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Abstract
In this research article, we introduce a new iterative method for solving a fixed point
problem of continuous functions on an arbitrary interval. We then prove the
convergence theorem of the proposed algorithm. We finally give numerical examples
to compare the result with Mann, Ishikawa and Noor iterations. Our main results
extend the corresponding results in the literature.
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1 Introduction
Let C be a closed interval on the real line and let f : C → C be a continuous function.
A point p ∈ C is called a fixed point of f if f (p) = p.
One classical way to approximate a fixed point of a nonlinear mapping was introduced

in  by Mann [] as follows: a sequence {xn} defined by x ∈ C and

xn+ = ( – αn)xn + αnf (xn) (.)

for all n ≥ , where {αn} is a sequence in [, ]. Such an iteration process is known as
Mann iteration. In , Borwein and Borwein [] proved the convergence theorem for a
continuous function on the closed and bounded interval in the real line by using iteration
(.).
Another classical iteration process was introduced by Ishikawa [] as follows: a sequence

{xn} defined by x ∈ C and

yn = ( – βn)xn + βnf (xn),

xn+ = ( – αn)xn + αnf (yn)
(.)

for all n≥ , where {αn} and {βn} are sequences in [, ]. Such an iterativemethod is known
as Ishikawa iteration. In , Qing andQihou [] proved the convergence theorem of the
sequence generated by iteration (.) for a continuous function on the closed interval in
the real line (see also []).
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In , Noor [] defined the following iterative scheme by x ∈ C and

zn = ( –μn)xn +μnf (xn),

yn = ( – βn)xn + βnf (zn),

xn+ = ( – αn)xn + αnf (yn)

(.)

for all n ≥ , where {αn}, {βn} and {μn} are sequences in [, ]. Such an iterative method
is known as Noor iteration. Phuengrattana and Suantai [] considered the convergence of
Noor iteration for continuous functions on an arbitrary interval in the real line.
In this paper, motivated by the previous ones, we introduce a new modified iteration

process for solving a fixed point problem for continuous functions on an arbitrary interval
in the real line. Numerical examples are also presented to compare the result with Mann,
Ishikawa and Noor iterations.

2 Main results
We begin this section by proving the following crucial lemmas.

Lemma. Let C be a closed interval on the real line (can be unbounded) and let f : C → C
be a continuous function. Let {αn}, {βn}, {μn}, {γn} and {τn} be sequences in [, ] with
 ≤ τn + βn ≤  and  ≤ γn + αn ≤ . Let {xn} be a sequence generated iteratively by x ∈ C
and

zn = ( –μn)xn +μnf (xn),

yn = ( – τn – βn)xn + τnzn + βnf (zn), (.)

xn+ = ( – γn – αn)zn + γnyn + αnf (yn), n≥ ,

where
∑∞

n= αn = ∞, limn→∞ αn = ,
∑∞

n= βn < ∞ and
∑∞

n= μn < ∞.
If xn → a, then a is a fixed point of f .

Proof Let xn → a and suppose a �= f (a). Then {xn} is bounded. So, {f (xn)} is bounded by
the continuity of f . So are {yn}, {zn}, {f (yn)} and {f (zn)}. Moreover, zn → a since xn → a
and μn → . We also have yn → a since zn → a and βn → .
From (.) we obtain

xn+ = ( – γn – αn)zn + γnyn + αnf (yn)

= zn + γn(yn – zn) + αn
(
f (yn) – zn

)

= ( –μn)xn +μnf (xn) + γn(yn – zn) + αn
(
f (yn) – zn

)

= xn +μn
(
f (xn) – xn

)
+ γn(yn – zn) + αn

(
f (yn) – zn

)

= xn +μn
(
f (xn) – xn

)
+ γn

(
( – τn – βn)(xn – zn) + βn

(
f (zn) – zn

))

+ αn
(
f (yn) – zn

)

= xn +μn
(
f (xn) – xn

)
+ γn

(
( – τn – βn)μn

(
xn – f (xn)

)
+ βn

(
f (zn) – zn

))

+ αn
(
f (yn) – zn

)
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= xn +μn
(
 – γn( – τn – βn)

)(
f (xn) – xn

)
+ γnβn

(
f (zn) – zn

)

+ αn
(
f (yn) – zn

)
. (.)

Let pk = f (xk) – xk , qk = f (zk) – zk and rk = f (yk) – zk . Then we observe

lim
k→∞

pk = lim
n→∞

(
f (xk) – xk

)
= f (a) – a �= ,

lim
k→∞

qk = lim
n→∞

(
f (zk) – zk

)
= f (a) – a �= ,

lim
k→∞

rk = lim
n→∞

(
f (yk) – zk

)
= f (a) – a �= .

