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Abstract
Let (O, E,U,V) be the coordination quadruple of the projective Klingenberg plane
(PK-plane) coordinated with dual quaternion ring Q(ε) = Q + Qε = {x + yε | x, y ∈ Q},
where Q is any quaternion ring over a field. In this paper, we define addition and
multiplication of points on the line OU = [0, 1, 0] geometrically, also we give the
algebraic correspondences of them. Finally, we carry over some well-known
properties of ordinary addition and multiplication to our definition.
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1 Introduction
Algebra and geometry are two essential subjects of mathematics and therefore relations
between these subjects have been investigated since Euclides of Alexandra B.C. . In
this paper, our aim is to construct a relation between algebraic and geometric definitions
of addition and multiplication of points in projective Klingenberg planes which seem to
be a generalization of ordinary projective planes. In this section, we give some required
concepts from the literature.
A ring R with an identity element is called local if the set I of its non-units is an ideal.
A projective plane (see []) (P ,L,∈) is a system in which the elements of P are called

points and the elements ofL are called lines together with an incidence relation∈ between
the points and lines such that
P: If P �=Q and P,Q ∈P , then there is a unique line passing through P and Q (denoted

by P ∨Q or PQ).
P: If l,m ∈L, then there exists at least one point on both l andm.
P: There exist four points such that no three of them are collinear.
It is proven that there exists a unique intersection point of different lines.
A projective Klingenberg plane (PK-plane) (see [, ]) is a system (P ,L,∈,∼) where

(P ,L,∈) is an incidence structure and∼ is an equivalence relation onP ∪L (called neigh-
boring) such that no point is neighbor to any line and the following axioms are satisfied:
PK: If P � Q, P,Q ∈ P , then there is a unique line passing through P and Q (denoted

by P ∨Q or PQ).
PK: If l �m, l,m ∈ L, then there is a unique point on both l and m (denoted by l ∧m

or lm).
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PK: There is a projective plane �∗ and an incidence structure epimorphism χ : � →
�∗ such that P ∼Q ⇔ χ (P) = χ (Q) and l ∼m ⇔ χ (l) = χ (m).
A point P ∈ P is called near a line g ∈ L (which is denoted by P ∼ g) iff there exists a

line h∼ g such that P ∈ h.
Now we give two theorems and a corollary from [].

Theorem  Let � be a PK-plane with a canonical image �∗. Choose a basis (O,U ,V ,E)
consisting of four points whose image (χ (O),χ (U),χ (V ),χ (E)) in �∗ forms a quadrangle.
Let g∞ := UV , l := OE, W := l ∧ UV , η := {P ∈ l | P ∼ O} and R := {P ∈ l | P � W }. Let
 := O,  := E. Then the points P ∈ P and the lines g ∈ L of � get their coordinates as
follows:

If P� g∞, let P = (x, y, ) where (x,x, ) = PV ∧ l, (y, y, ) = PU ∧ l.
If P ∼ g∞, P� V , let P = (, y, z) where (, z, ) = ((PV ∧UE)∨O)∧ EV and
(, y, ) =OP ∧ EV .
If P ∼ V , let P = (w, , z) where (, , z) = PU ∧ l, and (w, , ) =OP ∧ EU (clearly,
w, z ∈ η).
If g � V , then g = [m, ,p] where (,m, ) = ((g ∧ g∞)∨O)∧ EV , (,p, ) = g ∧OV .
If g ∼ V , g � g∞, then g = [,u, v] where (u, , ) = ((g ∧ g∞)∨O)∧ EU ,
(v, , ) = g ∧OU .
If g ∼ g∞, then g = [q, r, ] where (, ,q) = g ∧OU , (, , r) = g ∧OV . (Then q, r ∈ η.)

Then O = (, , ), U = (, , ), V = (, , ), E = (, , ), OU = [, , ], OV = [, , ],
UV = [, , ], l = OE = [, , ] and a point a ∈ R has coordinates (a,a, ). We note that
(a,a,a) ∼ (b,b,b) if and only if ai – bi ∈ I, for i = , , , dually for lines.

