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Abstract
Let y =0.577215664... denote the Euler-Mascheroni constant, and let the sequences

1T 1 1 1
Uy = ———In(nz+n+—)— and
! ;:k 2 3/ 2 4n+ D +sn2+n+ 30+t

n

T 1 1
vnzz%len(n2+n+g)

k=1

( a N b . c . d )
(NP+n+32 (MP+n+3?3  P+n+3* (P2+n+10/

The main aim of this paper is to find the values r, s, t, a, b, c and d which provide the
fastest sequences (Up)n=1 and (vp)n=1 approximating the Euler-Mascheroni constant.
Also, we give the upper and lower bounds for i, 4 - 3 In(n” +n+ 3) - y in terms of
n*+n+1.
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1 Introduction
The Euler-Mascheroni constant y = 0.577215664... is defined as the limit of the sequence

D,=H,—-1nn, (1.1)

where H, denotes the nth harmonic number defined for n € N:={1,2,3,...} by

H, 1
n= 7.

pamy k

Several bounds for D, — y have been given in the literature [1-7]. For example, the fol-

lowing bounds for D, — y were established in [3, 7]:
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The convergence of the sequence D, to y is very slow. Some quicker approximations to
the Euler-Mascheroni constant were established in [8—21]. For example, Cesaro [8] proved
that for every positive integer # > 1, there exists a number ¢, € (0,1) such that the follow-

ing approximation is valid:

Cen(n+1)

Entry 9 of Chapter 38 of Berndt’s edition of Ramanujan’s Notebooks [22, p.521] reads,

‘Let m := @, where 7 is a positive integer. Then, as n approaches infinity,

) 1 1 1 1 1
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191 1 2,833 140,051

360,360m°  30,030m’ 1,166,880m8  17,459,442m°

[-]

For the history and the development of Ramanujan’s formula, see [20].
Recently, by changing the logarithmic term in (1.1), DeTemple [15], Negoi [18] and Chen

et al. [14] have presented, respectively, faster and faster asymptotic formulas as follows:
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Chen and Mortici [13] provided a faster asymptotic formula than those in (1.2) to (1.4),

n
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and posed the following natural question.

Open problem For a given positive integer p, find the constants a; (j = 0,1,2,...,p) such
that

"1 ’ 4
——In|n+) 2 L6
) < > n}) @)
is the sequence which would converge to y in the fastest way.

Very recently, Yang [21] published the solution of the open problem (1.6) by using
logarithmic-type Bell polynomials.
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Forall n e N, let
"1 1 1
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Chen and Li [12] proved that for all integers n > 1,
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Now we define the sequences
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respectively. Our Theorems 1 and 2 are to find the values r, 5, £, 4, b, c and d which provide

the fastest sequences (u,,),>1 and (v,),>1 approximating the Euler-Mascheroni constant.

Theorem 1 Let (u,),>1 be defined by (1.9). For

640 26,770
r=——mf, s =-180, = ,
7 441
we have
457,528

1i e, _ _ ’ 1.11

Jim = 1) = e es (11D
and

457,528
lim n%(u, —y)= ———— . 1.12
Jim = ¥) = oa e oes (112)

The speed of convergence of the sequence ()1 is n™%°.
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Theorem 2 Let (v,),>1 be defined by (1.10). For

1 b 8 5 g 592
~ 180’ ~ 2,835 T 1,512° "~ 93,555
we have
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The speed of convergence of the sequence (v,),>1 is n 12,

Our Theorems 3 and 4 establish the bounds for y — P, in terms of #n® + n + %

Theorem 3 Let P, be defined by (1.7). Then

1
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P 1 (1.13)
<V =<0 1 1\2 _ 26770 ° :
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Theorem 4 Let P, be defined by (1.7). Then
1 _8 5 592
180 B 2,835 1512 93555
(P +n+32 (P+n+3)? (P+n+d)t (PR+n+ )P
L _8 5
<y-P,< 180 _ 2,835 N 1512 (114)

(m+n+3)? (P2+n+3)? (n2+n+%)4'

Remark1 The inequality (1.14) is sharper than (1.8), while the inequality (1.13) is sharper
than (1.14).

