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Abstract

In this paper, by the use of the famous Kato's inequality for bounded linear operators,
we establish some inequalities for n-tuples of operators and apply them for functions
of normal operators defined by power series as well as for some norms and numerical
radii that arise in multivariate operator theory.
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1 Introduction
The ‘square root’ of a positive bounded self-adjoint operator on H can be defined as follows
(see, for instance, [1, p.240]).

If the operator A € B(H) is self-adjoint and positive, then there exists a unique positive
self-adjoint operator B := ~/A € B(H) such that B> = A. If A is invertible, then so is B.

If A € B(H), then the operator A*A is self-adjoint and positive. Define the absolute value’
operator by |A| := VA*A.

In 1952, Kato [2] proved the following generalization of Schwarz inequality:

(T9) | < ((T°T) %4 (TT) ™y,), (L1)
for any x,y € H, « € [0,1] and T is a bounded linear operator on H.
Utilizing the modulus notation introduced before, we can write (1.1) as follows:
(T | = (1T 7 y.). (12)

For results related to the Kato’s inequality, see [2-18] and [19].
In the recent paper [20], by employing Kato’s inequality (1.2), Dragomir established
the following results for sequences of bonded linear operators on complex Hilbert

spaces.

Theorem 1.1 Let (T4,...,T,) € B(H) x --- x B(H) := B"(H) be an n-tuple of bounded
linear operators on the Hilbert space (H; (-,-)) and (p1,...,p,) € RY" be an n-tuple of non-
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negative weights not all of them equal to zero. Then we have

l1-a

Y pl(Tay| < <Zp,|T;|2x,x> <Zp,|T,*|2y,y> (1.3)
j=1 Jj=1 Jj=1

forany x,y € H with ||x|| = ||y|| =1 and « € [0,1].
He also obtained the following result.

Theorem 1.2 With the assumptions in Theorem 1.1, we have

172

n n 172y 4,
> (T < <ij|T,-|2“x,x> <Zp,-|T,*|2“‘“’y,y> (1.4)
j=1 j=1 j=1

forany x,y € H.

For various related results, see the papers [21-31].

Motivated by the above results, we establish in this paper other similar inequalities for
n-tuples of bounded linear operators that can be obtained from Kato’s result (1.2) and
apply them to functions of normal operators defined by power series as well as to some
norms and numerical radii that can be associated with these n-tuples of bonded linear
operators on Hilbert spaces.

2 Some inequalities for an n-tuple of linear operators
Employing Kato’s inequality (1.2), we can state the following new result.

Theorem 2.1 Let (Ty,...,T,) € B"(H) be an n-tuple of bounded linear operators on the
Hilbert space (H; (-,-)) and (p1,...,p,) € RY" be an n-tuple of nonnegative weights, not all
of them equal to zero. Then we have

n n |Tj|2a + |Tj|2(1—a) 12
S T < ij<f)x,x
j=1

j=1
1/2
n |T'*|2a + |Tfk|2(1—0t)
x <Zp;(%)y,y 2.1
j=1

. . 1
Joranyx,y € H, a € [0,1] and, in particular, for o = 5

1/2
y,y> (2.2)

n n 1724 4,
pr|<77x’y)’§<zpjli}lx,x> <Zp/|Tj*
j=1 j=1 j=1

forany x,y € H.

Proof Utilizing Kato’s inequality, we have

(T, )| < (173, 2) (| T Py, 9) "
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and by replacing « with 1 - «,

(T, 9) | < (1120, 2) (| 77 9, 9)

’

which by summation gives

1 o
[(Tre| < 1T ) (| T 9) "

TP (7790 )
foranyje{l1,...,n} and x,y € H. By the elementary inequality
ab +cd < (a2 + cz)l/2 (b2 + dz)l/z, a,b,c,d >0,

we have

T3 ) (| 77 ) + TP | 77 9,0)")

<[0T 1P [T+ 7))

which by (2.3) produces

|T}|2a + |T}|2(1—a) 1/2 |Tj*|20t + |Tj*|2(1—01) 1/2
(T = ( (52— ) ()

(2.3)

(2.4)

(2.5)

for any j € {1,...,n} and x,y € H. Multiplying the inequalities (2.5) with the positive

weights pj, summing over j from 1 to # and utilizing the weighted Cauchy-Buniakowski-

Schwarz inequality

" " 12, 112
> pajb; < (ZP;”?) (prbjz ) ,
j=1 j=1 j=1

where (a3,...,4,),(b1,...,b,) € R", we have
> pil(Tix,y)
j=1

n |T|2a + |T|2(1 o) 1/2 |T;k|2a + |Tj*|2(1_a) 1/2
< A S — -
ol L, P

j=1 j=1

for any x,y € H, and the inequality in (2.1) is proved.

