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1 Introduction
We say that a functional equation E is stable if any function f which approximately satisfies
the equation E is near to an exact solution of E . The problem of stability of functional
equations was formulated by Ulam in  for group homomorphisms (see [, ]). One
year later, Ulam’s problem was affirmatively solved by Hyers [] for the Cauchy functional
equation f (x+ y) = f (x) + f (y). This gave rise to the stability theory of functional equations.
Later, Aoki [] and Rassias [] considered mappings from a normed space into a Banach
space such that the norm of the Cauchy difference is bounded by the expression ε(‖x‖p +
‖y‖p) for all x, y, some ε ≥ , and  ≤ p < . The terminology Hyers-Ulam-Rassias stability
indeed originates from Rassias’s paper.
In the last few decades, the stability problem of several functional equations has been

extensively studied by many authors. For the history and various aspects of the theory,
we refer to monographs [–]. We also refer the reader to the paper [], where a precise
description of the Hyers-Ulam-Rassias stability is given.
As we are aware, the stability of derivations was first investigated by Jun and Park [].

During the past few years, approximate derivations were studied by a number of mathe-
maticians (see [–] and references therein). The stability result concerning derivations
between operator algebras was first obtained by Šemrl []. Later, Moslehian [] studied
approximate generalized derivations on unital Banach algebras into Banach bimodules,
and in [] Jung examined the stability ofmodule left derivations. Recently, the author stud-
ied the generalizedHyers-Ulam-Rassias stability of a functional inequality associated with
module left (m,n)-derivations []. The natural question here is whether we can general-
ize these results in the setting of generalized module left (m,n)-derivations. Theorem .
answers this question in the affirmative.
In the following, A and M will represent a complex normed algebra and a Banach left

A-module, respectively. Recall that ifA has a unit element e such that e ·x = x for all x ∈M,
then a leftA-moduleM is called unitary.Here, · denotes themodulemultiplication onM.
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We will use the same symbol ‖ · ‖ to represent the norms on a normed algebra A and a
normed left A-moduleM.
Before stating our main theorem, let us write some basic definitions and known results

which we will need in the sequel. First, an additive mapping d :A→M is called a module
left derivation if d(xy) = x ·d(y)+y ·d(x) holds for all x, y ∈A. Letm,n≥ withm+n �=  be
some fixed integers. Then an additive mapping d :A → M is called a module left (m,n)-
derivation if

(m + n)d(xy) = mx · d(y) + ny · d(x)

for all x, y ∈A. Clearly,module left (m,n)-derivations are one of the natural generalizations
of module left derivations (the case m = n). Furthermore, an additive mapping g : A →
M is called a generalized module left derivation if there exists a module left derivation
d : A → M such that g(xy) = x · g(y) + y · d(x) is fulfilled for all x, y ∈ A. Motivated by
this notion, we define a generalized module left (m,n)-derivation as an additive mapping
g :A→M for which there exists a module left (m,n)-derivation d :A→M such that

(m + n)g(xy) = mx · g(y) + ny · d(x)

for all x, y ∈A. Obviously, ifm = n, then every generalized module left (m,n)-derivation is
a generalized module left derivation.
In the last few decades, a lot of work has been done in the field of left derivations and

generalized left derivations (see, for example, [, ] and references therein). Recently
also (m,n)-derivations and generalized (m,n)-derivations have been defined and investi-
gated [–]. This motivated us to study the generalized Hyers-Ulam-Rassias stability of
functional inequalities associated with generalized module left (m,n)-derivations.

2 Themain result
Throughout the paper, we assume that m and n are nonnegative integers with m + n �= .
We say that an additive mapping f :A→M is C-linear (or just linear) if f (λx) = λf (x) for
all x ∈A and all scalars λ ∈C. In the following, � denotes the set of all complex units, i.e.,

� =
{
λ ∈C : |λ| = 

}
.

For a given additive mapping f :A→M, Park [] obtained the next result.

Lemma . If f (λx) = λf (x) for all x ∈A and all λ ∈ �, then f is C-linear.

Our first result is a generalization of Theorem  in [].

Theorem . Let A be a normed algebra, M be a Banach left A-module, and F :A →
[,∞) be a function such that F(x, y) = ξF(x, y) and F(x, y) = ηF(x, y) for some nonnega-
tive scalars ξ , η with ξη < . Suppose that g :A→M is a mapping for which there exists a
mapping d :A→M such that

∥∥g(λx + y) – λg(x) – g(y)
∥∥ ≤ F(x, y), ()∥∥d(λx + y) – λd(x) – d(y)
∥∥ ≤ F(x, y), ()
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and

∥∥(m + n)g(xy) – mx · g(y) – ny · d(x)∥∥ ≤ F(x, y), ()∥∥(m + n)d(xy) – mx · d(y) – ny · d(x)∥∥ ≤ F(x, y) ()

for all x, y ∈ A and λ ∈ �. Then there exists a unique linear generalized module left
(m,n)-derivation G :A→M such that

∥∥g(x) –G(x)
∥∥ ≤ F(x,x)

 – ξη
()

for all x ∈A.

