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Abstract
In this paper, based on the quadratic kernel function with three sections, which was
defined by Liu in 2009, we establish some companions of perturbed Ostrowski-type
inequalities for the case when f ′′ ∈ L1[a,b], f ′′′ ∈ L2[a,b] and f ′′ ∈ L2[a,b], respectively.
The special cases of these results offer better estimation than the conventional
trapezoidal formula and the midpoint formula. The results we get can apply to
composite quadrature rules in numerical integration and probability density
functions. The effectiveness of these applications is also illustrated through several
specific examples due to better error estimates.
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1 Introduction
In , Ostrowski [] established the following interesting integral inequality for differ-
entiable mappings with bounded derivatives.

Theorem . Let f : [a,b] → R be a differentiable mapping on (a,b) whose derivative is
bounded on (a,b) and denote ‖f ′‖∞ = supt∈(a,b) |f ′(t)| < ∞. Then for all x ∈ [a,b] we have

∣∣∣∣f (x) – 
b – a

∫ b

a
f (t)dt

∣∣∣∣ ≤
[


+
(x – a+b

 )

(b – a)

]
(b – a)

∥∥f ′∥∥∞. (.)

The constant 
 is sharp in the sense that it cannot be replaced by a smaller one.

In [], Guessab and Schmeisser proved the following companion of Ostrowski’s inequal-
ity.

Theorem . Let f : [a,b] → R be satisfying the Lipschitz condition, i.e., |f (t) – f (s)| ≤
M|t – s|. Then for all x ∈ [a, a+b ] we have

∣∣∣∣ f (x) + f (a + b – x)


–


b – a

∫ b

a
f (t)dt

∣∣∣∣ ≤
[


+ 

(x – a+b


b – a

)]
(b – a)M. (.)
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The constant 
 is sharp in the sense that it cannot be replaced by a smaller one. In (.),

the point x = a+b
 gives the best estimator.

Motivated by [], Dragomir [] proved some companions of Ostrowski’s inequality for
absolutely continuous functions. Recently, Alomari [] studied the companion of Os-
trowski inequality (.) for differentiable bounded mappings. In [], Liu established some
companions of an Ostrowski-type integral inequality for functions whose first derivatives
are absolutely continuous and second derivatives belong to Lp ( ≤ p≤ ∞) spaces.

Theorem . Let f : [a,b] → R be such that f ′ is absolutely continuous on [a,b] and f ′′ ∈
L∞[a,b]. Then for all x ∈ [a, a+b ] we have

∣∣∣∣ f (x) + f (a + b – x)


–
(
x –

a + b


)
f ′(x) – f ′(a + b – x)


–


b – a

∫ b

a
f (t)dt

∣∣∣∣
≤

[



+


(x – a+b

 )

(b – a)

]
(b – a)

∥∥f ′′∥∥∞. (.)

The constant 
 is sharp in the sense that it cannot be replaced by a smaller one.

For other related results, the reader may refer to [–] and the references therein.
The main aim of this paper is to establish some companions of perturbed Ostrowski-

type inequalities for the case when f ′′ ∈ L[a,b], f ′′′ ∈ L[a,b] and f ′′ ∈ L[a,b], respec-
tively. For our purpose, we will use the quadratic kernel function with three sections (see
(.) below) which was defined by Liu in []. The special cases of the results we get offer
better estimation than the conventional trapezoidal formula and the midpoint formula.
These results can apply to composite quadrature rules in numerical integration and prob-
ability density functions. The effectiveness of these applications is also illustrated through
several specific examples due to better error estimates.