So, from (.) we obtain

xn = x +
n∑

k=

μk
(
 – γk( – τk – βk)

)(
f (xk) – xk

)
+

n∑

k=

γkβk
(
f (zk) – zk

)

+
n∑

k=

αk
(
f (yk) – zk

)

= x +
n∑

k=

μk
(
 – γk( – τk – βk)

)
pk +

n∑

k=

γkβkqk +
n∑

k=

αkrk .

It is easy to see that
∑∞

k= μk( – γk( – τk –βk))pk < ∞ since limk→∞ pk �=  and
∑∞

k= μk <
∞. Similarly, we have

∑∞
k= γkβkqk < ∞ since limk→∞ qk �=  and

∑∞
k= βk < ∞. This shows

that {xn} is a divergent sequence since limk→∞ rk �=  and
∑∞

k= αk = ∞. This contradicts
the convergence of {xn}. Hence f (a) = a and a is a fixed point of f . �

Lemma. Let C be a closed interval on the real line (can be unbounded)and let f : C → C
be a continuous function. Let {αn}, {βn}, {μn}, {γn} and {τn} be sequences in [, ] with
 ≤ τn + βn ≤  and  ≤ γn + αn ≤ . Let {xn} be a sequence generated iteratively by x ∈ C
and

zn = ( –μn)xn +μnf (xn),

yn = ( – τn – βn)xn + τnzn + βnf (zn),

xn+ = ( – γn – αn)zn + γnyn + αnf (yn), n≥ ,

where
∑∞

n= αn = ∞, limn→∞ αn = ,
∑∞

n= βn < ∞ and
∑∞

n= μn < ∞.
If {xn} is bounded, then {xn} is convergent.

Proof Suppose {xn} is not convergent. Let a = lim infn xn and b = lim supn xn. Then a < b.
We first show that if a <m < b, then f (m) =m. Suppose f (m) �=m. Without loss of gener-
ality, we suppose f (m) –m > . Since f is continuous, there exists δ with  < δ < b– a such
that for |x –m| ≤ δ,

f (x) – x > .

http://www.journalofinequalitiesandapplications.com/content/2013/1/214
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Since {xn} is bounded and f is continuous, {f (xn)} is bounded. Hence {zn}, {yn}, {f (zn)} and
{f (yn)} are all bounded. Using

xn+ – xn = ( – γn – αn)(zn – xn) + γn(yn – xn) + αn
(
f (yn) – xn

)
,

yn – xn = τn(zn – xn) + βn
(
f (zn) – xn

)
,

zn – xn = μn
(
f (xn) – xn

)
,

we can easily show that |zn – xn| → , |yn – xn| →  and |xn+ – xn| → . Thus there exists
a positive integer N such that for all n >N ,

|xn+ – xn| < δ


, |yn – xn| < δ


, |zn – xn| < δ


. (.)

Since b = lim supn xn >m, there exists k > N such that xnk >m. Let nk = k, then xk >m.
For xk , there exist two cases as follows.
(i) xk >m + δ

 , then xk+ > xk – δ
 ≥ m using (.). So, we have xk+ >m.

(ii)m < xk <m+ δ
 , thenm– δ

 < yk <m+ δ andm– δ
 < zk <m+ δ by (.). So, we obtain

|xk –m| < δ
 < δ, |yk –m| < δ, |zk –m| < δ. Hence

f (xk) – xk > , f (yk) – yk > , f (zk) – zk > . (.)

We observe that

yk – zk = ( – τk – βk)(xk – zk) + βk
(
f (zk) – zk

)

= μk( – τk – βk)
(
xk – f (xk)

)
+ βk

(
f (zk) – zk

)
. (.)

From (.), (.) and (.), we have

xk+ = xk +μk
(
 – γk( – τk – βk)

)(
f (xk) – xk

)
+ γkβk

(
f (zk) – zk

)

+ αk
(
f (yk) – zk

)

= xk +μk
(
 – γk( – τk – βk)

)(
f (xk) – xk

)
+ γkβk

(
f (zk) – zk

)

+ αk
(
f (yk) – yk

)
+ αk(yk – zk)

= xk +μk
(
 – γk( – τk – βk)

)(
f (xk) – xk

)
+ γkβk

(
f (zk) – zk

)

+ αk
(
f (yk) – yk

)
+ αk

(
μk( – τk – βk)

(
xk – f (xk)

)
+ βk

(
f (zk) – zk

))

= xk +μk
(
 – (γk + αk)( – τk – βk)

)(
f (xk) – xk

)
+ αk

(
f (yk) – yk

)

+ βk(γk + αk)
(
f (zk) – zk

)

> xk .

