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Abstract

In this research article, we introduce a new iterative method for solving a fixed point
problem of continuous functions on an arbitrary interval. We then prove the
convergence theorem of the proposed algorithm. We finally give numerical examples
to compare the result with Mann, Ishikawa and Noor iterations. Our main results
extend the corresponding results in the literature.
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1 Introduction
Let C be a closed interval on the real line and let f : C — C be a continuous function.
A point p € C is called a fixed point of f if f(p) = p.

One classical way to approximate a fixed point of a nonlinear mapping was introduced

in 1953 by Mann [1] as follows: a sequence {x,} defined by x; € C and

K1 = (L — )%y + artf(xn) (L1)

for all » > 1, where {«,} is a sequence in [0,1]. Such an iteration process is known as
Mann iteration. In 1991, Borwein and Borwein [2] proved the convergence theorem for a
continuous function on the closed and bounded interval in the real line by using iteration
(1.1).

Another classical iteration process was introduced by Ishikawa [3] as follows: a sequence
{x,} defined by x; € C and

Vn =1 = Bu)xn + Buf (%),
Xn+l = (1 - an)xn + ar(f(yn)

(1.2)

for all # > 1, where {«,} and {8, } are sequences in [0, 1]. Such an iterative method is known
as Ishikawa iteration. In 2006, Qing and Qihou [4] proved the convergence theorem of the
sequence generated by iteration (1.2) for a continuous function on the closed interval in
the real line (see also [5]).
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In 2000, Noor [6] defined the following iterative scheme by x; € C and

zn = (1= wn)n + pnf (%),
Vn = 1= Bu)xn + Buf (), (1.3)
Xns1 = (1= )y + o f ()
for all n > 1, where {«,}, {8,} and {u,} are sequences in [0,1]. Such an iterative method
is known as Noor iteration. Phuengrattana and Suantai [7] considered the convergence of
Noor iteration for continuous functions on an arbitrary interval in the real line.
In this paper, motivated by the previous ones, we introduce a new modified iteration
process for solving a fixed point problem for continuous functions on an arbitrary interval

in the real line. Numerical examples are also presented to compare the result with Mann,
Ishikawa and Noor iterations.

2 Main results

We begin this section by proving the following crucial lemmas.

Lemma2.1 Let C be a closed interval on the real line (can be unbounded) and letf : C — C
be a continuous function. Let {a,}, {Bu}, {ttn}, {yu} and {t,} be sequences in [0,1] with
0<t,+B,<land0 <y, +a, <1 Let{x,} be a sequence generated iteratively by x; € C
and

Zy = (1 — o)X, + Mnf(xn)r
In = (1= 70 = Bu)xn + Tuzn + ,an(zn): (2.1)
KXner = (L= Y — )z + VYnYn + ar{f()’n)r n>1,

where Y o2 oy =00, lim, 0oy =0, > o) By <00 and Yy ooy iy < 0.
If %, — a, then a is a fixed point of f.

Proof Let x, — a and suppose a #f(a). Then {x,} is bounded. So, {f(x,)} is bounded by
the continuity of f. So are {y,}, {z.}, {f(y.)} and {f(z,)}. Moreover, z, — a since x, — a
and p, — 0. We also have y,, — a since z, — a and B, — 0.

From (2.1) we obtain

%ns1 = (L= Vi = )20 + VY + f (V)

= 2y + YuOn = 22) + 2 (F9) — 2)

= (1= ) + tnf %) + YaOn = 20) + 0 (f ) — 20

= %n + Mo (f (%) = %) + VO = Zn) + 2 (f On) — 20

= % + W (f %) = %) + V(1= Tw = Bu) %0 — 20) + Bu(f (20) — 21))
+ @ (f () = 2n)

= %+ o (f () = %) + Vi (L= T = Bt (%0 = f (%)) + B (f (24) — 20))
+ @ (f ) = 2n)
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=Xnt Un (1 —¥u(l =7 — ﬂn)) (f(xn) _xn) + ynﬁn(f(zn) - Zn)
+ 0 (f () — Zn). (2.2)

Let pi = f (%) — %k, qi = f(zk) — zx and r = f(yx) — zk. Then we observe

Jim py = lim (£(xc) - 2¢) =f (@) - a #0,
kli)fgo Gk = nanolo(f(Zk) —z) =f(a)-a#0,

dim 7 = nli}go(f()/k) -zx) =f(a)-a#0.

