Almost increasing sequences and their new applications

Hüseyin Bor*

"Correspondence:
hbor33@gmail.com
P.O. Box 121, Bahçelievler, Ankara 06502, Turkey

Abstract

In this paper, we generalize a known theorem dealing with $|C, 1|_{k}$ summability factors to the $|C, \alpha|_{k}$ summability factors of infinite series using an almost increasing sequence. This theorem also includes some known and new results. MSC: 26D15; 40D15; 40F05; 40G05 Keywords: increasing sequences; Cesàro mean; summability factors; Hölder inequality; Minkowski inequality

1 Introduction

A positive sequence $\left(b_{n}\right)$ is said to be an almost increasing sequence if there exists a positive increasing sequence (c_{n}) and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [1]). Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums (s_{n}). By t_{n}^{α} we denote the nth Cesàro mean of order α, with $\alpha>-1$, of the sequence ($n a_{n}$), that is,

$$
\begin{equation*}
t_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} v a_{v}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha}=\binom{n+\alpha}{n}=\frac{(\alpha+1)(\alpha+2) \cdots(\alpha+n)}{n!}=O\left(n^{\alpha}\right), \quad A_{-n}^{\alpha}=0 \quad \text { for } n>0 . \tag{2}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|^{k}<\infty . \tag{3}
\end{equation*}
$$

If we take $\alpha=1$, then $|C, \alpha|_{k}$ summability reduces to $|C, 1|_{k}$ summability.

2 Known result

Many works dealing with an application of almost increasing sequences to the absolute Cesàro summability factors of infinite series have been done (see [3-11]). Among them, in [10], the following main theorem dealing with $|C, 1|_{k}$ summability factors has been proved.

[^0]Theorem A Let $\left(\varphi_{n}\right)$ be a positive sequence and $\left(X_{n}\right)$ be an almost increasing sequence. If the conditions

$$
\begin{align*}
& \sum_{n=1}^{\infty} n\left|\Delta^{2} \lambda_{n}\right| X_{n}<\infty \tag{4}\\
& \left|\lambda_{n}\right| X_{n}=O(1) \quad \text { as } n \rightarrow \infty \tag{5}\\
& \varphi_{n}=O(1) \quad \text { as } n \rightarrow \infty \tag{6}\\
& n \Delta \varphi_{n}=O(1) \quad \text { as } n \rightarrow \infty \tag{7}\\
& \sum_{v=1}^{n} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}}=O\left(X_{n}\right) \quad \text { as } n \rightarrow \infty \tag{8}
\end{align*}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n} \varphi_{n}$ is summable $|C, 1|_{k}, k \geq 1$.

3 The main result

The aim of this paper is to generalize Theorem A to the $|C, \alpha|_{k}$ summability in the following form.

Theorem Let $\left(\varphi_{n}\right)$ be a positive sequence and let $\left(X_{n}\right)$ be an almost increasing sequence.
If the conditions (4), (5), (6) and (7) are satisfied, and the sequence (w_{n}^{α}) defined by (see [12])

$$
w_{n}^{\alpha}= \begin{cases}\left|t_{n}^{\alpha}\right|, & \alpha=1, \tag{9}\\ \max _{1 \leq \nu \leq n}\left|t_{v}^{\alpha}\right|, & 0<\alpha<1,\end{cases}
$$

satisfies the condition

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{\left(w_{v}^{\alpha}\right)^{k}}{v X_{v}^{k-1}}=O\left(X_{n}\right) \quad \text { as } n \rightarrow \infty \tag{10}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n} \varphi_{n}$ is summable $|C, \alpha|_{k}, 0<\alpha \leq 1,(\alpha-1) k>-1$ and $k \geq 1$.

Remark It should be noted that if we take $\alpha=1$, then we get Theorem A. In this case, condition (10) reduces to condition (8) and the condition ' $(\alpha-1) k>-1$ ' is trivial.

We need the following lemmas for the proof of our theorem.