2 Main results
To prove our main results, we need the following lemmas.

Lemma . [] Let f : [a,b]→R be such that f ′ is absolutely continuous on [a,b]. Denote
by K(x, t) : [a,b]→ R the kernel given by

K(x, t) =

⎧⎪⎨
⎪⎩


 (t – a), t ∈ [a,x],

 (t –

a+b
 ), t ∈ (x,a + b – x],


 (t – b), t ∈ (a + b – x,b],

(.)

then the identity


b – a

∫ b

a
K(x, t)f ′′(t)dt

=


b – a

∫ b

a
f (t)dt –

f (x) + f (a + b – x)


+
(
x –

a + b


)
f ′(x) – f ′(a + b – x)


(.)

holds.
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2.1 The case when f ′′ ∈ L1[a,b] and is bounded
Theorem . Let f : [a,b] → R be such that f ′ is absolutely continuous on [a,b]. If f ′′ ∈
L[a,b] and γ ≤ f ′′(t) ≤ �, ∀t ∈ [a,b], then for all x ∈ [a, a+b ] we have

∣∣∣∣ f (x) + f (a + b – x)


–
(
x –

a + b


)
f ′(x) – f ′(a + b – x)



+
f ′(b) – f ′(a)

b – a

[



(
x –

a + b


)

+
(b – a)



]
–


b – a

∫ b

a
f (t)dt

∣∣∣∣
≤ (S – γ )

[
(b – a)


+
b – a


∣∣∣∣x – a + b


∣∣∣∣
]

(.)

and ∣∣∣∣ f (x) + f (a + b – x)


–
(
x –

a + b


)
f ′(x) – f ′(a + b – x)



+
f ′(b) – f ′(a)

b – a

[



(
x –

a + b


)

+
(b – a)



]
–


b – a

∫ b

a
f (t)dt

∣∣∣∣
≤ (� – S)

[
(b – a)


+
b – a


∣∣∣∣x – a + b


∣∣∣∣
]
, (.)

where S = (f ′(b) – f ′(a))/(b – a).

Proof From (.) and the facts


b – a

∫ b

a
f ′′(t)dt =

f ′(b) – f ′(a)
b – a

(.)

and


b – a

∫ b

a
K(x, t)dt =




(
x –

a + b


)

+
(b – a)


, (.)

it follows that


b – a

∫ b

a
K(x, t)f ′′(t)dt –


(b – a)

∫ b

a
K(x, t)dt

∫ b

a
f ′′(t)dt

=


b – a

∫ b

a
f (t)dt –

f (x) + f (a + b – x)


+
(
x –

a + b


)
f ′(x) – f ′(a + b – x)



–
f ′(b) – f ′(a)

b – a

[



(
x –

a + b


)

+
(b – a)



]
. (.)

We denote

Rn(x) =


b – a

∫ b

a
K(x, t)f ′′(t)dt –


(b – a)

∫ b

a
K(x, t)dt

∫ b

a
f ′′(t)dt. (.)

If C ∈R is an arbitrary constant, then we have

Rn(x) =


b – a

∫ b

a

(
f ′′(t) –C

)[
K(x, t) –


b – a

∫ b

a
K(x, s)ds

]
dt. (.)
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Furthermore, we have

∣∣Rn(x)
∣∣ ≤ 

b – a
max
t∈[a,b]

∣∣∣∣K(x, t) –


b – a

∫ b

a
K(x, s)ds

∣∣∣∣
∫ b

a

∣∣f ′′(t) –C
∣∣dt. (.)

To compute

max
t∈[a,b]

∣∣∣∣K(x, t) –


b – a

∫ b

a
K(x, s)ds

∣∣∣∣
=max

{∣∣∣∣  (x – a) –
[



(
x –

a + b


)

+
(b – a)



]∣∣∣∣,∣∣∣∣ 
(
a + b


– x
)

–
[



(
x –

a + b


)

+
(b – a)



]∣∣∣∣, 
(
x –

a + b


)

+
(b – a)



}

=max

{
b – a


|x – a – b|, b – a


|x – a – b|, 


(
x –

a + b


)

+
(b – a)



}
, (.)

we denote

y =
b – a


|x – a – b|, y =
b – a


|x – a – b|,

y =



(
x –

a + b


)

+
(b – a)


.

If we choose y = , then we get x = a+b
 . If we choose y = , then we get x = a+b

 .
A direct computation gives that

{
y ≥ max{y, y}, x ∈ [a, a+b ],
y >max{y, y}, x ∈ ( a+b , a+b ].