Thus xk+ > xk > m. From (i) and (ii), we have xk+ > m. Similarly, we get that xk+ > m,
xk+ >m, . . . . Thus we have xn >m for all n > k = nk . So, a = limk→∞ xnk ≥ m, which is a
contradiction with a <m. Thus f (m) =m.
We next consider the following two cases.
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(i) There exists xM such that a < xM < b. Then f (xM) = xM . It follows that

zM = ( –μM)xM +μMf (xM) = xM

and

yM = ( – τM – βM)xM + τMzM + βMf (zM)

= ( – τM – βM)xM + τMxM + βMf (xM)

= xM.

Hence, we obtain

xM+ = ( – γM – αM)zM + γMyM + αMf (yM)

= ( – γM – αM)xM + γMxM + αMf (xM)

= xM.

Similarly, we obtain xM = xM+ = xM+ = · · · . So, we conclude that xn → xM . Since there
exists xnk → a, xM = a. This shows that xn → a, which is a contradiction.
(ii) For all n,xn ≤ a or xn ≥ b. Since b – a >  and limn→∞ |xn+ – xn| = , there exists N̄

such that |xn+ – xn| < (b–a)
 for n > N̄ . So, it is always that xn ≤ a for n > N̄ ; or it is always

that xn ≥ b for n > N̄ . If xn ≤ a for n > N̄ , then b = liml→∞ xnl ≤ a, which is a contradiction
with a < b. If xn ≥ b for n > N̄ , then a = limk→∞ xnk ≥ b, which is a contradictionwith a < b.
Thus we conclude that xn → a. This completes the proof. �

We are now ready to prove the main results of this paper.

Theorem . Let C be a closed interval on the real line (can be unbounded) and let f :
C → C be a continuous function. Let {αn}, {βn}, {μn}, {γn} and {τn} be sequences in [, ]
with  ≤ τn + βn ≤  and  ≤ γn + αn ≤ . Let {xn} be a sequence generated iteratively by
x ∈ C and

zn = ( –μn)xn +μnf (xn),

yn = ( – τn – βn)xn + τnzn + βnf (zn),

xn+ = ( – γn – αn)zn + γnyn + αnf (yn), n≥ ,

where
∑∞

n= αn = ∞, limn→∞ αn = ,
∑∞

n= βn < ∞ and
∑∞

n= μn < ∞.
If {xn} is bounded, then {xn} converges to a fixed point of f .

Proof Let {xn} be a bounded sequence. Then, by Lemma (.), {xn} is a convergent se-
quence. Hence, by Lemma (.), it converges to a fixed point of f . �

As a direct consequence of Theorem ., we obtain the following result.

Theorem . Let C be a closed interval on the real line (can be unbounded) and let f :
C → C be a continuous function. Let {αn}, {βn}, {μn}, {γn} and {τn} be sequences in [, ]

http://www.journalofinequalitiesandapplications.com/content/2013/1/214
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with  ≤ τn + βn ≤  and  ≤ γn + αn ≤ . Let {xn} be a sequence generated iteratively by
x ∈ C and

zn = ( –μn)xn +μnf (xn),

yn = ( – τn – βn)xn + τnzn + βnf (zn),

xn+ = ( – γn – αn)zn + γnyn + αnf (yn), n≥ ,

where
∑∞

n= αn = ∞, limn→∞ αn = ,
∑∞

n= βn < ∞ and
∑∞

n= μn < ∞.
Then {xn} converges to a fixed point of f if and only if {xn} is bounded.

Corollary . Let f : [a,b]→ [a,b] be a continuous function. Let {αn}, {βn}, {μn}, {γn} and
{τn} be sequences in [, ] with  ≤ τn + βn ≤  and  ≤ γn + αn ≤ . Let {xn} be a sequence
generated iteratively by x ∈ [a,b] and

zn = ( –μn)xn +μnf (xn),

yn = ( – τn – βn)xn + τnzn + βnf (zn),

xn+ = ( – γn – αn)zn + γnyn + αnf (yn), n≥ ,

where
∑∞

n= αn = ∞, limn→∞ αn = ,
∑∞

n= βn < ∞ and
∑∞

n= μn < ∞.
Then {xn} converges to a fixed point of f .

If we take τn = γn = , then we obtain the following result.

Corollary . Let C be a closed interval on the real line (can be unbounded) and let f :
C → C be a continuous function. Let {αn}, {βn} and {μn} be sequences in [, ]. Let {xn} be
a sequence generated iteratively by x ∈ C and

zn = ( –μn)xn +μnf (xn),

yn = ( – βn)xn + βnf (zn),

xn+ = ( – αn)zn + αnf (yn), n≥ ,

where
∑∞

n= αn = ∞, limn→∞ αn = ,
∑∞

n= βn < ∞ and
∑∞

n= μn < ∞.
Then {xn} converges to a fixed point of f if and only if {xn} is bounded.