Lemma 1 [13] If $0<\alpha \leq 1$ and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} a_{p}\right| . \tag{11}
\end{equation*}
$$

Lemma 2 [14] Under the conditions (4) and (5), we have

$$
\begin{align*}
& n X_{n}\left|\Delta \lambda_{n}\right|=O(1) \quad \text { as } n \rightarrow \infty \tag{12}\\
& \sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty \tag{13}
\end{align*}
$$

4 Proof of the Theorem

Let $\left(T_{n}^{\alpha}\right)$ be the nth (C, α) mean, with $0<\alpha \leq 1$, of the sequence $\left(n a_{n} \lambda_{n} \varphi_{n}\right)$.
Then, by (1), we find that

$$
\begin{equation*}
T_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{\nu=1}^{n} A_{n-\nu}^{\alpha-1} \nu a_{\nu} \lambda_{\nu} \varphi_{n} . \tag{14}
\end{equation*}
$$

Thus, applying Abel's transformation first and then using Lemma 1, we have that

$$
\begin{aligned}
T_{n}^{\alpha}= & \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \Delta\left(\lambda_{\nu} \varphi_{n}\right) \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}+\frac{\lambda_{n} \varphi_{n}}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-\nu}^{\alpha-1} \nu a_{v} \\
= & \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1}\left(\lambda_{v} \Delta \varphi_{v}+\varphi_{v+1} \Delta \lambda_{\nu}\right) \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}+\frac{\lambda_{n} \varphi_{n}}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-\nu}^{\alpha-1} v a_{v}, \\
\left|T_{n}^{\alpha}\right| \leq & \left.\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1}\left|\lambda_{v} \Delta \varphi_{v}\right| \sum_{p=1}^{\nu} A_{n-p}^{\alpha-1} p a_{p}\left|+\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1}\right| \varphi_{v+1} \Delta \lambda_{v}| | \sum_{p=1}^{\nu} A_{n-p}^{\alpha-1} p a_{p} \right\rvert\, \\
& +\frac{\left|\lambda_{n} \varphi_{n}\right|}{A_{n}^{\alpha}}\left|\sum_{v=1}^{v} A_{n-\nu}^{\alpha-1} \nu a_{v}\right| \\
\leq & \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{\nu}^{\alpha} w_{v}^{\alpha}\left|\lambda_{v}\right|\left|\Delta \varphi_{v}\right|+\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{\nu}^{\alpha} w_{v}^{\alpha}\left|\varphi_{v+1}\right|\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right|\left|\varphi_{n}\right| w_{n}^{\alpha} \\
= & T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha}+T_{n, 3}^{\alpha} .
\end{aligned}
$$

To complete the proof of the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{-1}\left|T_{n, r}^{\alpha}\right|^{k}<\infty \quad \text { for } r=1,2,3 .
$$