So, from (2.2) we obtain

Xy = X1 + Z (1= e = i = Bio)) (F (ex) — ) + Z YieBr(f (zx) — k)

k=1 k=1

+ Z ar(f k) — z«)
P

n n n
=m+ Y (U= v == B)p+ Y veBrdi + ) _ o
k-1 k-1

k=1

It is easy to see that Y o) ux(1 — yi(1 — T — Bi))pi < 00 since limy_ oo px 7 0 and >_po; ik <
0. Similarly, we have Y72, yxBrqk < 00 since limg_.o0 gk # 0 and Y oy Bi < 00. This shows
that {x,} is a divergent sequence since limy_.o, 7% # 0 and Y -, & = 0o. This contradicts
the convergence of {x,}. Hence f(a) = a and a is a fixed point of f. O

Lemma2.2 Let C bea closed interval on the real line (can be unbounded) and letf : C — C
be a continuous function. Let {&,}, {Bu}, {ttn}, {yu} and {t,} be sequences in [0,1] with
0<t,+By<land0 <y, +a, <1. Let{x,} be a sequence generated iteratively by x, € C

and

Zn = (L= pn)%n + fnf (Xn),
Yn = (1 —Tn— ,Bn)xn + TyZy + ,Brtf(zn):
Xne1 = L= Vo — )20 + VuYn + 0 f On)y 1 >1,

[e¢] . o] [e¢]
where )~ =00, lim, 000ty =0, " Bu<00and )y " fy < 0.

If {x,,} is bounded, then {x,} is convergent.

Proof Suppose {x,} is not convergent. Let 4 = liminf, x, and b = limsup, x,,. Then a < b.
We first show that if a < m < b, then f(m) = m. Suppose f(m) # m. Without loss of gener-
ality, we suppose f(m) —m > 0. Since f is continuous, there exists § with 0 < § < b —a such
that for |x — m| <8,

flx)—x>0.
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Since {x,} is bounded and f is continuous, {f(x,)} is bounded. Hence {z,}, {y.}, {f (z4)} and
{f (9,)} are all bounded. Using

KXnl —Xp = (1 —Vn— an)(zn _xn) + yn(yn _xn) + oy (f()/n) _xn)r
Yn—%Xn = Tn(zn _xn) + ﬂn(f(zn) _xn);
Zn —%n = (f(xn) - xn)’

we can easily show that |z, —x,| = 0, |y, —x,| — 0 and |x,,1 —x,| — 0. Thus there exists
a positive integer N such that for all v > N,

1) 1) 8
|xn+l_xn|<§: |yn_xn|<§! |Zn_xn|<§' (23)

Since b = limsup,, x, > m, there exists k; > N such that Xy > M. Let ny, = k, then x; > m.
For xy, there exist two cases as follows.
() x> m + &, then 1 > % — £ > m using (2.3). So, we have xi,; > m.
2 2 g
ii)m<ag<m+d,thenm—S <yr<m+8andm—2 <z, <m+8 by (2.3). So, we obtain
2 2 <J 2 Y
|xx — m| < % <48, |yxk —m| <4, |zx —m| < 8. Hence

So)—x>0,  fOr)-y>0,  flzx)—z>0. (2.4)

We observe that

Vi — zk = (L— T — Bk — zi) + Bi(f (@) — 2x)
= (1= 7 = Bi) (k= f (1)) + B (f () — k). (2.5)

From (2.2), (2.4) and (2.5), we have

par =k + (1= (L= 7 = Bi)) (F (i) — ) + veBie(f (2) — zx)
+ o (f(yk) - Zk)
= xp + (L= v = 7 = Br)) (f (k) — x) + vaBie (f (2) — 2x)
o (FO1) = ) + ol - z0)
= x + (L= v = 7 = Br)) (f (k) — &) + va B (f (2x) — 2k)
+ ok (f k) = k) + o (i@ = T = Br) (xx — f (%)) + Bie(f (2) — zx))
=i+ (L — (v + ) (X = 7 = B)) (f (i) — ) + o (f ) — )
+ Br(yi + o) (f (21) — z)
> X
Thus %, > % > 7. From (i) and (ii), we have xg,1 > 1. Similarly, we get that xc, > 1,
Xk+3 > m,.... Thus we have x,, > m for all n > k = ny,. So, a = limy_, c X, > m, which is a

contradiction with a < m. Thus f(m) = m.
We next consider the following two cases.
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(i) There exists x;; such that a < xp; < b. Then f(x1) = xas. It follows that

zp = (L= pan)xpr + peatf (ar) = X

and

yum = (L= Ty — Ba)xm + Tmazum + Buf (zar)
= (1 -ty — Ba)xar + Tarxar + Baaf (Xar)