Proof Taking λ =  in (), we obtain

∥∥g(x + y) – g(x) – g(y)
∥∥ ≤ F(x, y)

for all x, y. Thus, by Corollary . in [], we conclude that there exists a unique additive
mapping G : A → M such that () holds for all x ∈ A. Next, replacing y by  in (), we
get

∥∥g(λx) – λg(x)
∥∥ ≤ F(x, ) = 

and, consequently, g(λx) = λg(x) for all x ∈ A and λ ∈ �. Note also that for every k ∈ N

and all x ∈A, we have G(x) = –kG(kx) since G is additive. Therefore,

∥∥G(λx) – λG(x)
∥∥

≤ ∥∥–kG(
kλx

)
– –kg

(
kλx

)∥∥ +
∥∥–kλg(kx) – –kλG

(
kx

)∥∥
≤ –k

(
F(kλx, kλx)

 – ξη
+

λF(kx, kx)
 – ξη

)

= –k(ξη)k
(
F(λx,λx)
 – ξη

+
λF(x,x)
 – ξη

)
.

Letting k → ∞, we conclude that G(λx) = λG(x) for all x ∈ A and all λ ∈ �. According to
Lemma ., this yields that G is linear.
Similarly, we can show that there exists a unique linear mapping D :A→M such that

∥∥d(x) –D(x)
∥∥ ≤ F(x,x)

 – ξη
()

for all x ∈A. Moreover, by Theorem  in [], D is a module left (m,n)-derivation.
It remains to prove that G is a generalized module left (m,n)-derivation with an associ-

ated module left (m,n)-derivation D, i.e.,

(m + n)G(xy) = mx ·G(y) + ny ·D(x)
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for all x, y ∈A. So, let x, y ∈A and k ∈N. By (), we have

∥∥(m + n)–kg
((
kx

)(
ky

))
– m–kx · g(ky) – n–ky · d(

kx
)∥∥

≤ –kF
(
kx, ky

)
= –k(ξη)kF(x, y).

Furthermore,

∥∥(m + n)G(xy) – mx ·G(y) – ny ·D(x)∥∥
≤ ∥∥(m + n)–kG

((
kx

)(
ky

))
– (m + n)–kg

((
kx

)(
ky

))∥∥
+

∥∥(m + n)–kg
((
kx

)(
ky

))
– m–kx · g(ky) – n–ky · d(

kx
)∥∥

+
∥∥m–kx · g(ky) – m–kx ·G(

ky
)∥∥ +

∥∥n–ky · d(
kx

)
– n–ky ·D(

kx
)∥∥.

SinceM is a Banach leftA-module, there exists a positive constant C such that

∥∥(m + n)G(xy) – mx ·G(y) – ny ·D(x)∥∥
≤ (m + n)–k

∥∥G((
kx

)(
ky

))
– g

((
kx

)(
ky

))∥∥ + –k(ξη)kF(x, y)

+ m–kC‖x‖∥∥g(ky) –G
(
ky

)∥∥ + n–kC‖y‖∥∥d(
kx

)
–D

(
kx

)∥∥.
This yields that

∥∥(m + n)G(xy) – mx ·G(y) – ny ·D(x)∥∥
≤ (m + n)–k

F(kxy, kxy)
 – ξη

+ –k(ξη)kF(x, y)

+ m–kC‖x‖F(
ky, ky)

 – ξη
+ n–kC‖y‖F(

kx, kx)
 – ξη

= (m + n)–k(ξη)k
F(xy,xy)
 – ξη

+ –k(ξη)kF(x, y)

+ m–kC‖x‖(ξη)k
F(y, y)
 – ξη

+ n–kC‖y‖(ξη)k
F(x,x)
 – ξη

.

Letting k → ∞, we conclude that (m + n)G(xy) = mx · G(y) + ny · D(x). The proof is
completed. �

3 Some additional remarks
In this section wewrite some additional results and observations about ourmain theorem.

Remark . Let g and F be as in Theorem . and let x ∈A. If themaps g and x 	→ F(x,x)
are continuous at point x, then G is continuous on A. Namely, if G was not continuous,
then there would exist an integer C and a sequence {xk}∞k= such that limk→∞ xk =  and
‖G(xk)‖ > 

C for k ≥ . Write

F̃(x,x) =
F(x,x)
 – ξη

, x ∈A.
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Let t > C(F̃(x,x) + ). Then

lim
k→∞

g(txk + x) = g(x)

since g is continuous at x. Thus, there exists an integer k such that for every k > k, we
have

∥∥g(txk + x) – g(x)
∥∥ < .

