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1 Introduction
For any variable quantity x, the Fibonacci polynomials Fn(x) and Lucas polynomials Ln(x)
are defined by Fn+(x) = xFn+(x) + Fn(x), n ≥ , with the initial values F(x) =  and
F(x) = ; Ln+(x) = xLn+(x)+Ln(x), n≥ , with the initial values L(x) =  and L(x) = x. For
x = , we obtain the usual Fibonacci numbers and Lucas numbers. Let α = 

 (x +
√
x + )

and β = 
 (x –

√
x + ), then from the properties of second-order linear recurrence se-

quences, we have

Fn(x) =
αn – βn
√
x + 

and Ln(x) = αn + βn.

Various authors studied the properties of the Fibonacci polynomials and Lucas polynomi-
als and obtained many interesting results; see [–], and [].
The so-called Fibonacci zeta function and Lucas zeta function defined by

ζF (s) =
∞∑
n=


Fs
n

and ζL(s) =
∞∑
n=


Lsn

,

where the Fn and Ln denote the Fibonacci numbers and Lucas numbers, have been con-
sidered in several different ways. Navas [] discussed the analytic continuation of these
series. In [] it is shown that for any positive distinct integer s, s, s, the numbers ζF (s),
ζF (s), and ζF (s) are algebraically independent if and only if at least one of s, s, s is
even.
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Ohtsuka and Nakamura [] studied the partial infinite sums of reciprocal Fibonacci
numbers and proved the following conclusions:

⌊( ∞∑
k=n


Fk

)–⌋
=

⎧⎨
⎩Fn– if n is even and n≥ ;

Fn– –  if n is odd and n≥ .
⌊( ∞∑

k=n


F
k

)–⌋
=

⎧⎨
⎩Fn–Fn –  if n is even and n≥ ;

Fn–Fn if n is odd and n≥ .

Wu and Zhang [] generalized these identities to the Fibonacci polynomials and Lucas
polynomials. Similar properties were investigated in several different ways; see [, ],
and []. Recently, some authors considered the nearest integer of the sum of recipro-
cal Fibonacci numbers and other famous sequences and obtained several new interesting
identities; see [] and []. Kilic and Arikan [] defined a kth-order linear recursive se-
quence un for any positive integer p, q and n > k as follows:

un = pun– + qun– + un– + · · · + un–k ,

and they proved that there exists a positive integer n such that

∥∥∥∥∥
( ∞∑

k=n


uk

)–∥∥∥∥∥ = un – un– (n≥ n),

where ‖ · ‖ denotes the nearest integer. (Clearly, ‖x‖ = �x + 
�.)

In this paper, we consider the subseries of infinite sums derived from the reciprocals of
the Fibonacci polynomials and Lucas polynomials and prove the following.

Theorem  For any positive integer x, n and even a ≥ , we have

()

⌊( ∞∑
k=n


Fak(x)

)–⌋
= Fan(x) – Fan–a(x) –  (n≥ ).

()

⌊( ∞∑
k=n


Lak(x)

)–⌋
= Lan(x) – Lan–a(x) (n≥ ).

()

⌊( ∞∑
k=n


F
ak(x)

)–⌋
= F

an(x) – F
an–a(x) –  (n≥ ).

()

⌊( ∞∑
k=n


Lak(x)

)–⌋
= Lan(x) – Lan–a(x) +  (n≥ ).

Theorem  For any positive integer x and odd b ≥ , we have

()

⌊( ∞∑
k=n


Fbk(x)

)–⌋
=

⎧⎨
⎩Fbn(x) – Fbn–b(x) if n is even and n≥ ;

Fbn(x) – Fbn–b(x) –  if n is odd and n≥ .
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()

⌊( ∞∑
k=n


Lbk(x)

)–⌋
=

⎧⎨
⎩Lbn(x) – Lbn–b(x) –  if n is even and n ≥ ;

Lbn(x) – Lbn–b(x) if n is odd and n ≥ .

()

⌊( ∞∑
k=n


F
bk(x)

)–⌋
=

⎧⎨
⎩F

bn(x) – F
bn–b(x) if n is even and n ≥ ;

F
bn(x) – F

bn–b(x) –  if n is odd and n≥ .

Particularly, for x≥ , we have

()

⌊( ∞∑
k=n


Lbk(x)

)–⌋
=

⎧⎨
⎩Lbn(x) – Lbn–b(x) –  if n is even and n ≥ ;

Lbn(x) – Lbn–b(x) +  if n is odd and n ≥ .

If x = , b =  (respectively, x = , b = ) or x = , b = , then from our theoremswe can deduce
the conclusions of [–], and [].