1/2 1/2
n 12 12(1-a) n T* 20 +|T* 2(1-a)
Z |T;|™ + |T;] | T 1™ + | T

O
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Remark 2.1 In order to provide some applications for functions of normal operators
defined by power series, we need to state the inequality (2.1) for normal operators N;,
jefl,...,n}, namely,

n n |]\[j|2a + |M|2(1_a) 1/2
ij|(ij,J’)| = Pj(f)x;x
j=1 j=1

n 1/2
|A[j|2ot + |]\[j|2(1—a)
A p( 27)

j=1
for any « € [0,1] and for any x,y € H.

From a different perspective that involves quadratics, we can state the following result
as well.

Theorem 2.2 Let (Ty,...,T,) € B"(H) be an n-tuple of bounded linear operators on the
Hilbert space (H; (-,-)) and (p1,...,p,) € RY" be an n-tuple of nonnegative weights, not all
of them equal to zero. Then we have

n
> pil (T )
j=1

1< » }
=3 2] Ty T )

1[( pjllmz>“(gpM*y”z)l‘“
( p,nTxn) (éwHT,«*yIV)a}

n

[\)

IA
N =

21T + | T79]) (2.8)
=1

~.

forany x,y € H with ||x|| = ||y|| =1 and « € [0,1].
Proof We must prove the inequalities only in the case « € (0,1), since the case « = 0 or

a =1 follows directly from the corresponding case of Kato’s inequality.
Utilizing Kato’s inequality for the operator Tj, j € {1,..., n}, we have

(@) < (TP 77 9,9) (2.9)
and, by replacing o with 1 —«,

(T ) [* < (1730, (| 79, ) (210)

for any x,y € H.
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By the Holder-McCarthy inequality (P"x,x) < (Px,x)” that holds for the positive opera-
tor P, for r € (0,1) and x € H with ||x|| = 1, we also have

(7| 2 33) < (1P (| 77 0]~ (2.12)
and
(I T3P0, )| T *y,9) < (1T;2x,2) | T} y,9)" (2.12)

for any x,y € H with |lx|| = |lyll =1,j € {1,...,n} and @ € (0,1).
If we add (2.9) with (2.10) and make use of (2.11) and (2.12), we deduce

1-a

2T | < (T3 (| T7 ) 99) ™ + (T3 90 0) (| TP, ) (2.13)
for any x,y € H with |lx|| = |lyll =1,j € {1,...,n} and @ € (0,1).
Now, if we multiply (2.13) with p; > 0, sum over j from 1 to 7, we get
23 pil T [ Zp,|T|2x, (T Py ™
j=1
+ZMT*| 7.9 1T, 6) (2.14)

for any x,y € H with |lx|| = ||y|| =1 and « € (0,1).

Since (|Tj|*x,x) = | Tyxl|* and (I *y,y) = I T/yl1%, j € {1,..., n}, then we get from (2.14)
the first inequality in (2.8).

Now, on making use of the weighted Holder discrete inequality

n n 1/p n 1/q
11
> _piaib; < (ijﬂf) (ZP/%) , pa>L-+-=1
= = = P

where (a3,...,a,), (b1,...,b,) € R”, we also have

ot (ZP’”T"” ) (gp,n T;*y||2)l_

j=1

and
1-«

n n o n
S Ty I T < (Zp}-u T;y,f) (Zp"”T’““z)
j=1 j=1

Jj=1

Summing these two inequalities, we deduce the second inequality in (2.8).