Therefore,

F̃(x,x) +  <
t
C

<
∥∥G(txk)∥∥ =

∥∥G(txk + x) –G(x)
∥∥

≤ ∥∥G(txk + x) – g(txk + x)
∥∥ +

∥∥g(txk + x) – g(x)
∥∥ +

∥∥g(x) –G(x)
∥∥

< F̃(txk + x, txk + x) +  + F̃(x,x)

for every k > k. Letting k → ∞ and using the continuity of the map x 	→ F̃(x,x) at point
x, we get a contradiction.

Remark . Let ε ≥  and p,q < . Then a function F :A → [,∞) defined by

F(x, y) = ε‖x‖p‖y‖q, x, y ∈A,

satisfies all the assumptions of Theorem .. Namely, F(x, y) = pF(x, y) and F(x, y) =
qF(x, y) for all x, y ∈A. In this case, we can write () as

∥∥g(x) –G(x)
∥∥ ≤ ε

 – r
‖x‖r ,

where r = p + q and x ∈A.

Remark . Let BC denote the family of all sets � ⊆ C such that each additive function
f : C → M bounded on � is continuous. The question which subsets � ⊆ C belong to
BC has been a subject of many papers. It is known that every non-empty open subset
� of C is a member of BC. Moreover, if � ⊆ C and Int� �= ∅, then � ∈ BC. The same is
true when � ⊆C has a positive inner Lebesguemeasure or contains a subset of the second
category with the Baire property. Formore information and further references concerning
the subject, we refer the reader to [–].
Let � ∈BC be a bounded set. Using standard techniques, it is easy to see that every ad-

ditive function f :A→Mwith the property f (λx) = λf (x) for all x ∈A and all λ ∈ � must
beC-linear (see, for example, [, Lemma ]). Therefore, we can show that Theorem . is
valid even if we replace � with any set � ⊆C which contains a bounded subset � ∈BC.
Namely, as in the proof of Theorem ., we can show that there exists a unique generalized
module left (m,n)-derivation G :A → M satisfying (). Moreover, G(λx) = λG(x) for all
x ∈A and all λ ∈ �. Using the above mentioned arguments, it follows that G is C-linear.
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4 Superstability of generalizedmodule left (m,n)-derivations
Weend this paperwith someobservations on superstability.We say that a functional equa-
tion E is superstable if each function f , satisfying the equation E approximately, must ac-
tually be a solution of it. The notion of superstability has appeared in connection with the
investigation of stability of the exponential equation f (x+ y) = f (x)f (y). The first result for
the superstability of this equation was proved by Bourgin []. Later, this problem was re-
newed and investigated by Baker, Lawrence, and Zorzitto [] (for more information, see
[] and references therein). Our last result shows that this kind of properties are valid also
for conditions involving generalized module left (m,n)-derivations.
In the following,A andM will be a normed algebra with a unit e and a unitary Banach

leftA-module, respectively. Assume that F :A → [,∞) is a function satisfying F(x, y) =
ξF(x, y) and F(x, y) = ηF(x, y) for some nonnegative scalars ξ , η with ξ , ξη < . Then we
have the next lemma.

Lemma . [, Lemma ] If d :A→M is a mapping satisfying () and ‖d(x+ y) –d(x) –
d(y)‖ ≤ F(x, y), x, y ∈A, then d(tx) = td(x) for all x ∈A and all t ∈ Q \ {}.

Our last result is a generalization of Theorem  in [].

Theorem . Let A be a normed algebra with a unit e, let M be a unitary Banach left
A-module, and let F :A → [,∞) be a function such that F(x, y) = ξF(x, y) and F(x, y) =
ηF(x, y) for some nonnegative scalars ξ , η with ξ , ξη < . Suppose that g : A → M is a
mapping for which there exists a mapping d :A → M such that () and () hold true for
all x, y ∈A and

∥∥g(x + y) – g(x) – g(y)
∥∥ ≤ F(x, y),∥∥d(x + y) – d(x) – d(y)
∥∥ ≤ F(x, y)

for all x, y ∈A. Then g is a generalized module left (m,n)-derivation.