=XM-.
Hence, we obtain

a1 = (U= var —oan)zar + Yaaysn + of V)
= (1 - yar — am)xar + Yarxm + cf (xar)
=XM.
Similarly, we obtain x5; = %141 = %042 = - - . So, we conclude that x,, — x;,. Since there
exists x,, — a, ¥y = a. This shows that x,, — a, which is a contradiction.
(ii) For all n,x, < a or x, > b. Since b — a > 0 and lim,,_, o |%:1 — %4| = 0, there exists N
such that |x,,.1 — x| < @ for n > N. So, it is always that x,, < a for n > N; or it is always
thatx, > bforn>N.Ifx, <aforn>N,then b =lim,_, %4, < a, which is a contradiction

witha < b.Ifx, > bforn > N, then a = limy_ o, %4, = b, whichisa contradiction with a < b.
Thus we conclude that x,, — a. This completes the proof. 0

We are now ready to prove the main results of this paper.

Theorem 2.3 Let C be a closed interval on the real line (can be unbounded) and let f
C — C be a continuous function. Let {o,}, {Bu}, {tn}, {yn} and {t,} be sequences in [0,1]
with0<t,+B,<land 0 <y, +a, <1. Let {x,} be a sequence generated iteratively by
x, € C and

Zp = (L= pn)x, + Mnf(xn)»
Yn = (1-1— Br)%n + Tuzy + ﬁnf(zn):

KXner = (L= Y — 0tz + YnYn t anf()’n): n>1,

where Y 2 a, =00, lim, 000y =0, Y o) Bu<00and Yy 21 py < 0.
If {x,,} is bounded, then {x,} converges to a fixed point of f.

Proof Let {x,} be a bounded sequence. Then, by Lemma (2.2), {x,} is a convergent se-
quence. Hence, by Lemma (2.1), it converges to a fixed point of f. 0

As a direct consequence of Theorem 2.3, we obtain the following result.

Theorem 2.4 Let C be a closed interval on the real line (can be unbounded) and let f

C — C be a continuous function. Let {o,}, {Bn}, {tn}, {yn} and {t,} be sequences in [0,1]
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with0<t,+B,<land 0 <y, +a, <1. Let {x,} be a sequence generated iteratively by
x1 € Cand

Zy = (1 - /'Ln)xn + Mnf(xn):
Vn =1 =Tu = Bu)xn + Tuzn + Buf (21),
K1 = (1 - VYn — )z, + VYnYn t ar{f()’n)r n>1,

where Y o2 oy =00, limy, 0oy =0, > o) By <00 and Yy ooy [y < 00.
Then {x,} converges to a fixed point of f if and only if {x,} is bounded.

Corollary 2.5 Letf: [a,b] — [a,b] be a continuous function. Let {a,,}, { B}, {ttn}, {yn} and
{z,.} be sequences in [0,1) with 0 <t, + 8, <1land 0 <y, + o, <1. Let {x,} be a sequence
generated iteratively by x, € [a,b] and

Zn = (L= pn) % + fnf (%),
Yn =1 =Ty = Bu)%u + Tuzu + Buf (2),
KXn+l = (1 —VYn— an)zn t VuYn t Olnf()/n), n= L

where Y o ay =00, lim, 000, =0,y o) Bu<00and Yy oy fy < 00.
Then {x,} converges to a fixed point of f.

If we take t, = y, = 0, then we obtain the following result.

Corollary 2.6 Let C be a closed interval on the real line (can be unbounded) and let f
C — C be a continuous function. Let {o,}, {B,} and {u,} be sequences in [0,1]. Let {x,} be
a sequence generated iteratively by x, € C and

Zy = (1 - /Ln)xn + Mnf(xn)r
Yn = (1 - /gn)xn + ﬂr(f(zn);
X1 = M =)zn + o f (), n=1,

where Y 21 a, =00, limy 000y =0, Y o) Bu<00and Yy 21 fy < 00.
Then {x,} converges to a fixed point of f if and only if {x,} is bounded.

If we take 7, + B, =1 and y, + o, = 1, then we obtain the following result.

Corollary 2.7 Let C be a closed interval on the real line (can be unbounded) and let f
C — C be a continuous function. Let {,}, {Bn} and {u,} be sequences in [0,1]. Let {x,} be
a sequence generated iteratively by x; € C and

Zn = (L= )%y + fnf (x),
Yn = 1- ﬂn)zn + ﬁr(f(zn)»

KX = (1 — an)yn + anf()’n)x n>1,
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[e¢] . o] [e¢]
where )~ a, =00, lim, 000ty =0, " Bu<00and Y~ by < 0.

