥ n.

It follows that (xi – x) ∈ Y . Since (xi) ∈ Y and Y is a linear space, so we have x = xi – (xi –
x) ∈ Y .
This completes the proof of the theorem. �

The following corollary is due to Lemma ..
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Corollary . If X is a Banach space under the standard n-norm, then c(X,M,�m
(s)),

c(X,M,�m
(s)) and �∞(X,M,�m

(s)) are Banach spaces under the norm

‖x‖(s) = inf

{
ρ >  : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)xk
ρ

, z, . . . , zn–
∥∥∥∥
S

)
≤ 

}
.

For the following results, let us assume Y to be any one of the spaces c(X,M,�m
(s)),

c(X,M,�m
(s)) and �∞(X,M,�m

(s)).

Theorem . If (xi) converges to an x in Y in the norm ‖ · ‖(s) defined by (.), then (xi)
also converges to x in the derived norm ‖ · ‖r(s) defined by (.) for r = .

Proof Let (xi) converge to x in Y in the norm ‖ · ‖(s). Then
∥∥xi – x

∥∥
(s) →  as i→ ∞.

Using (.), we get

inf

{
ρ >  : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)(x

i
k – xk)
ρ

, z, . . . , zn–
∥∥∥∥
X

)
≤ 

}
→  as i→ ∞.

So, for any linearly independent set {a,a, . . . ,an}, we have

inf

{
ρ >  : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)(x

i
k – xk)
ρ

, z, . . . , zn–,aj
∥∥∥∥
X

)
≤ 

}

→  as i→ ∞ and for each j = , . . . ,n.

Hence by (.), we get

inf

{
ρ >  : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)(x

i
k – xk)
ρ

, z, . . . , zn–
∥∥∥∥∞

)
≤ 

}
→  as i→ ∞.

Thus

∥∥xi – x
∥∥
(s) →  as i→ ∞.

Hence (xi) converges to x in the norm ‖ · ‖(s). �

If X is equipped with the standard n-norm and the derived norm is with respect to an
orthonormal set, then the converse of the above theorem is also true.

Theorem . Let X be a standard n-normed space and the derived (n – )-norm on X is
with respect to an orthonormal set. Then (xi) is convergent in Y in the norm ‖ · ‖(s) defined
by (.) if and only if (xi) is convergent in Y in the derived norm ‖ · ‖r(s) defined by (.) for
r = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/232
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Proof In view of the above theorem, it is enough to prove that (xi) is convergent in the
norm ‖ · ‖(s) implies (xi) is convergent in the norm ‖ · ‖(s).
Let (xi) converge to x in Y in the norm ‖ · ‖(s). Then

∥∥xi – x
∥∥
(s) →  as i→ ∞.

Using (.) for r = , we get

inf

{
ρ >  : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)(x

i
k – xk)
ρ

, z, . . . , zn–
∥∥∥∥∞

)
≤ 

}
→  as i→ ∞.

Now one may observe that

∥∥�m
(s)

(
xik – xk

)
, z, . . . , zn–

∥∥
S

≤ ∥∥�m
(s)

(
xik – xk

)
, z, . . . , zn–

∥∥
S‖zn–‖S for every non-zero z, . . . , zn– ∈ X,

where ‖·, . . . , ·‖S and ‖ · ‖S on the right-hand side denote the standard (n – )-norm and
the usual norm on X, respectively. Since the derived (n – )-norm on X is with respect to
an orthonormal set, using Lemma ., we have

∥∥�m
(s)

(
xik – x

)
, z, . . . , zn–

∥∥
S ≤ √

n
∥∥�m

(s)
(
xik – x

)
, z, . . . , zn–

∥∥∞‖zn–‖S

and in this case ‖·, . . . , ·‖∞ on the right-hand side is the derived (n – )-norm which we
used to define the norm ‖ · ‖(s).
Hence

inf

{
ρ >  : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)(x

i
k – xk)
ρ

, z, . . . , zn–
∥∥∥∥
S

)
≤ 

}

≤ inf

{
ρ >  : sup

k≥,z,...,zn–∈X
Mk

(√
n
∥∥∥∥�m

(s)(x
i
k – xk)
ρ

, z, . . . , zn–
∥∥∥∥∞

‖zn–‖S
)

≤ 
}
.

It follows that

inf

{
ρ >  : sup

k≥,z,...,zn–∈X
Mk

(∥∥∥∥�m
(s)(x

i
k – xk)
ρ

, z, . . . , zn–
∥∥∥∥
S

)
≤ 

}
→  as i→ ∞.

Hence ‖xi – x‖(s) →  as i → ∞.
That is, (xi) converges to x in Y in the norm ‖ · ‖(s). �

Using Lemma ., we get the following corollary.

Corollary . Let X be a standard n-normed space and let the derived (n– r)-norms on X
be with respect to an orthonormal set.Then a sequence in Y is convergent in the norm ‖ ·‖(s)
defined by (.) if and only if it is convergent in the derived norm ‖ · ‖(s) and, by induction,
in the derived norm ‖ · ‖r(s) defined by (.) for all r = , . . . ,n–. In particular, a sequence in

http://www.journalofinequalitiesandapplications.com/content/2013/1/232
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Y is convergent in the norm ‖ · ‖(s) if and only if it is convergent in the derived norm ‖ · ‖n–(s) ,
defined by

‖x‖n–(s) = inf

{
ρ >  : sup

k
Mk

(∥∥∥∥�m
(s)xk
ρ

∥∥∥∥∞

)
≤ 

}
. (.)

Theorem. Let X be a standard n-normed space and let the derived (n– r)-norms on X
for all r = , . . . ,n– be with respect to an orthonormal set. Then Y is complete with respect
to the norm ‖ · ‖(s) defined by (.) if and only if it is complete with respect to the derived
norm ‖ · ‖(s) defined by (.). By induction, Y is complete with respect to the norm ‖ · ‖(s) if
and only if it is complete with respect to the derived norm ‖ · ‖n–(s) defined by (.).

Proof By replacing the phrases ‘(xi) converges to x’ with ‘(xi) is Cauchy’ and ‘xi – x’ with
‘xi – xj ’, we see that the analogues of Theorem ., Theorem . and Corollary . hold for
Cauchy sequences. This completes the proof. �

Remark Analogues of Theorem ., Theorem ., Corollary ., Theorem ., Theo-
rem ., Corollary . and Theorem . hold for the spaces c(X,M,�m

s ), c(X,M,�m
s )

and �∞(X,M,�m
s ).
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