Proof We divide the proof into several steps.
Step . Firstly, we show that d is a module left (m,n)-derivation on A. By the proof of

Theorem ., there exists a unique module left (m,n)-derivation D on A satisfying ().
Moreover, according to Lemma ., we have d(kx) = kd(x) for all x ∈A, k ∈N. Thus,

∥∥d(x) –D(x)
∥∥ =

∥∥–kd(
kx

)
– –kD

(
kx

)∥∥
≤ –k

F(kx, kx)
 – ξη

= –k(ξη)k
F(x,x)
 – ξη

for all x ∈ A and k ∈ N. Letting k → ∞, we conclude that d = D. In other words, d is a
module left (m,n)-derivation on A.
Step . Let x ∈ A and t ∈ Q \ {}. We claim that g(tx) = tg(x). Suppose that G :A → M

is a module left (m,n)-derivation from the proof of Theorem . and k ∈ N. Recall that G
is additive and therefore G(tx) = tG(x). Moreover, G satisfies () and, by (), we have

∥∥(m + n)G
((
ke

)
(tx)

)
– mtke · g(x) – ntx · d(

ke
)∥∥

≤ ∥∥(m + n)tG
(
kex

)
– (m + n)tg

(
kex

)∥∥

http://www.journalofinequalitiesandapplications.com/content/2013/1/208
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+
∥∥(m + n)tg

(
kex

)
– mtke · g(x) – ntx · d(

ke
)∥∥

≤ |t|(m + n)
F(kex, kex)

 – ξη
+ |t|F(

ke,x
)

= |t|(m + n)(ξη)k
F(x,x)
 – ξη

+ |t|ξ kF(e,x).

Thus,

∥∥(m + n)g
((
ke

)
(tx)

)
– mtke · g(x) – ntx · d(

ke
)∥∥

≤ ∥∥(m + n)g
((
ke

)
(tx)

)
– (m + n)G

((
ke

)
(tx)

)∥∥
+

∥∥(m + n)G
((
ke

)
(tx)

)
– mtke · g(x) – ntx · d(

ke
)∥∥

≤ (m + n)
F(ktx, ktx)

 – ξη
+ |t|(m + n)(ξη)k

F(x,x)
 – ξη

+ |t|ξ kF(e,x)

= (m + n)(ξη)k
F(tx, tx)
 – ξη

+ |t|(m + n)(ξη)k
F(x,x)
 – ξη

+ |t|ξ kF(e,x).

This yields that

∥∥mk
(
g(tx) – tg(x)

)∥∥
=

∥∥mke · (g(tx) – tg(x)
)∥∥

≤ ∥∥mke · g(tx) + ntx · d(
ke

)
– (m + n)g

((
ke

)
(tx)

)∥∥
+

∥∥(m + n)g
((
ke

)
(tx)

)
– mtke · g(x) – ntx · d(

ke
)∥∥

≤ F
(
ke, tx

)
+ (m + n)(ξη)k

F(tx, tx)
 – ξη

+ |t|(m + n)(ξη)k
F(x,x)
 – ξη

+ |t|ξ kF(e,x)

= ξ kF(e, tx) + (m + n)(ξη)k
F(tx, tx)
 – ξη

+ |t|(m + n)(ξη)k
F(x,x)
 – ξη

+ |t|ξ kF(e,x)

= ξ k(F(e, tx) + |t|F(e,x)) + (m + n)
(
(ξη)k

 – ξη

)(
F(tx, tx) + |t|F(x,x))

and, therefore,

∥∥g(tx) – tg(x)
∥∥ ≤

(


mk

)
ξ k(F(e, tx) + |t|F(e,x))

+ (m + n)
(


mk

)(
(ξη)k

 – ξη

)(
F(tx, tx) + |t|F(x,x)).

Letting k → ∞, we get g(tx) = tg(x) for all x ∈A. In particular,

g
(
kx

)
= kg(x)

for all x ∈A and all k ∈ N.
Step . We prove that g =G. Namely, using (), we obtain

∥∥g(x) –G(x)
∥∥ =

∥∥–kg(kx) – –kG
(
kx

)∥∥ ≤ –k
F(kx, kx)
 – ξη

= –k(ξη)k
F(x,x)
 – ξη

http://www.journalofinequalitiesandapplications.com/content/2013/1/208


Fošner Journal of Inequalities and Applications 2013, 2013:208 Page 8 of 8
http://www.journalofinequalitiesandapplications.com/content/2013/1/208

for all x ∈ A and k ∈ N. Taking the limit when k → ∞, we conclude that g = G, as de-
sired. Therefore, g is a generalized module left (m,n)-derivation onA. This completes the
proof. �

Corollary . Let A be a normed algebra with a unit e, let M be a unitary Banach left
A-module, and let F :A → [,∞) be a function such that F(x, y) = ξF(x, y) and F(x, y) =
ηF(x, y) for some nonnegative scalars ξ , η with ξ , ξη < . Suppose that g : A → M is a
mapping for which there exists a mapping d : A → M such that ()-() hold true for all
x, y ∈A and λ ∈ �. Then g is a linear generalized module left (m,n)-derivation.
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