Theorem  Let R be a local ring, and the set of the non-units is denoted by I. The system
(P ,L,∈,∼) is a PK-plane where

P =
{
(x, y, ) | x, y ∈ R

} ∪ {
(, y, z) | y ∈ R, z ∈ I

} ∪ {
(w, , z) | w, z ∈ I

}
,

L =
{
[m, ,k] |m,k ∈ R

} ∪ {
[,n,p] | n ∈ I,p ∈ R

} ∪ {
[q,n, ] | q,n ∈ I

}
,

(x, y, ) ∈ [m, ,k] ⇔ y = xm + k,

(x, y, ) ∈ [,n,p] ⇔ x = yn + p,

(x, y, ) /∈ [q,n, ],

(, y, z) ∈ [m, ,k] ⇔ y =m + zk,

(, y, z) ∈ [q,n, ] ⇔ z = q + yn,

(, y, z) /∈ [,n,p],

(w, , z) ∈ [,n,p] ⇔ w = n + zp,

(w, , z) ∈ [q,n, ] ⇔ z = wq + n,

(w, , z) /∈ [m, ,k],

(x,x,x) ∼ (y, y, y) ⇔ xi – yi ∈ I,

[a,a,a] ∼ [b,b,b] ⇔ ai – bi ∈ I.
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Corollary  If t ∈ I, then  – t is a unit. Therefore

(x, y, )� (, y, z), (x, y, )� (w, , z), (, y, z)� (w, , z),

(w, , z) ∼ (u, , t), (x, y, ) ∼ (u, v, ) ⇔ x – u ∈ I, y – v ∈ I,

(, y, z) ∼ (,u, t) ⇔ y – u ∈ I.

The PK-plane which is given in Theorem  is denoted with PK(R) and it is called the
PK-plane coordinated with (the local ring) R.
Finally, we recall some definitions and theorems from []. Let Q = {x + xi + xj + xk |

x,x,x,x ∈ F} be an arbitrary division ring over a field F (which is called the ring of
quaternions over F) with the operators addition and multiplication defined by

(x + xi + xj + xk) + (y + yi + yj + yk)

= (x + y) + (x + y)i + (x + y)j + (x + y)k,

(x + xi + xj + xk) · (y + yi + yj + yk)

= (xy – xy – xy – xy) + (xy + xy + xy – xy)i

+ (xy + xy + xy – xy)j + (xy + xy + xy – xy)k.

For detailed information about quaternions, see [].
We consider the set Q(ε) =Q +Qε = {a + bε | a,b ∈Q} together with the operations

(a + bε) + (c + dε) = (a + c) + (b + d)ε,

(a + bε)(c + dε) = ac + (ad + bc)ε.

Then the elements of Q(ε) are called dual quaternions.

Theorem  The non-unit elements of Q(ε) are in the form bε, for b ∈ Q and if a �= ,
a,b ∈ Q, a + bε is a unit and (a + bε)– = a– – a–ba–ε.

Theorem  The set of non-units I =Qε = {bε | b ∈Q} is an ideal of Q(ε).

Corollary  The following properties are valid:
(i) Q(ε) is a local ring (and it is called the dual local ring on Q).
(ii) From Theorem , PK(Q(ε)) = (P ,L,∈,∼) is a PK-plane, where

P =
{
(x + xε, y + yε, ) | x,x, y, y ∈ Q

}

∪ {
(, y + yε, zε) | y, y, z ∈ Q

} ∪ {
(wε, , zε) | w, z ∈Q

}

and

L =
{
[m +mε, ,k + kε] |m,m,k,k ∈Q

}

∪ {
[,nε,p + pε] | n,p,p ∈Q

} ∪ {
[qε,nε, ] | q,n ∈Q

}
.

Theorem  Neighbor relation ∼ is an equivalence relation over P and L in PK(Q(ε)).
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Theorem  In PK(Q(ε)), the following properties are satisfied:
(i) (x + xε, y + yε, ) ∈ [m +mε, ,k + kε] ⇔ y = xm + k,

y = xm + xm + k.
(ii) (x + xε, y + yε, ) ∈ [,nε,p + pε] ⇔ x = p, x = yn + p.
(iii) (, y + yε, zε) ∈ [m +mε, ,k + kε] ⇔ y =m, y =m + zk.
(iv) (, y + yε, zε) ∈ [qε,nε, ] ⇔ z = q + yn.
(v) (wε, , zε) ∈ [,nε,p + pε] ⇔ w = n + zp.
(vi) (wε, , zε) ∈ [qε,nε, ] ⇔ z = n.
(vii) (a + aε,b + bε, ) ∼ (c + cε,d + dε, ) ⇔ c = a ∧ d = b.
(viii) (,a + aε,bε) ∼ (, c + cε,dε) ⇔ c = a.
(ix) For every a,b, c,d ∈Q (aε, ,bε) ∼ (cε, ,dε).

2 Addition andmultiplication of points on the line OU in PK2(Q(ε))
In this section we give the definition of addition and multiplication of points on the line
OU , and also we give some useful results for calculating addition and multiplication of
points where (O,U ,V ,E) is a base of PK(Q(ε)).