Then {x,} converges to a fixed point of f if and only if {x,} is bounded.

Remark 2.8 Corollary 2.7 extends the main result obtained in [8] from the modified

Ishikawa iteration to the modified Noor iteration.

3 Numerical examples
In this section, we give numerical examples to demonstrate the convergence of the algo-

rithm defined in this paper. For convenience, we call the iteration (2.1) the CP-iteration.

Example 3.1 Letf: [1,00) — [1,00) be defined by f(x) = +/0.9Inx + 1. Then f is a con-

tinuous function. Use the initial point x; = 3 and the control conditions «, = W’

__1 -1 - L =1
Bn = (n+1)25” Hn = (n+1)15”7 T = and y, = 7°

Table 1 Comparison of the convergence rate of Mann, Ishikawa, Noor and CP iterations for
the function given in Example 3.1

n Mann Ishikawa  Noor CP-iteration
Xn Xn Xn Xn [f(x,) = Xn|
1 3.000000  3.000000 3.000000  3.000000 1.589769
10 1.074110  1.071538 1.071437 1.043308  0.024408

20 015478 1.014946 1.014925  1.008428  0.004658
30 004821 1.004656 1.004650  1.002531  0.001394
40 001822 1.001760 1.001757  1.000934  0.000514
50 000777 1.000750 1.000749  1.000392  0.000216

1
1
1
1
60  1.000360  1.000348 1.000348  1.000180  0.000099
1
1
1
1

70 000178  1.000172 1.000172  1.000088  0.000048

80 000093  1.000089 1.000089  1.000045  0.000025

90 000050  1.000048 1.000048  1.000024  0.000013

100 000028  1.000027 1.000027  1.000014  0.000007

2 T T T T T
19 —+—Mann 1
—+—Ishikawa
—+—Noor
1er —+— CP-iteration T
1.7F —
16 -
15 —
141 —
13 —
12 —
11 —
1 1 ¥ i A 1
0 10 20 30 40 50 0
Figure 1 Convergence behavior of Mann, Ishikawa, Noor and CP iterations for the function given in
Example 3.1.
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Table 2 Comparison of the convergence rate of Mann, Ishikawa, Noor and CP iterations for
the function given in Example 3.2

n Mann Ishikawa  Noor CP-iteration
Xn Xn Xn Xn [f(xp) - Xnl
1 5000000  5.000000  5.000000 5.000000  2.363932
10 1.529828  1.504824 1.501931 1.359649  0.073668

20 1293319  1.284893 1283943 1.224654  0.023218
30 1.223891 1.219794  1.219335  1.187049  0.011033
40 1.193599 1191253 1.190991  1.171120  0.006204
50 1177752 1.176279 1176115  1.162994  0.003827
60 1168542  1.167561 1.167452  1.158380  0.002505
70 1162807  1.162126 1.162050  1.155568  0.001710
80 1159055  1.158568  1.158513  1.153766  0.001205
90  1.156509  1.156152 1156112 1.152565  0.000870
100 1.154730  1.154463 1154433 1.151740  0.000641
110 1.153458  1.153255 1.153233  1.151160  0.000480
120 1.152530 1152374 1.152357  1.150743  0.000365
130 1.151842  1.151721 1.151707  1.150438  0.000281
140 1151325 1151230 1.151219  1.150212  0.000218
150 1.150931  1.150856 1.150847  1.150042  0.000171
160 1.150628 1150568  1.150561  1.149912  0.000136
170 1.150393  1.150345 1.150339  1.149813  0.000108
180  1.150209 1150169  1.150165  1.149735  0.000087
190  1.150063  1.150031 1.150027  1.149675  0.000070
200 1149947 1.149920  1.149918  1.149627  0.000057

——+—Mann
—+— Ishikawa

—+— Noor

—+— CP-iteration

1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160

Figure 2 Convergence behavior of Mann, Ishikawa, Noor and CP iterations for the function given in
Example 3.2.

Example 3.2 Let f : [1,00) —> [1,00) be defined by f(x) = 0.24/x — 1 + 4/x. Then f is a

continuous function. Use the initial point x; = 5 and the control conditions «,, =

- _1 __1 -1 -1
Bn = Gz Mo = Gt T = g and v = 5.

_1
(n+1)0-5”

Remark 3.3 From Table 1, Figure 1, Table 2 and Figure 2, we observe that the sequence
generated by the CP-iteration converges to a fixed point faster than that of Mann, Ishikawa
and Noor iterations.
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