Now, when $k>1$, applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1} n^{-1}\left|T_{n, 1}^{\alpha}\right|^{k} & \leq \sum_{n=2}^{m+1} n^{-1}\left(A_{n}^{\alpha}\right)^{-k}\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha} w_{v}^{\alpha}\left|\Delta \varphi_{v}\right|\left|\lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{1+\alpha k}} \sum_{v=1}^{n-1}\left(v^{\alpha}\right)^{k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \varphi_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} 1\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{2+(\alpha-1) k}} \sum_{v=1}^{n-1} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\lambda_{v}\right|^{k} \frac{1}{\nu^{k}} \\
& =O(1) \sum_{v=1}^{m} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k} v^{-k}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{2+(\alpha-1) k}} \\
& =O(1) \sum_{v=1}^{m} \nu^{\alpha k}\left(w_{v}^{\alpha}\right)^{k} v^{-k}\left|\lambda_{\nu}\right|^{k} \int_{v}^{\infty} \frac{d x}{x^{2+(\alpha-1) k}}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m}\left(w_{v}^{\alpha}\right)^{k}\left|\lambda_{v}\right|\left|\lambda_{v}\right|^{k-1} \frac{1}{v} \\
& =O(1) \sum_{v=1}^{m}\left(w_{v}^{\alpha}\right)^{k}\left|\lambda_{v}\right| \frac{1}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v} \frac{\left(w_{r}^{\alpha}\right)^{k}}{r X_{r}^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \frac{\left(w_{v}^{\alpha}\right)^{k}}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the theorem and Lemma 2. Again, we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1} n^{-1}\left|T_{n, 2}^{\alpha}\right|^{k} & \leq \sum_{n=2}^{m+1} n^{-1}\left(A_{n}^{\alpha}\right)^{-k}\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha} w_{v}^{\alpha}\left|\varphi_{v+1}\right|\left|\Delta \lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{1+\alpha k}}\left\{\sum_{v=1}^{n} v^{\alpha}\left(w_{v}^{\alpha}\right)\left|\Delta \lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{1+\alpha k}} \sum_{v=1}^{n-1} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} 1\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{2+(\alpha-1) k}} \sum_{v=1}^{n-1} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right|\left|\Delta \lambda_{v}\right|^{k-1} \sum_{n=v+1}^{m+1} \frac{1}{n^{2+(\alpha-1) k}} \\
& =O(1) \sum_{v=1}^{m} \frac{v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right|}{v^{k-1} X_{v}^{k-1}} \int_{v}^{\infty} \frac{d x}{x^{2+(\alpha-1) k}} \\
& =O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right| \frac{\left(w_{v}^{\alpha}\right)^{k}}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{v} \frac{\left(w_{r}^{\alpha}\right)^{k}}{r X_{r}^{k-1}}+O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m} \frac{\left(w_{v}^{\alpha}\right)^{k}}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta^{2} \lambda_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} X_{v}\left|\Delta \lambda_{v}\right|+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by hypotheses of the theorem and Lemma 2 . Finally, as in $T_{n, 1}^{\alpha}$, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} n^{-1}\left|T_{n, 3}^{\alpha}\right|^{k} & =\sum_{n=1}^{m} n^{-1}\left|\lambda_{n} \varphi_{n} w_{n}^{\alpha}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \frac{\left(w_{n}^{\alpha}\right)^{k}\left|\lambda_{n}\right|}{n X_{n}^{k-1}}=O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the theorem and Lemma 2. This completes the proof of the theorem. Also, if we take $k=1$, then we get a new result concerning the $|C, \alpha|$ summability factors of infinite series.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

Dedicated to Professor Hari M Srivastava.
The author expresses his thanks to the referees for their useful comments and suggestions.
Received: 9 January 2013 Accepted: 12 April 2013 Published: 25 April 2013

References

1. Bari, NK, Stečkin, SB: Best approximation and differential properties of two conjugate functions. Tr. Mosk. Mat. Obŝ. 5, 483-522 (1956) (in Russian)
2. Flett, TM: On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. Lond. Math. Soc. 7, 113-141 (1957)
3. Bor, H: An application of almost increasing sequences. Math. Inequal. Appl. 5(1), 79-83 (2002)
4. Bor, H, Srivastava, HM: Almost increasing sequences and their applications. Int. J. Pure Appl. Math. 3, 29-35 (2002)
5. Bor, H: A study on almost increasing sequences. JIPAM. J. Inequal. Pure Appl. Math. 4(5), Article ID 97 (2003)
6. Bor, H, Leindler, L: A note on δ-quasi-monotone and almost increasing sequences. Math. Inequal. Appl. 8(1), 129-134 (2005)
7. Bor, H, Özarslan, HS: On the quasi-monotone and almost increasing sequences. J. Math. Inequal. 1(4), 529-534 (2007)
8. Bor, H: An application of almost increasing sequences. Appl. Math. Lett. 24(3), 298-301 (2011)
9. Bor, H: On a new application of almost increasing sequences. Math. Comput. Model. 53(1-2), 230-233 (2011)
10. Sulaiman, WT: On a new application of almost increasing sequences. Bull. Math. Anal. Appl. 4(3), 29-33 (2012)
11. Bor, H, Srivastava, HM, Sulaiman, WT: A new application of certain generalized power increasing sequences. Filomat 26(4), 871-879 (2012)
12. Pati, T: The summability factors of infinite series. Duke Math. J. 21, 271-284 (1954)
13. Bosanquet, LS: A mean value theorem. J. Lond. Math. Soc. 16, 146-148 (1941)
14. Mazhar, SM: Absolute summability factors of infinite series. Kyungpook Math. J. 39, 67-73 (1999)
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance

Open access: articles freely available online
High visibility within the field

- Retaining the copyright to your article

```
Submit your next manuscript at $ springeropen.com
```


[^0]: © 2013 Bor; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: doi:10.1186/1029-242X-2013-207
 Cite this article as: Bor: Almost increasing sequences and their new applications. Journal of Inequalities and Applications 2013 2013:207.