2 Proof of theorems
To complete the proof of our theorems, we need the following lemma.

Lemma For any positive integer x,m, and n,

Fm(x)Fn(x) =


x + 
(
Lm+n(x) – (–)nLm–n(x)

)
, ()

Lm(x)Ln(x) = Lm+n(x) + (–)nLm–n(x), ()

Fm(x)Ln(x) = Fm+n(x) + (–)nFm–n(x) = Fm+n(x) – (–)mFn–m(x), ()

Fn–(x) + Fn+(x) = Ln(x). ()

Proof We only prove identities () and (), and other identities are proved similarly. For
any positive integer x,m, and n, from the identity

Fn(x) =
αn – βn
√
x + 

and Ln(x) = αn + βn,

we have

Fm(x)Fn(x) =
(αm – βm)(αn – βn)

x + 
=
(αm+n + βm+n – αnβm – αmβn)

x + 

=


x + 
(
Lm+n(x) – (–)nLm–n(x)

)
,

and

Fn–(x) + Fn+(x) =
αn– – βn–
√
x + 

+
αn+ – βn+
√
x + 

=
αn(α + α–) – βn(β + β–)√

x + 

=
(
√
x + )αn + (

√
x + )βn

√
x + 

= αn + βn = Ln(x).

This proves identities () and (). �

Now we shall complete the proof of our theorems. We shall prove only Theorems (),
(), (), and (), and other identities are proved similarly and omitted. First, we prove
Theorem ().
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Proof of Theorem () Theorem () is equivalent to


Fan(x) – Fan–a(x)

<
∞∑
k=n


Fak(x)

≤ 
Fan(x) – Fan–a(x) – 

. ()

For any positive integer x, k and even a ≥ , using identity (), we have


Fak(x)

–


Fak(x) – Fak–a(x)
–


Fak+a(x) – Fak(x)

=


Fak+a(x) – Fak(x)
–

Fak–a(x)
Fak(x)(Fak(x) – Fak–a(x))

=
F
ak(x) – Fak–a(x)Fak+a(x)

Fak(x)(Fak(x) – Fak–a(x))(Fak+a(x) – Fak(x))

=
La(x) – 

Fak(x)(x + )(Fak(x) – Fak–a(x))(Fak+a(x) – Fak(x))
. ()

Since Fn(x) and Ln(x) are monotone increasing for n and a fixed positive integer x, we have
La(x)– > , Fak(x)–Fak–a(x) > , and Fak+a(x)–Fak(x) >  for any positive integer x, k and
even a ≥ . Hence the numerator of the right-hand side of the above identity is positive
for any positive integer x, k and even a ≥ , so we get


Fak(x)

>


Fak(x) – Fak–a(x)
–


Fak+a(x) – Fak(x)

. ()

Using () repeatedly, we have

∞∑
k=n


Fak(x)

>
∞∑
k=n

(


Fak(x) – Fak–a(x)
–


Fak+a(x) – Fak(x)

)

=


Fan(x) – Fan–a(x)
–


Fan+a(x) – Fan(x)

+


Fan+a(x) – Fan(x)

–


Fan+a(x) – Fan+a(x)
+


Fan+a(x) – Fan+a(x)

– · · ·

=


Fan(x) – Fan–a(x)
. ()

On the other hand, we prove that for any positive integer x, k and even a≥ ,


Fak(x)

<


Fak(x) – Fak–a(x) – 
–


Fak+a(x) – Fak(x) – 

. ()

Inequality () is equivalent to

Fak–a(x) + 
Fak(x)(Fak(x) – Fak–a(x) – )

>


Fak+a(x) – Fak(x) – 
,

or

Fak–a(x)Fak+a(x) – Fak–a(x) + Fak+a(x) –  > F
ak(x).
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Using identity (), the above inequality is equivalent to

Fak+a+(x) + Fak+a–(x) – Fak–a+(x) – Fak–a–(x)

+ Fak+a(x) – Fak–a(x) – La(x) – L(x) > ,

or

(
Fak+a+(x) – La(x)

)
+

(
Fak+a(x) – Fak–a+(x)

)
+

(
Fak+a–(x) – Fak–a–(x) – L(x)

)
+

(
Fak+a(x) – Fak–a(x)

)
> . ()

Since Fn(x) and Ln(x) are monotone increasing for n and a fixed positive integer x, we have
Fak+a(x) – Fak–a+(x) > , Fak+a–(x) – Fak–a–(x) – L(x) > , and Fak+a(x) – Fak–a(x) >  for
any positive integer x, k and even a≥ . Using identity (), we have

Fak+a+(x) – La(x) > Fa+(x) – La(x)

= xFa+(x) + Fa(x) – Fa+(x) – Fa–(x)

= (x – )Fa+(x) + Fa(x) – Fa–(x) > .

