Bor Journal of Inequalities and Applications 2013, 2013:207 ® Journal of Inequalities and Applications
http://www.journalofinequalitiesandapplications.com/content/2013/1/207 a SpringerOpen Journal

RESEARCH___________________________ OpenAccess
Almost increasing sequences and their new

applications

Huseyin Bor’

“Correspondence:
hbor33@gmail.com

PO. Box 121, Bahgelievler, Ankara
06502, Turkey

@ Springer

Abstract

In this paper, we generalize a known theorem dealing with |C, 1|, summability factors
to the |C, x| summability factors of infinite series using an almost increasing
sequence. This theorem also includes some known and new results.
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1 Introduction

A positive sequence (b,) is said to be an almost increasing sequence if there exists a positive
increasing sequence (c,) and two positive constants A and B such that Ac, < b, < Bc,
(see [1]). Let Y a, be a given infinite series with the sequence of partial sums (s,;). By ¢*

we denote the nth Cesaro mean of order «, with & > —1, of the sequence (na,,), that is,

n
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= = O(n"‘), A% =0 forn>0. (2)
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<n+a> (@+D)(a+2) - (a+n)

The series Y _ a,, is said to be summable |C, «|g, k > 1, if (see [2])
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Zz|t};~| < OQ. (3)

n=1

If we take o = 1, then |C, o[ summability reduces to |C, 1| summability.

2 Known result

Many works dealing with an application of almost increasing sequences to the absolute
Cesaro summability factors of infinite series have been done (see [3—-11]). Among them,
in [10], the following main theorem dealing with |C,1|; summability factors has been
proved.
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Theorem A Let (p,) be a positive sequence and (X,,) be an almost increasing sequence. If
the conditions

o]

Z n|Azkn|Xn < 00, (4)
n=1

Al X, =0Q) asn— oo, (5)
0, =0(1) asn— oo, (6)
nAg,=0(Q1) asn— oo, (7)

= |nl

Z i O(X,) asn— oo (8)
y=1 v

are satisfied, then the series Y ayh,@y is summable |C, 1|, k > 1.

3 The main result
The aim of this paper is to generalize Theorem A to the |C, o|; summability in the follow-
ing form.

Theorem Let (¢,) be a positive sequence and let (X,,) be an almost increasing sequence.
If the conditions (4), (5), (6) and (7) are satisfied, and the sequence (W%) defined by (see
(12])

%, a=1,
W |21 ©)

maXi<,<x |t |, O<a<l,

satisfies the condition

~ ()

z =0(X,) asn— oo, (10)
k—

—~vX; 1

then the series Y ayh, @y is summable |C,al, 0 < <1, (@ — 1)k > -1 and k > 1.

Remark It should be noted that if we take o =1, then we get Theorem A. In this case,
condition (10) reduces to condition (8) and the condition ‘(o — 1)k > —1’ is trivial.

We need the following lemmas for the proof of our theorem.

Lemmal [13] IfO<a <landl<v<mn,then

v m
ZA‘:I‘:;% < max ZA‘;‘,,’_lpap . (11)
p=0 - T Ip=0
Lemma 2 [14] Under the conditions (4) and (5), we have
nX,|Ar,| = 0Q1) asn— oo, (12)
[o¢]
D Xl Adyl < 00 (13)

n=1
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4 Proof of the Theorem
Let (T) be the nth (C, o) mean, with 0 <« <1, of the sequence (na,A,¢,).
Then, by (1), we find that

ZAn Wy, (14)

”vl

Thus, applying Abel’s transformation first and then using Lemma 1, we have that
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To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to show
that

oo
Zn’1|TfI‘J}k <o forr=1,2,3.

Now, when k > 1, applying Holder’s inequality with indices k and k', where % + % =1, we
get that
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by virtue of the hypotheses of the theorem and Lemma 2. Again, we get that
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by hypotheses of the theorem and Lemma 2. Finally, as in Ty, we have that
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by virtue of the hypotheses of the theorem and Lemma 2. This completes the proof of the

theorem. Also, if we take k = 1, then we get a new result concerning the |C, | summability

factors of infinite series.
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