Finally, on utilizing the Hélder inequality

ab +cd < (a’ + c"’)l/p(bq + d")”q, a,b,c,d >0,
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where p > 1 and 117 + é =1, we have

n ¥/ on I-a n a sy, 1-a
(Zp,||T,x||2) (ijl|T,»*yH2> +<Zp/||T,»*y||2> (Zp,||T,x||2)
j=1 j=1 j=1 j=1

l-a

n n o n n
< (Zp,||T,x||2 +> o T,*y||2> (Zp,||T,x||2 > o T,*y||2>
j=1 j=1 j=1 j=1
n n 2
=Y Tl + > | Ty
j=1 J=1

and the proof is concluded. O

Remark 2.2 For o = 5, we get from (2.8) that

1
2

> il T
j=1

" " V2, 1/2
<> BTl | Ty < (Zp,«nT,an) (prH T;*y||2)
j=1

1 1
1 n
<5 2 (1T + [ 775]7) (215)
j=1

for any x,y € H with |lx|| = [ly]| = 1.

3 Inequalities for functions of normal operators

Now, by the help of power series f(z) = Y .- a,z", we can naturally construct another
power series which will have as coefficients the absolute values of the coefficient of the
original series, namely, f4(z) := Y .- la,|2". It is obvious that this new power series will
have the same radius of convergence as the original series. We also notice that if all coef-
ficients a, > 0, then f4 =f.

As some natural examples that are useful for applications, we can point out that if

2., T:2 z€ D(0,1);
g(2) = ni:: ((;}17); 2" =cosz, zeC;
(3.1)
h(z) = g{; (2(n 1+)1)'22n+1 =sinz, zeGC;
I(z) = i(—l)”z” = i, z € D(0,1),

n=0
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then the corresponding functions constructed by the use of the absolute values of the
coefficients are as follows:

=1, 1
ﬁq(z)zzzz :lnl_ , z€D(0,1);
n=1
= 1 2n
gA(z)=Z(2 )‘z =coshz, zeC;
n).
”;) (3.2)
1 2n+1 :
= " =sinhz, ;
hu(z) Z(2n+1)!z sinhz, zeC

n

1]
(=}

= 1
lA(Z) = E Z" = E, VAS D(O, 1).
n=0

The following result is a functional inequality for normal operators that can be obtained
from (2.1).

Theorem 3.1 Let f(z) = Y .-, anz" be a function defined by power series with complex
coefficients and convergent on the open disk D(0,R) C C, R > 0. If N is a normal operator

on the Hilbert space H, for a € (0,1), we have that |N||**, |N|>"-% < R, then we have the
inequality

1
)| = LA NP+ fa V) o)
(U (INP) + £ (INPP) ]y, )2 (3.3)
forany x,y € H. In particular, if |N|| < R, then
@0 )] = (fa (N T)s) (a (N1} (34)
forany x,y € H.
Proof If N is a normal operator, then for any j € N, we have that
IN/|* = (N*N) = INJY.

Now, utilizing the inequality (2.9), we can write

(e <> iallns]
j=0 Jj=0

n |N|2j01 + |N|2j(1—a) 12
< Zld,'I(f)x,x

Jj=0

n |N|2jo¢ + |N|2j(l—o¢) 12
x Z|“i|(f)y’y (3.5)

j=0
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for any x,y € H and n € N. Since |N||**, N>~ < R, then it follows that the series

> la;|(IN|**Y and PR |a;|(IN|>1-*)Y are absolute convergent in B(H), and by taking

the limit over # — o0 in (3.5), we deduce the desired result (3.3). a

Remark 3.1 With the assumptions in Theorem 3.1, if we take the supremum over y € H,

llyll =1, then we get the vector inequality

>1/2

0] = S ([ (NP + £ INPE) rx

X [fa(INT=) + fa (INPE) [ (3.6)

for any x € H, which in its turn produces the norm inequality

1

o) <3

L (INT) + fa (INT2) | (3.7)

for any « € [0,1]. Making use of the examples in (3.1) and (3.2), we can state the vector

inequalities

|(ln(1H + N)‘lx,y)|

< H0n(L = NP 5 In1y - INPO9) )