(.)

Therefore, we get

max
t∈[a,b]

∣∣∣∣K(x, t) –


b – a

∫ b

a
K(x, s)ds

∣∣∣∣
=max{y, y} = (b – a)


+
b – a


∣∣∣∣x – a + b


∣∣∣∣. (.)

We also have

∫ b

a

∣∣f ′′(t) – γ
∣∣dt = (S – γ )(b – a) (.)

and

∫ b

a

∣∣f ′′(t) – �
∣∣dt = (� – S)(b – a). (.)

Therefore, we obtain (.) and (.) by using (.)-(.), (.)-(.) and choosing C = γ

and C = � in (.), respectively. �
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Corollary . Under the assumptions of Theorem ., choose
() x = a+b

 , we have

∣∣∣∣ f (
a+b
 ) + f ( a+b )


+
f ′(b) – f ′(a)

b – a
(b – a)


–


b – a

∫ b

a
f (t)dt

∣∣∣∣
≤ 


(S – γ )(b – a), (.)

∣∣∣∣ f (
a+b
 ) + f ( a+b )


+
f ′(b) – f ′(a)

b – a
(b – a)


–


b – a

∫ b

a
f (t)dt

∣∣∣∣
≤ 


(� – S)(b – a). (.)

() x = a, we have

∣∣∣∣ f (a) + f (b)


–
f ′(b) – f ′(a)

b – a
(b – a)


–


b – a

∫ b

a
f (t)dt

∣∣∣∣ ≤ 


(S – γ )(b – a),

∣∣∣∣ f (a) + f (b)


–
f ′(b) – f ′(a)

b – a
(b – a)


–


b – a

∫ b

a
f (t)dt

∣∣∣∣ ≤ 


(� – S)(b – a).

() x = a+b
 , we have

∣∣∣∣f
(
a + b


)
+
f ′(b) – f ′(a)

b – a
(b – a)


–


b – a

∫ b

a
f (t)dt

∣∣∣∣ ≤ 


(S – γ )(b – a),

∣∣∣∣f
(
a + b


)
+
f ′(b) – f ′(a)

b – a
(b – a)


–


b – a

∫ b

a
f (t)dt

∣∣∣∣ ≤ 


(� – S)(b – a).

Corollary . Let f be as in Theorem .. Additionally, if f is symmetric about x = a+b
 ,

then for all x ∈ [a, a+b ] we have

∣∣∣∣f (x) –
(
x –

a + b


)
f ′(x) +

f ′(b) – f ′(a)
b – a

[



(
x –

a + b


)

+
(b – a)



]

–


b – a

∫ b

a
f (t)dt

∣∣∣∣
≤ (S – γ )

[
(b – a)


+
b – a


∣∣∣∣x – a + b


∣∣∣∣
]

and

∣∣∣∣f (x) –
(
x –

a + b


)
f ′(x) +

f ′(b) – f ′(a)
b – a

[



(
x –

a + b


)

+
(b – a)



]

–


b – a

∫ b

a
f (t)dt

∣∣∣∣
≤ (� – S)

[
(b – a)


+
b – a


∣∣∣∣x – a + b


∣∣∣∣
]
.
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2.2 The case when f ′′′ ∈ L2[a,b]
Theorem . Let f : [a,b] → R be a thrice continuously differentiable mapping in (a,b)
with f ′′′ ∈ L[a,b]. Then for all x ∈ [a, a+b ] we have

∣∣∣∣ f (x) + f (a + b – x)


–
(
x –

a + b


)
f ′(x) – f ′(a + b – x)



+
f ′(b) – f ′(a)

b – a

[



(
x –

a + b


)

+
(b – a)



]
–


b – a

∫ b

a
f (t)dt

∣∣∣∣
≤ 

π

∥∥f ′′′∥∥


{



(a + b – x) +




(x – a)

– (b – a)
[



(
x –

a + b


)

+
(b – a)



]}/

. (.)