2 Lemmas
Before we prove the main theorems, let us give some preliminary results.

The constant y is deeply related to the gamma function I'(z) thanks to the Weierstrass
formula:

_yz 0 -1
r(z):e; ]‘[{(ug) eZ/k} (zeC\ Z5Z5 = {-1,-2,-3,..}).

k=1
The logarithmic derivative of the gamma function

I"(2)

V(z) = m

z
or InT(z)= / w(t)de
1
is known as the psi (or digamma) function. The successive derivatives of the psi function
¥ (2)

T dy

v (z) (v} (meN)

are called the polygamma functions.
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The following recurrence and asymptotic formulas are well known for the psi function:

V(z+1)=¥(2) + % (2.1)

(see [23, p.258]), and

1 1 1 1 .
w(z)Nlnz—z—z—Tzz+W—m+m (z— ooin|argz| < ) (2.2)
(see [23, p.259]). From (2.1) and (2.2), we get
1 1 1 1
Y(m+l)~Inn+ — (n — 00). (2.3)
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It is also known [23, p.258] that
"1
w(n+1):—y+Z—.
k=1 k

Lemma 1 [24, 25] If (X,).>1 is convergent to zero and there exists the limit

lim #*(A, = Aya) =€ R,

n—00

with k > 1, then there exists the limit

l
: k-1, _
nh_g)lon An——k_l.

Lemma 1 gives a method for measuring the speed of convergence.

Lemma 2 [26, Theorem 9] Let k > 1 and n > 0 be integers. Then, for all real numbers

x>0,
Si2m;x) < (1) P (x) < S (2m + 1; %), (2.4)
where
k-1 Kk < oo
Sk(p;x)zT‘l'W‘l'i:Zl Bzi£[(2l+]) W’

and B; (i =0,1,2,...) are Bernoulli numbers defined by

It follows from (2.4) that for x > 0,

1 1 1 1 1 1 5 691
— —+ — - + - + -

x  2x2 6x3  30x°  42x7 30x° 66x  2,730x13

1 1 1 1 5 691 7

+— = + - + - +—,
6x3 30x° 42x7 30x° 66x1 2730413  6x1°

1 1
/
_+_
<w(x)<x 2x2
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from which we imply that for x > 0,

11 1 1 1 1 5 691
X 22 6x° 30x5 @ 420  30%°  66x1  2,730x1
<Y (x+1)
11 1 1 1 1 5 691 7
x 22 6x3 3045 4207  30%° | 66x1  2,730x1 615 @5)

3 Proofs of Theorems 1-4

Proof of Theorem 1 By using the Maple software, we write the difference u, — u,,; as a
power series in #n7%:

s+180\ 1 [s+180 1
Un =Wt =\ "5 ) s T\ o5 ) s

2(~6,048s + 567r — 3252)> 1

18952 n’

(
2(=567r +2,268s + 11s2)\ 1
+
2752
o
(

n8

2(=23s% + 2,430sr — 5,310s> + 108st — 108r2)> 1

27s3 n’

2(=13,770sr + 19,170s> — 1,620st + 1,620r* + 73s3)> 1
4583

710
1
+ ————(~15,443s" + 4,834,5665r — 4,650,624s> + 1,033,5605>¢
2,673s*

1
~1,033,560sr” — 53,4605t +26,730r") —
n

. o(%). (3.1)

According to Lemma 1, we have three parameters r, s and ¢ which produce the fastest
convergence of the sequence from (3.1)

s+180=0,

-6,048s + 567r — 325> = 0,

-23s% +2,430sr — 5,310s* + 1085t — 1087* = 0,

namely if

640

26,770
r= , s =—180, =

7 To44]

Thus, we have

457,528 of X
Uy —Upyl = —————7 + 0| — ).
n T 193,773,265m1 712

By using Lemma 1, we obtain the assertion of Theorem 1.
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Proof of Theorem 2 By using the Maple software, we write the difference v, — v,,; as a

power series in 771:

LoD (L0 cancp. 54\ 1
Vp=Vp1=|—-——-4a|—+|=-+20a)— +|-64a-6b- — |—
T il 45 o \9 b 189 ) u7

22 1 1,180 46 1
+|—=+168a+42b ) — + | - a—8c—-— —180b
27 n8 3 27

n°

146 1
+|72¢+ — +852a + 612b | —
45 nlo

1,160 15443 5426 46,976 \ 1
Y i - b-10d - —
3 2,673 3 27 )

2,375 14,542 4,840 91,432 1 1
+ + b+ c+ a+110d |— +O| — ). (3.2)
243 3 3 27 n? nld

According to Lemma 1, we have four parameters 4, b, ¢ and d which produce the fastest

convergence of the sequence from (3.2)

1
~L_4a-o,

64 _
~64a—6b - & =0,

1,180 46 —
—Ta—Sc—ﬁ—ISOb—O,

1160 . 15443 5426 46,976 , _
—3re- Sa — 25 b—10d - =72a =0,
namely if
1 8 5 592
=——, b= ———, =——, d= .
180 2,835 1,512 93,555

Thus, we have

796,801 1
Vi =V = =3 easns T O\ )

By using Lemma 1, we obtain the assertion of Theorem 2. g

Proof of Theorem 3 Here we only prove the second inequality in (1.13). The proof of the
first inequality in (1.13) is similar. The upper bound of (1.13) is obtained by considering
the function F for x > 1 defined by