Definition  Let A and B be non-neighbor points of PK(Q(ε)) on the line OU . Then
(i) A + B is defined as the intersection point of the lines LV and OU where

L = KU ∧ BS, K = AV ∧OS, S = (, , ).
(ii) A · B is defined as the intersection point of the lines VN and OU where

N = AS ∧OM,M = BV ∧ S, S = (, , ),  = (, , ).

Now we state a theorem which interprets Definition  algebraically.

Theorem  Let A = (a + aε, , ) and B = (b + bε, , ) be two non-neighbor points on
the line OU and let Z = (, , zε) be the point on the line OU (neighbor to U). Then:

(i) A + B = ((a + b) + (a + b)ε, , ).
(ii) A + Z = (, , zε).
(iii) A · B = (ab + (ab + ab)ε, , ).
(iv) A · Z = (, , (za– )ε) where A�O.
(v) Z ·A = (, , (a– z)ε) where A�O.

Proof Proof can be done following Definition  by using simple calculations.
(i)

A + B =
(
(AV ∧OS)U ∧ BS

)
V ∧OU

=
[
, , (a + b) + (a + b)ε

] ∧ [, , ]

=
(
(a + b) + (a + b)ε, , 

)
.

(ii)

A + Z =
(
(AV ∧OS)U ∧ ZS

)
V ∧OU

= [zε, , ]∧ [, , ]

= (, , zε) = Z.
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(iii) If B�O, then the inverse of b exists and therefore

A · B =
(
(BV ∧ S)O∧AS

)
V ∧OU

=
[
, ,ab +

((
(ab)

(
b– bb–

))
b + ab

)
ε
] ∧ [, , ]

=
(
ab +

((
(ab)

(
b– bb–

))
b + ab

)
ε, , 

)

is obtained. Then using the associative and inversive property inQ, we find A ·B = (ab +
(ab + ab)ε, , ).
If B ∼O, then

A · B =
(
(BV ∧ S)O∧AS

)
V ∧OU

= [, ,abε, ]∧ [, , ]

= (abε, , ).

(iv)

A · Z =
(
(ZV ∧ S)O∧AS

)
V ∧OU

=
[
(zε)(a + aε)–, , 

] ∧ [, , ]

=
(
, , (zε)(a + aε)–

)

=
(
, ,

(
za–

)
ε
)

is obtained.
(v)

Z ·A =
(
(AV ∧ S)O∧ ZS

)
V ∧OU

=
[(
a– z

)
ε, , 

] ∧ [, , ]

=
(
, ,

(
a– z

)
ε
)

is obtained. �

Theorem  The properties given in Theorem  are independent of the choice of the point
S given in Definition , where S is a point on UV and S� V , S�U .

Proof If S′ is an arbitrary point onUV non-neighbor to V , then there exist s, s ∈ Q such
that S′ = (, s + sε, ). We must show that the properties given in Theorem  hold when
we replace S by S′.
(i)

A + B =
((
AV ∧OS′)U ∧ BS′)V ∧OU

=
[
, , (a + b) + (a + b)ε

] ∧ [, , ]

=
(
(a + b) + (a + b)ε, , 

)

is obtained.
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(ii)

A + Z =
((
AV ∧OS′)U ∧ ZS′)V ∧OU

= [zε, , ]∧ [, , ]

= (, , zε) = Z

is obtained.
(iii) If B�O, then b– exists and therefore

A · B =
((
BV ∧ S′)O∧AS′)V ∧OU

=
[
, ,ab +

((
(ab)

(
b– bb–

))
b + ab

)
ε
] ∧ [, , ]

=
(
ab +

((
(ab)

(
b– bb–

))
b + ab

)
ε, , 

)

is obtained. Then using the associative and inversive property inQ, we find A ·B = (ab +
(ab + ab)ε, , ).
If B ∼O, then

A · B =
((
BV ∧ S′)O∧AS′)V ∧OU = [, ,abε, ]∧ [, , ] = (abε, , ).

(iv)

A · Z =
((
ZV ∧ S′)O∧AS′)V ∧OU

=
[
(zε)(a + aε)–, , 

] ∧ [, , ]

= (, , (zε)(a + aε)–

=
(
, ,

(
za–

)
ε
)
.

(v)

Z ·A =
((
AV ∧ S′)O∧ ZS′)V ∧OU

=
[(
a– z

)
ε, , 

] ∧ [, , ] =
(
, ,

(
a– z

)
ε
)
. �

Theorem  Let A and B be two non-neighbor points on OU and A∗ ∼ A, B∗ ∼ B, then
A + B ∼ A∗ + B∗, A · B ∼ A∗ · B∗.