Proof Let Rn(x) be defined by (.). From (.), we get

Rn(x) =


b – a

∫ b

a
f (t)dt –

f (x) + f (a + b – x)


+
(
x –

a + b


)
f ′(x) – f ′(a + b – x)



–
f ′(b) – f ′(a)

b – a

[



(
x –

a + b


)

+
(b – a)



]
. (.)

If we choose C = f ′′((a + b)/) in (.) and use the Cauchy inequality, then we get

|Rn(x)|

≤ 
b – a

∫ b

a

∣∣∣∣f ′′(t) – f ′′
(
a + b


)∣∣∣∣
∣∣∣∣K(x, t) –


b – a

∫ b

a
K(x, s)ds

∣∣∣∣dt
≤ 

b – a

[∫ b

a

(
f ′′(t) – f ′′

(
a + b


))

dt
]/

×
[∫ b

a

(
K(x, t) –


b – a

∫ b

a
K(x, s)ds

)

dt
]/

. (.)

We can use the Diaz-Metcalf inequality (see [, p.] or [, p.]) to get

∫ b

a

(
f ′′(t) – f ′′

(
a + b


))

dt ≤ (b – a)

π

∥∥f ′′′∥∥
.

We also have

∫ b

a

(
K(x, t) –


b – a

∫ b

a
K(x, s)ds

)

dt

=
∫ b

a
K(x, t) dt – (b – a)

[



(
x –

a + b


)

+
(b – a)



]

=



(a + b – x) +




(x – a) – (b – a)
[



(
x –

a + b


)

+
(b – a)



]

. (.)

Therefore, using the above relations, we obtain (.). �

Corollary . Under the assumptions of Theorem ., choose

http://www.journalofinequalitiesandapplications.com/content/2013/1/226
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() x = a+b
 , we have

∣∣∣∣ f (
a+b
 ) + f ( a+b )


+
f ′(b) – f ′(a)

b – a
(b – a)


–


b – a

∫ b

a
f (t)dt

∣∣∣∣
≤ (b – a)/

π
√


∥∥f ′′′∥∥
. (.)

() x = a, we have

∣∣∣∣ f (a) + f (b)


–
f ′(b) – f ′(a)

b – a
(b – a)


–


b – a

∫ b

a
f (t)dt

∣∣∣∣ ≤ (b – a)/

π
√


∥∥f ′′′∥∥
.

() x = a+b
 , we have

∣∣∣∣f
(
a + b


)
+
f ′(b) – f ′(a)

b – a
(b – a)


–


b – a

∫ b

a
f (t)dt

∣∣∣∣ ≤ (b – a)/

π
√


∥∥f ′′′∥∥
.

Corollary . Let f be as in Theorem .. Additionally, if f is symmetric about x = a+b
 ,

i.e., f (a + b – x) = f (x), then for all x ∈ [a, a+b ] we have

∣∣∣∣f (x) –
(
x –

a + b


)
f ′(x) +

f ′(b) – f ′(a)
b – a

[



(
x –

a + b


)

+
(b – a)



]

–


b – a

∫ b

a
f (t)dt

∣∣∣∣
≤ 

π

∥∥f ′′′∥∥


{



(a + b – x) +




(x – a)

– (b – a)
[



(
x –

a + b


)

+
(b – a)



]}/

.

2.3 The case when f ′′ ∈ L2[a,b]
Theorem . Let f : [a,b]→R be such that f ′ is absolutely continuous on [a,b] with f ′′ ∈
L[a,b]. Then for all x ∈ [a, a+b ] we have

∣∣∣∣ f (x) + f (a + b – x)


–
(
x –

a + b


)
f ′(x) – f ′(a + b – x)



+
f ′(b) – f ′(a)

b – a

[



(
x –

a + b


)

+
(b – a)



]
–


b – a

∫ b

a
f (t)dt

∣∣∣∣
≤

√
σ (f ′′)
b – a

{



(a + b – x) +




(x – a)

– (b – a)
[



(
x –

a + b


)

+
(b – a)



]}/

, (.)

where σ (f ′′) is defined by

σ
(
f ′′) = ∥∥f ′′∥∥

 –
(f ′(b) – f ′(a))

b – a
=

∥∥f ′′∥∥
 – S(b – a) (.)