=2
x ([In(1 - |N|2a)71 +In(1y - |N|2(1—a))*1]y’y)1/2, .
and
[((Ler + N) L, )|
= %q(l” —INP) ™+ (L = INP200) M,
<AL= INP#) ™ (= INPO) ) (3.9)

for any x,y € H and ||N|| < 1. We also have the inequalities

|(sin(@N), y)| < %([sinh(|N|2°‘) + sinh(|N|2(l‘°‘>)]x,ac)l/2

x ([sinh(IN1?®) + sinh(IN]20-2)) ]y, )" (3.10)
and
’(cos(N)x,yH < %([cosh(lleo‘) + cosh(|N|2(1_"‘))]x,x)l/2
X ([cosh(|N|2°‘) + cosh(|N|2(1_‘)‘))]y,y)1/2 (3.11)

for any x,y € H and N a normal operator.
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If we utilize the following function as power series representations with nonnegative
coefficients:

n=0
1 [(1+z) — 1
=1 = =l € D(0,1);
2n(1—z> 2" 2€D(0,1)
n=1
. T(n+d)
-1 2 2n+1
sin(2) =Y ————2—2"", zeD(0,1); (3.12)
o V7 R2n+1)n!
o0
1
tanh™!(z) = Z — 21 2eD(0,1);
s 2n+1
oo

I'(n+a)(n+ ﬁ)F(y)Zn
nT(e)C(Brm+y)

2Fi(a, By,2) =) @, B,y >0, ze D(0,1),
n=0

where I is the gamma function, then we can state the following vector inequalities:

([exp(IN1*) + exp(IN >~ ], x>1/2

N =

|(exp(N )x, y)| =<

1/2

X ([exp(|N|2“) + exp(|N|2(1_°‘))]y,y) (3.13)

for any x,y € H and N a normal operator. If || N|| < 1, then we also have the inequalities
(i v)=)
In X,y
1y—N
1 14 + [N 1y + N0 12
<—{|In +1n X, X
2\ \ 1y - INP= 1 - INP0)

1y + N> 1y + N2 2
X <|:ln<m +In W vy » (3.14)

| <tanh_1 (N)x, y> |

< %([tanh"1(|N|2°‘) + tanh ™ (N 200) |, ) "2
1/2

x ([tanh™ (IN[**) + tanh™ (IN*0=)) ]y, 5) (3.15)
and
|(2F1(Ol, /31 y;N)xry)’
1
< S{LA@B Y, INP®) +2 Fi(w, By, INPE) ], x)"?
x ([,E1 (e, B, 7, INI*) +2 i (a, B, 7, IN X9 ]y, ) (3.16)

for any x,y € H. From a different perspective, we also have
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Theorem 3.2 With the assumption of Theorem 3.1 and if N is a normal operator on the
Hilbert space H and z € C such that |N||?, |z|? < R, then we have the inequalities

|(f(zN)x,y>|2 < %ﬂx(IZIZ)[VA(|N|2)x,x>a<fA(|N|2)}’»3’>1_a
+{fa (lle)x,x)l_a(fA(|N|2)J’,J’>a]
< —fa(121?) ({fa (INP)x 2) + {£a (IN1),5)) (3.17)

N =

forany x,y € H with ||x|| = |ly|l =1 and « € [0,1]. In particular, for o = %, we have

[ @NY,9)|” < (122 (NP ), ) 2 {fa (IN12) 9,9
fa(121%) (fa (IN1?)x2) + (fa (IN1%)2, 7)) (3.18)

| =

=

N

Sorany x,y € H with ||x| = ||yl =1

Proof If we use the second and third inequality from (2.8) for powers of operators, we have

12;: la;1|(N/x, 5)|*
% [(Z 1[N ) (; ol (N*)”y||2)la
; (g'“’l||w“2> - (; il (N*),y“2>a]

n

1

<5 2 lal([Nx]” + (Y ) (3.19)
=0
for any x,y € H with ||x|| = ||y|| =1 and « € [0,1]. Since N is a normal operator on the
Hilbert space H, then

|Nx]* = (|N7] 2, ) = (IN %, )
and
Yy = (1N o) = (IN*3.9) = (IN1Py, )

for anyj € {0,...,n} and for any x,y € H with ||x| = ||y|| = 1. Then from (3.19), we have

>l (N,
j=0

< % [<</ZO |a,»||N|2fx,x>)a <<,Zo |a,»||N|2"y,y>>M
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((Fr) (o))