Proof LetA = (a +aε, , ),A∗ = (a∗
 +a∗

ε, , ), B = (b +bε, , ) and B∗ = (b∗
 +b∗

ε, , ).
We obtainA+B = ((a +b)+ (a +b)ε, , ) andA∗ +B∗ = ((a∗

 +b∗
 )+ (a∗

 +b∗
)ε, , ). Then

we have

A∗ ∼ A, B∗ ∼ B ⇔ a∗
 = a, b∗

 = b

⇔ a∗
 + b∗

 = a + b

⇔ A∗ + B∗ ∼ A + B.
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Since A ·B = (ab + (ab + ab)ε, , ) and A∗ ·B∗ = (a∗
b∗

 + (a∗
b∗

 + a∗
b∗

 )ε, , ), we get

A∗ ∼ A, B∗ ∼ B ⇔ a∗
 = a, b∗

 = b

⇔ a∗
 · b∗

 = a · b
⇔ A∗ · B∗ ∼ A · B.

If Z = (, , zε) and Z∗ = (, , z∗
ε), then A + Z = Z and A∗ + Z∗ = Z∗ and it is trivial that

Z ∼ Z∗ ⇔ A + Z ∼ A∗ + Z∗.

Similarly, we have

A · Z =
(
, ,

(
za–

)
ε
) ∼ (

, ,
(
z∗
a

∗–


)
ε
)
= A∗ · Z∗

and

Z ·A =
(
, ,

(
a– z

)
ε
) ∼ (

, ,
(
a

∗–
 z∗


)
ε
)
= Z∗ ·A∗. �

Corollary  The following statements are valid where the points A,B,Z,O are defined as
in Theorem  and Y is a point neighbor to (, , ) (i.e., Y ∈ {(yε, , ) | y ∈Q}):

(i) A + B = B +A and A + Z = Z +A.
(ii) A +O = A and O + Z = Z.
(iii) A + Y ∼ A.
(iv) A · B �= B ·A.
(v) O ·A = A ·O =O.
(vi)  ·A = A = A ·  and  · Z = Z = Z · .
(vii) A · Y ∼ Y and Y ·A∼ Y .

Proof (i) Since

(
(AV ∧OS)U ∧ BS

)
V =

[
, , (a + b) + (a + b)ε

]

=
[
, , (b + a) + (b + a)ε

]

=
(
(BV ∧OS)U ∧AS

)
V ,

we obtain A + B = B +A. And since

(
(AV ∧OS)U ∧ ZS

)
V = [zε, , ] =

(
(ZV ∧OS)U ∧AS

)
V ,

we obtain A + Z = Z +A.
(ii)

A +O =
(
(AV ∨OS)U ∧OS

)
V ∧OU = [, ,a + aε]∧ [, , ] = A

is obtained.
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Similarly, we get

O + Z =
(
(OV ∧OS)U ∧ ZS

)
V ∧OU

= [zε, , ]∧ [, , ] = Z.

(iii) It is trivial from Theorem .
(iv) Let A = (i, , ) and B = (j, , ). Since A · B = (k, , ) and B · A = (–k, , ), we have

A · B �= B ·A.
(v) By simple calculations,

O ·A =
(
(AV ∧ S)O∧OS

)
V ∧OU

= [, , ]∧ [, , ]

=
(
(OV ∧ S)O∧AS

)
V ∧OU

= A ·O

is obtained.
Also, since [, , ]∧ [, , ] = (, , ) =O, we have O ·A = A ·O =O.
(vi) Since

A ·  = (
(V ∧ S)O∧AS

)
V ∧OU

= [, ,a + aε]∧ [, , ]

=
(
(AV ∧ S)O∧ S

)
V ∧OU

=  ·A

and [, ,a + aε]∧ [, , ] = (a + aε, , ) = A, we get A ·  =  ·A = A.
Similarly,

 · Z =
(
(ZV ∧ S)O∧ S

)
V ∧OU

= [zε, , ]∧ [, , ] = Z · ,

and hence we get [zε, , ]∧ [, , ] = (, , zε) = Z.
(vii) Since Y = (yε, , ),

A · Y =
(
(YV ∧ S)O∧AS

)
V ∧OU = [, ,ayε, ]∧ [, , ] = (ayε, , )

and

Y ·A =
(
(AV ∧ S)O∧ YS

)
V ∧OU =

[
, , (yε)(a + aε)

] ∧ [, , ] = (yaε, , ),

we have A · Y ∼ Y and Y ·A∼ Y . �
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