and S is defined in Theorem ..

http://www.journalofinequalitiesandapplications.com/content/2013/1/226
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Proof Let Rn(x) be defined by (.). If we choose C = 
b–a

∫ b
a f ′′(s)ds in (.) and use the

Cauchy inequality and (.), then we get

∣∣Rn(x)
∣∣

≤ 
b – a

∫ b

a

∣∣∣∣f ′′(t) –


b – a

∫ b

a
f ′′(s)ds

∣∣∣∣
∣∣∣∣K(x, t) –


b – a

∫ b

a
K(x, s)ds

∣∣∣∣dt
≤ 

b – a

[∫ b

a

(
f ′′(t) –


b – a

∫ b

a
f ′′(s)ds

)

dt
]/

×
[∫ b

a

(
K(x, t) –


b – a

∫ b

a
K(x, s)ds

)

dt
]/

≤
√

σ (f ′′)
b – a

{



(a + b – x) +




(x – a)

– (b – a)
[



(
x –

a + b


)

+
(b – a)



]}/

. �

Corollary . Under the assumptions of Theorem ., choose
() x = a+b

 , we have

∣∣∣∣ f (
a+b
 ) + f ( a+b )


+
f ′(b) – f ′(a)

b – a
(b – a)


–


b – a

∫ b

a
f (t)dt

∣∣∣∣
≤ (b – a)/


√


√
σ
(
f ′′). (.)

() x = a, we have

∣∣∣∣ f (a) + f (b)


–
f ′(b) – f ′(a)

b – a
(b – a)


–


b – a

∫ b

a
f (t)dt

∣∣∣∣ ≤ (b – a)/


√


√
σ
(
f ′′).

() x = a+b
 , we have

∣∣∣∣f
(
a + b


)
+
f ′(b) – f ′(a)

b – a
(b – a)


–


b – a

∫ b

a
f (t)dt

∣∣∣∣ ≤ (b – a)/


√


√
σ
(
f ′′).

Corollary . Let f be as in Theorem .. Additionally, if f is symmetric about x = a+b
 ,

then for all x ∈ [a, a+b ] we have

∣∣∣∣f (x) –
(
x –

a + b


)
f ′(x) +

f ′(b) – f ′(a)
b – a

[



(
x –

a + b


)

+
(b – a)



]

–


b – a

∫ b

a
f (t)dt

∣∣∣∣
≤

√
σ (f ′′)
b – a

{



(a + b – x) +




(x – a)

– (b – a)
[



(
x –

a + b


)

+
(b – a)



]}/

.
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3 Application to composite quadrature rules
Let In : a = x < x < · · · < xn– < xn = b be a partition of the interval [a,b] and hi = xi+ – xi
(i = , , , . . . ,n – ).
Consider the perturbed composite quadrature rules

Q
n(In, f ) =




n–∑
i=

[
f
(
xi + xi+



)
+ f

(
xi + xi+



)]
hi +

n–∑
i=

f ′(xi+) – f ′(xi)


hi (.)

and

Q
n(In, f ) =




n–∑
i=

[
f
(
xi + xi+



)
+ f

(
xi + xi+



)]
hi +

� + γ



n–∑
i=

hi . (.)

The following results hold.

Theorem . Let f : [a,b] → R be such that f ′ is absolutely continuous on [a,b]. If f ′′ ∈
L[a,b] and γ ≤ f ′′(t) ≤ �, ∀t ∈ [a,b], then for all x ∈ [a, a+b ] we have

∫ b

a
f (t)dt =Q

n(In, f ) + R
n(In, f ),

where Q
n(In, f ) is defined by formula (.), and the remainder R

n(In, f ) satisfies the estimate

∣∣R
n(In, f )

∣∣ ≤ 


(S – γ )
n–∑
i=

hi (.)

and

∣∣R
n(In, f )

∣∣ ≤ 


(� – S)
n–∑
i=

hi . (.)