< % (<Z || |N|2fx,x> + <Z || |N|2"y,y>) (3:20)

Jj=0 Jj=0

for any x,y € H with ||x|| = ||| =1 and « € [0,1]. By the weighted Cauchy-Buniakowski-
Schwarz inequality, we also have

2 n n
=S lgll=” Y lal| (N, 5) (3.21)
j=0 j=0

<Z a,«szjx,y>
j=0

for any x,y € H with ||x| = ||y| = 1.
Now, since the series > = a;Z N/, 3%, |aj| 2|7, Z;fo |laj|IN|% are convergent, then by
(3.20) and (3.21), on letting n — 0o, we deduce the desired result (3.17). (N

Similar inequalities for some particular functions of interest can be stated. However, the
details are left to the interested reader.

4 Applications for the Euclidean norm

In [29], the author has introduced the following norm on the Cartesian product B (H) :=
B(H) x - - - x B(H), where B(H) denotes the Banach algebra of all bounded linear operators
defined on the complex Hilbert space H:

(T, T, ::( sup  AMTi+ -+ A, Tl (4.1)

where (T4,...,T,) € B?(H) and B, := {(A,...,A,) € C”| 27:1 |)\,f|2 < 1} is the Euclidean
closed ball in C”.
It is clear that || - |, is a norm on B (H) and, for any (T1,..., T,) € B (H), we have

I(Ty,.... T, = |(T5,-... T})

e’

where T} is the adjoint operator of T}, j € {1,...,n}. We call this the Euclidean norm of an
n-tuple of operators (T4, ..., T,) € B"(H).

It has been shown in [29] that the following basic inequality for theEuclidean norm holds
true:

. } }

v DL

j-1

<|(Ty,....T)|, < (4.2)

n
ek
j=1

for any n-tuple (73,...,T,) € B"(H) and the constants ﬁ and 1 are best possible.
In the same paper [29], the author has introduced the Euclidean operator radius of an
n-tuple of operators (T1,..., T,) by

1
2

We(T1,..., Ty) := sup (Z|(zj,x)|2) (4.3)
j=1

llxll=1
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and proved that w,(-) is a norm on B (H) and satisfies the double inequality

§H<Tb~-~Tn>||e <w(Toe s T) < | (T T)| (4.4)

e

for each n-tuple (T1,..., T,) € B (H).
As pointed out in [29], the Euclidean numerical radius also satisfies the double inequality

<W(Th,...,Ty) < (4.5)

n 2
Pkl
j=1

for any (Ty,..., T,) € B” (H) and the constants ﬁ and 1 are best possible.
In [30], by utilizing the concept of hypo-Euclidean norm on H", we obtained the follow-
ing representation for the Euclidean norm.

Proposition 4.1 For any (T\,...,T,) € B"(H), we have

|(Ty,...., T, = sup <Z| (Tiy,%) > (4.6)

Iyll=1, \Ix\l 1
We can state now the following result.

Theorem 4.1 For any (T,...,T,) € B (H), we have

o n l1-a
ol ([ ) (5]
j=1
n l-a n o
([5l) ([55mr])
j=1 j=1
1 “ 2
S§|: j=1 :| (4‘7)

oI

WZ(TI’ ooy T}'l)

el () (=)
() () |
[ ()
([Ee]) (]

forany o € [0,1].

Page 12 of 16
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Proof We have from the second inequality in (2.8)

g ()
(fx ) (i) | "

for any x,y € H with ||x|| = ||y|| =1 and « € [0, 1]. Taking the supremum over ||x| = ||y|| =1,
we have

Ty, T

[ (quP1<g: | lezx,x>) a <|SyuP1<,Z;:| 7'y, y>) h
+ <||§clﬁ§1< ; IT/IZx,x>)l_a (Syﬁgl<g:|T;*|2y’y>>a}
:%[( jilmf )( jilm*f >1a+< jilmﬁ )1< ”

which proves the first part of (4.7). The second part follows by the elementary inequal-
ity

=

N =

n
ek
j=1

a’b™ <aa+(1-a)b

for a,b > 0 and « € [0,1]. The inequality (4.8) follows from (4.9) by taking y = x and then
the supremum over ||x| = 1. O

5 Applications for s-1-norm and s-1-numerical radius
Following [20], we consider the s-p-norm of the n-tuple of operators (Ty,..., T;,) € B" (H)
by

”(Tl"“’Tn)Hs,p:: sup |:<Z|(ij,x>|1’> :| (5.1)

Iyi=tisi=1] \ o

For p =2, we get

Ty, T, = [T, T,

e

We are interested in this section in the case p = 1, namely, on the s-1-norm defined by

[Ty T = sup 3 [(Tpa)].