If we take τn + βn =  and γn + αn = , then we obtain the following result.

Corollary . Let C be a closed interval on the real line (can be unbounded) and let f :
C → C be a continuous function. Let {αn}, {βn} and {μn} be sequences in [, ]. Let {xn} be
a sequence generated iteratively by x ∈ C and

zn = ( –μn)xn +μnf (xn),

yn = ( – βn)zn + βnf (zn),

xn+ = ( – αn)yn + αnf (yn), n≥ ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/214
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where
∑∞

n= αn = ∞, limn→∞ αn = ,
∑∞

n= βn < ∞ and
∑∞

n= μn < ∞.
Then {xn} converges to a fixed point of f if and only if {xn} is bounded.

Remark . Corollary . extends the main result obtained in [] from the modified
Ishikawa iteration to the modified Noor iteration.

3 Numerical examples
In this section, we give numerical examples to demonstrate the convergence of the algo-
rithm defined in this paper. For convenience, we call the iteration (.) the CP-iteration.

Example . Let f : [,∞) −→ [,∞) be defined by f (x) =
√
. lnx + . Then f is a con-

tinuous function. Use the initial point x =  and the control conditions αn = 
(n+). ,

βn = 
(n+). , μn = 

(n+). , τn =


n+ and γn = 
 .

Table 1 Comparison of the convergence rate of Mann, Ishikawa, Noor and CP iterations for
the function given in Example 3.1

n Mann Ishikawa Noor CP-iteration
xn xn xn xn |f (xn) – xn|

1 3.000000 3.000000 3.000000 3.000000 1.589769
10 1.074110 1.071538 1.071437 1.043308 0.024408
20 1.015478 1.014946 1.014925 1.008428 0.004658
30 1.004821 1.004656 1.004650 1.002531 0.001394
40 1.001822 1.001760 1.001757 1.000934 0.000514
50 1.000777 1.000750 1.000749 1.000392 0.000216
60 1.000360 1.000348 1.000348 1.000180 0.000099
70 1.000178 1.000172 1.000172 1.000088 0.000048
80 1.000093 1.000089 1.000089 1.000045 0.000025
90 1.000050 1.000048 1.000048 1.000024 0.000013
100 1.000028 1.000027 1.000027 1.000014 0.000007

Figure 1 Convergence behavior of Mann, Ishikawa, Noor and CP iterations for the function given in
Example 3.1.

http://www.journalofinequalitiesandapplications.com/content/2013/1/214
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Table 2 Comparison of the convergence rate of Mann, Ishikawa, Noor and CP iterations for
the function given in Example 3.2

n Mann Ishikawa Noor CP-iteration
xn xn xn xn |f (xn) – xn|

1 5.000000 5.000000 5.000000 5.000000 2.363932
10 1.529828 1.504824 1.501931 1.359649 0.073668
20 1.293319 1.284893 1.283943 1.224654 0.023218
30 1.223891 1.219794 1.219335 1.187049 0.011033
40 1.193599 1.191253 1.190991 1.171120 0.006204
50 1.177752 1.176279 1.176115 1.162994 0.003827
60 1.168542 1.167561 1.167452 1.158380 0.002505
70 1.162807 1.162126 1.162050 1.155568 0.001710
80 1.159055 1.158568 1.158513 1.153766 0.001205
90 1.156509 1.156152 1.156112 1.152565 0.000870
100 1.154730 1.154463 1.154433 1.151740 0.000641
110 1.153458 1.153255 1.153233 1.151160 0.000480
120 1.152530 1.152374 1.152357 1.150743 0.000365
130 1.151842 1.151721 1.151707 1.150438 0.000281
140 1.151325 1.151230 1.151219 1.150212 0.000218
150 1.150931 1.150856 1.150847 1.150042 0.000171
160 1.150628 1.150568 1.150561 1.149912 0.000136
170 1.150393 1.150345 1.150339 1.149813 0.000108
180 1.150209 1.150169 1.150165 1.149735 0.000087
190 1.150063 1.150031 1.150027 1.149675 0.000070
200 1.149947 1.149920 1.149918 1.149627 0.000057

Figure 2 Convergence behavior of Mann, Ishikawa, Noor and CP iterations for the function given in
Example 3.2.

Example . Let f : [,∞) −→ [,∞) be defined by f (x) = .
√
x –  +

√
x. Then f is a

continuous function. Use the initial point x =  and the control conditions αn = 
(n+). ,

βn = 
(n+) , μn = 

(n+). , τn =


n+ and γn = 
 .

Remark . From Table , Figure , Table  and Figure , we observe that the sequence
generated by the CP-iteration converges to a fixed point faster than that ofMann, Ishikawa
and Noor iterations.
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