Proof Applying inequality (.) and (.) to the intervals [xi,xi+], we get

∣∣∣∣
∫ xi+

xi
f (t)dt –




[
f
(
xi + xi+



)
+ f

(
xi + xi+



)]
hi –

f ′(xi+) – f ′(xi)


hi

∣∣∣∣
≤ 


(S – γ )hi

and

∣∣∣∣
∫ xi+

xi
f (t)dt –




[
f
(
xi + xi+



)
+ f

(
xi + xi+



)]
hi –

f ′(xi+) – f ′(xi)


hi

∣∣∣∣
≤ 


(� – S)hi

for i = , , , . . . ,n–.Now summing over i from to n– and using the triangle inequality,
we get (.) and (.). �
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Theorem . Let f : [a,b] → R be a thrice continuously differentiable mapping in (a,b)
with f ′′′ ∈ L[a,b]. Then for all x ∈ [a, a+b ] we have

∫ b

a
f (t)dt =Q

n(In, f ) + R
n(In, f ),

where Q
n(In, f ) is defined by formula (.), and the remainder R

n(In, f ) satisfies the estimate

∣∣R
n(In, f )

∣∣ ≤ ‖f ′′′‖
π

√


n–∑
i=

h/i . (.)

Proof Applying inequality (.) to the intervals [xi,xi+], we get

∣∣∣∣
∫ xi+

xi
f (t)dt –




[
f
(
xi + xi+



)
+ f

(
xi + xi+



)]
hi –

f ′(xi+) – f ′(xi)


hi

∣∣∣∣
≤ h/i

π
√


∥∥f ′′′∥∥


for i = , , , . . . ,n–.Now summing over i from to n– and using the triangle inequality,
we get (.). �

Theorem . Let f : [a,b]→R be such that f ′ is absolutely continuous on [a,b] with f ′′ ∈
L[a,b]. Then for all x ∈ [a, a+b ] we have

∫ b

a
f (t)dt =Q

n(In, f ) + R
n(In, f ),

where Q
n(In, f ) is defined by formula (.), and the remainder R

n(In, f ) satisfies the estimate

∣∣R
n(In, f )

∣∣ ≤
√

σ (f ′′)


√


n–∑
i=

h/i . (.)

Proof Applying inequality (.) to the intervals [xi,xi+], we get

∣∣∣∣
∫ xi+

xi
f (t)dt –




[
f
(
xi + xi+



)
+ f

(
xi + xi+



)]
hi –

f ′(xi+) – f ′(xi)


hi

∣∣∣∣
≤ h/i


√


√
σ
(
f ′′)

for i = , , , . . . ,n–.Now summing over i from to n– and using the triangle inequality,
we get (.). �

To illustrate the effectiveness of the perturbed composite quadrature rules (.) and
(.), we compute the approximate values of several specific examples using these two
rules and the composite trapezoidal formula

Tn(In, f ) =
h


[
f (a) + 

n–∑
i=

f (xi) + f (b)

]
,
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Table 1 Numerical results

f (x) n [a,b]
∫ b
af (x)dx Tn Error of Tn Q1

n and Q2
n Error of Q1

n and Q2
n

cos x – x 20 [0, π2 ] –0.233701 –0.234215 5.14E-4 –0.233636 6.5E-5
e2x cos(ex ) 20 [0, 1] –1.176887 –1.181466 4.579E-3 –1.176316 5.71E-4

1
x4+4x2+3

10 [0, 1] 0.241549 0.241393 1.56E-4 0.241569 2E-5
tan x + x 20 [0, π4 ] 0.654999 0.655127 1.28E-4 0.654983 7E-6
ln(x2 + 1) 20 [–1, 1] 0.527887 0.529554 1.667E-3 0.527679 2.08E-4

respectively, and then we compare their errors. We get Table , from which the power of
these two rules in numerical integration is demonstrated due to better error estimates.

4 Application to probability density functions
Now, let X be a random variable taking values in the finite interval [a,b], with the proba-
bility density function f : [a,b]→ [, ] and with the cumulative distribution function

F(x) = Pr(X ≤ x) =
∫ x

a
f (t)dt.