Iy lI=Lllxll=1 "y


http://www.journalofinequalitiesandapplications.com/content/2013/1/21

Dragomir et al. Journal of Inequalities and Applications 2013, 2013:21 Page 14 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/21

Since for any x,y € H we have Z;’ZI Ty, x)| > | <Z;l:1 T;y,%)|, then by the properties of the

supremum, we get the basic inequality

YT
j=1

< (T, T, < DT (5.2)
j=1

Similarly, we can also consider the s-p-numerical radius of the n-tuple of operators
(Ty,...,T,) € B”(H) by [20]

: :
Wsp(T1,..., Tp) = sup |:<Z‘(zj,x) ‘p> :|, (5.3)
j=1

which for p = 2 reduces to the Euclidean operator radius introduced previously.
We observe that the s-p-numerical radius is also a norm on B"(H) for p > 1, and for

p =1 it satisfies the basic inequality

W(Z T}) Sws,l(Tlr---an) = ZW(T]) (54)

j=1 j=1
We can state the following result.

Theorem 5.1 Forany (T\,...,T,) € B"(H), we have

[T T,

172 1/2
i(|T,»|2“+|T,-|2<1-“>) é <IT}*IZ“+IT;*I2““”>
pn 2 = 2
1] (|T,»|2a+|T,»|2<1-“>>H d (lT;*|2“+|T,'*|2<l-a>>H}
<M (BT s (s (55)
2[ pn 2 = 2
and
n 2a 2(1-a) | 200 *12(1-ar)
|T51% + | Tj] +TF1™ + |17
wer(Th, ..., Ty) < 21:( 2 ! ’ > : (5.6)
i=
Proof From (2.1) we have
172
n n |2 12(1-a)
|T;1** +|T;]
Z\(T;x,y)] §<Z(— %%
j=1 j=1 2
n 2u #2(1-ar) 1/2
[T % + | T
x <Z(%)y,y (57)
j=1

for any x,y € H.
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Taking the supremum over ||y|| =1, ||x|| =1 in (5.7), we have
||(T1, e Ty,)HS’1 < |:sup<

" 12
Z(|T}|2a + |Tj|2(1a))
—_— X, X
lall=1 2

1/2
n |T?t<|2a + |T'*|2(1_a)
x | sup Z(—’ 2’ )y,y
llyll=1 j=1

1/2
i |T}|2a + |T}|2(1—01)
2

Jj=1

1/2

T + |T,*|2““>)
X _—

(5

Jj=1

and the first inequality in (5.5) is proved. The second part follows by the arithmetic mean-
geometric mean inequality.

Now, if we take ¥ = x in (5.7), then we get

n n | 2a 12(1-) 172
Z|(7}x,x)| < <Z<%)x,x>
j=1

j=1

n * |20 % 12(1-a) 1/2
|TF P+ T
X E —_— X, X

j=1
1/ (TP + | TP 4 | TP+ | T PO
<= X, X ).
5{2( ) )

Taking the supremum over |x|| =1, we deduce the desired result (5.6). O

Remark 5.1 If we take a = % in the first inequality in (5.5), then we deduce

172 1/2

|(T,.... T, < , (5.8)

n
> IT
j=1

Yol
j=1

and then we get the following refinement of the generalized triangle inequality:

1/2 1/2

< (1. TY)|,, <

1
< =
=3

From (5.6) we also have, for « = %,

" T+ | T
Z(l ,|+2| ,|)H. (5.9)

Jj=1

n
2T
j=1

n
>_IT|
j=1

n
Y77
j=1

n

> 1T

Jj=1

n

YT

Jj=1

+

}sZnT,n.
j=1

Ws,l(Tl: e Tn) =<
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