1

640 (2 1 2 1y2 _ 26,770
= +n+3)+180(n* + n+ 3)* — 34

F(x) = %ln(x2+x+ é) —Yx+1) -

Differentiation and applying the right-hand inequality of (2.5) yield

2x+1

2(x% +x + 1)

55,566(126x> + 189x2 + 137x + 37)
.
5(7,938x* +15,876x3 + 17,262x2 + 9,324x — 451)2

Fx)=-¢'(x+1) +
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1 1 1 1 1 1 5 691 7
>l -5 +—=- + - + - +—
x  2x%  6x3 30x°  42x7 30x° 66x1! 2,730x13  6x1°
2% +1 55,566(126x> + 189x% + 137x + 37)
+ +
22 +x+3)  5(7,938x% +15,876x° +17,2624 + 9,324x — 451)2
P(x)

~ 30,030%3(3x2 + 3x + 1)°°

where

P(x) = 35,471,898,974,548,627,145 + 138,773,138,144,376,345,519(x — 4)
+241,909,257,272,859,643,240(x — 4)*
+253,899,751,881,744,791,655(x — 4)°
+181,059,030,163,487,870,836(x — 4)*
+93,303,260,620,236,720,571(x — 4)°
+35,932,291,146,874,735,228(x — 4)° +10,519,794,292,714,982,599 (x — 4)’
+2,353,926,972,956,528,576(x — 4)° + 400,626,844,002,342,775(x — 4)°
+51,041,813,866,867,916(x — 4)'° + 4,719,218,347,433,667 (x — 4)"
+299,247,577,164,158(x — 4)'? + 11,646,155,626,560(x — 4)13

+209,840,641,920(x —4)* >0 for x > 4.

Therefore, F'(x) > 0 for x > 4.
For x=1,2,3,4, we compute directly:

F(1) =-0.000018306,  F(2)=-2171x 1077,

F(3)=-1.0x10"%,  F(4)=-10x10"".
Hence, the sequence (F(n)),> is strictly increasing. This leads to
F(n)< lim F(n) =0
n—00

by using the asymptotic formula (2.3). This completes the proof of the second inequality
in (L.13). O

Proof of Theorem 4 Here we only prove the first inequality in (1.14). The proof of the

second inequality in (1.14) is similar. The lower bound of (1.14) is obtained by considering
the function G for x > 1 defined by

Gx)=yx+1)— %1n(x2 +x+ %)

L __8_ 5 _ 592
< 180 2,835 1,512 93,555 )

@W+x+3)? @P+x+1)? (a3t (P ra+ i)
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Differentiation and applying the left-hand inequality of (2.5) yield

2x+1
Gw) =y (x+l)- ————
v 2(x2 +x + %)
3(4,158%7 +14,553x° +19,701x° + 12,870x% + 8,283x> + 6,831x% — 8,276x — 5,194)
770(3x2 + 3x + 1)°

(1 11 1 1 1 5 691 ) 2 +1
> -
2(

- —— = + -
x  2x2  6x3 3045  42x7 30x° 66x1 2730413

1
x2 +x+ 3)

3(41,58%7 +14,553x° +19,701x° + 12,870x* + 8,283x> + 6,831x% — 8,276x — 5,194)
770(3x2 + 3x + 1)°

_ Qx)
30,030x13(3x2 + 3x + 1)6’

where

Q(x) = 274,317,996,839,484 + 1,074,684,262,984,527 (x — 5)
+1,571,352,927,565,772(x — 5)* + 1,266,557,271,610,345(x — 5)°
+652,427,951,634,329(x — 5)* + 230,639,944,842,034(x — 5)°
+57,987,546,990,473(x — 5)° +10,515,845,175,406(x — 5)’
+1,371,027,303,124(x — 5)° + 125,702,024,549(x — 5)°
+7,709,579,845(x — 5)'° + 284,457,957 (x — 5)1
+4,780,806(x—5)2 >0 forx>5.

Therefore, G'(x) > 0 for x > 5.
Forx=1,2,3,4,5, we compute directly:
G(1) = —0.000046245..., G(2) =-1.799 x 1077, G(3)=-4x107°,

G(4)=-1x10",  G(5)=-1x107".
Hence, the sequence (G(n)),>1 is strictly increasing. This leads to
G(n) < lim G(n) =0

by using the asymptotic formula (2.3). This completes the proof of the first inequality
in (1.14). O

Remark 2 Some calculations in this work were performed by using the Maple software

for symbolic calculations.

Remark 3 The work of the first author was supported by a grant of the Romanian Na-
tional Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-
PCE-2011-3-0087.
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