The following results hold.

Theorem . With the assumptions of Theorem ., we have

∣∣∣∣ 
[
F(x) + F(a + b – x)

]
–

(
x –

a + b


)
f (x) – f (a + b – x)



+
f (b) – f (a)

b – a

[



(
x –

a + b


)

+
(b – a)



]
–
b – E(X)
b – a

∣∣∣∣
≤ (S – γ )

[
(b – a)


+
b – a


∣∣∣∣x – a + b


∣∣∣∣
]

(.)

and

∣∣∣∣ 
[
F(x) + F(a + b – x)

]
–

(
x –

a + b


)
f (x) – f (a + b – x)



+
f (b) – f (a)

b – a

[



(
x –

a + b


)

+
(b – a)



]
–
b – E(X)
b – a

∣∣∣∣
≤ (� – S)

[
(b – a)


+
b – a


∣∣∣∣x – a + b


∣∣∣∣
]

(.)

for all x ∈ [a, a+b ], where E(X) is the expectation of X.

Proof By (.) and (.) on choosing f = F and taking into account

E(X) =
∫ b

a
t dF(t) = b –

∫ b

a
F(t)dt,

we obtain (.) and (.). �
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Corollary . Under the assumptions of Theorem . with x = a+b
 , we have

∣∣∣∣ 
[
F
(
a + b


)
+ F

(
a + b


)]
+
b – a


[
f (b) – f (a)

]
–
b – E(x)
b – a

∣∣∣∣
≤ 


(S – γ )(b – a) (.)

and ∣∣∣∣ 
[
F
(
a + b


)
+ F

(
a + b


)]
+
b – a


[
f (b) – f (a)

]
–
b – E(x)
b – a

∣∣∣∣
≤ 


(� – S)(b – a). (.)

Theorem . With the assumptions of Theorem ., we have

∣∣∣∣ 
[
F(x) + F(a + b – x)

]
–

(
x –

a + b


)
f (x) – f (a + b – x)



+
f (b) – f (a)

b – a

[



(
x –

a + b


)

+
(b – a)



]
–
b – E(X)
b – a

∣∣∣∣
≤ 

π

∥∥f ′′′∥∥


{



(a + b – x) +




(x – a)

– (b – a)
[



(
x –

a + b


)

+
(b – a)



]}/

(.)

for all x ∈ [a, a+b ], where E(X) is the expectation of X.

Proof By (.) on choosing f = F and taking into account

E(X) =
∫ b

a
t dF(t) = b –

∫ b

a
F(t)dt,

we obtain (.). �

Corollary . Under the assumptions of Theorem . with x = a+b
 , we have

∣∣∣∣ 
[
F
(
a + b


)
+ F

(
a + b


)]
+
b – a


[
f (b) – f (a)

]
–
b – E(x)
b – a

∣∣∣∣
≤ (b – a)/

π
√


∥∥f ′′′∥∥
. (.)

Theorem . With the assumptions of Theorem ., we have

∣∣∣∣ 
[
F(x) + F(a + b – x)

]
–

(
x –

a + b


)
f (x) – f (a + b – x)



+
f (b) – f (a)

b – a

[



(
x –

a + b


)

+
(b – a)



]
–
b – E(X)
b – a

∣∣∣∣
≤

√
σ (f ′′)
b – a

{



(a + b – x) +




(x – a)
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– (b – a)
[



(
x –

a + b


)

+
(b – a)



]}/

(.)

for all x ∈ [a, a+b ], where E(X) is the expectation of X.

Proof By (.) on choosing f = F and taking into account

E(X) =
∫ b

a
t dF(t) = b –

∫ b

a
F(t)dt,

we obtain (.). �

Corollary . Under the assumptions of Theorem . with x = a+b
 , we have

∣∣∣∣ 
[
F
(
a + b


)
+ F

(
a + b


)]
+
b – a


[
f (b) – f (a)

]
–
b – E(x)
b – a

∣∣∣∣
≤ (b – a)/


√


√
σ
(
f ′′). (.)
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