Hence the numerator of each part in parentheses of the left-hand side of inequality ()
is positive, so inequality () holds for any positive integer x, k and even a ≥ . Hence
inequality () is true. Using () repeatedly, we have

∞∑
k=n


Fak(x)

<
∞∑
k=n

(


Fak(x) – Fak–a(x) – 
–


Fak+a(x) – Fak(x) – 

)

=


Fan(x) – Fan–a(x) – 
. ()

Now inequality () follows from () and (). This proves Theorem (). �

Proof of Theorem () Now we prove Theorem (). Theorem () is equivalent to


F
an(x) – F

an–a(x)
<

∞∑
k=n


F
ak(x)

≤ 
F
an(x) – F

an–a(x) – 
. ()

For any positive integer x, k and even a ≥ , using identities () and (), we have


F
ak(x)

–


F
ak(x) – F

ak–a(x)
–


F
ak+a(x) – F

ak(x)

=
F
ak(x) – F

ak–a(x)F

ak+a(x)

F
ak(x)(F


ak(x) – F

ak–a(x))(F

ak+a(x) – F

ak(x))

=
(F

ak(x) – Fak–a(x)Fak+a(x))(F
ak(x) + Fak–a(x)Fak+a(x))

F
ak(x)(F


ak(x) – F

ak–a(x))(F

ak+a(x) – F

ak(x))

=
(La(x) – )(F

ak(x) + Fak–a(x)Fak+a(x))
F
ak(x)(x + )(F

ak(x) – F
ak–a(x))(F


ak+a(x) – F

ak(x))
. ()
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Since Fn(x) and Ln(x) are monotone increasing for n and a fixed positive integer x, we have
La(x)– > , F

ak(x)–F

ak–a(x) > , and F

ak+a(x)–F

ak(x) >  for any positive integer x, k and

even a ≥ . Hence the numerator of the right-hand side of the above identity is positive
for any positive integer x, k and even a ≥ , so we get


F
ak(x)

>


F
ak(x) – F

ak–a(x)
–


F
ak+a(x) – F

ak(x)
. ()

Using () repeatedly, we have

∞∑
k=n


F
ak(x)

>
∞∑
k=n

(


F
ak(x) – F

ak–a(x)
–


F
ak+a(x) – F

ak(x)

)
=


F
an(x) – F

an–a(x)
. ()

On the other hand, we prove that for any positive integer x, k and even a≥ ,


F
ak(x)

<


F
ak(x) – F

ak–a(x) – 
–


F
ak+a(x) – F

ak(x) – 
. ()

Inequality () is equivalent to

F
ak–a(x) + 

F
ak(x)(F


ak(x) – F

ak–a(x) – )
>


F
ak+a(x) – F

ak(x) – 
,

or

F
ak–a(x)F


ak+a(x) – F

ak(x) + F
ak+a(x) – F

ak–a(x) –  > .

Using identities () and (), the above inequality is equivalent to

(
x + 

)
Lak+a(x) + Lak(x) –

(
x + 

)
Lak–a(x) –  + La(x) – L(x) > . ()

Since Ln(x) are monotone increasing for n and a fixed positive integer x, we have La(x) –
L(x) >  for any positive integer x and even a≥ . On the other hand, we have

(
x + 

)
Lak+a(x) + Lak(x) –

(
x + 

)
Lak–a(x) – 

>
(
x + 

)
Lak(x) –

(
x + 

)
Lak–a(x) –  >

(
x + 

)
–  > .

Hence the numerator of the left-hand side of inequality () is positive, so inequality ()
holds for any positive integer x, k and even a≥ . Hence inequality () is true. Using ()
repeatedly, we have

∞∑
k=n


F
ak(x)

<
∞∑
k=n

(


F
ak(x) – F

ak–a(x) – 
–


F
ak+a(x) – F

ak(x) – 

)

=


F
an(x) – F

an–a(x) – 
. ()

Now inequality () follows from () and (). This proves Theorem (). �
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Proof of Theorem () First we consider the case that n = m≥  is even. At this time, for
any odd b ≥ , Theorem () is equivalent to


Fmb(x) – Fmb–b(x) + 

<
∞∑

k=m


Fbk(x)

≤ 
Fmb(x) – Fmb–b(x)

. ()

Now we prove that for any positive integer x, k and odd b ≥ ,


Fbk(x)

+


Fbk+b(x)
<


Fbk(x) – Fbk–b(x)

–


Fbk+b(x) – Fbk+b(x)
. ()

Inequality () is equivalent to

Fbk+b(x)
Fbk+b(x)(Fbk+b(x) – Fbk+b(x))

<
Fbk–b(x)

Fbk(x)(Fbk(x) – Fbk–b(x))
.

Using identities () and (), the above inequality is equivalent to

(
Fbk+b(x) – Fbk+b(x)

)
+

(
Fbk+b(x) – Fbk–b(x)

)
+

(
Fbk(x) – Fbk–b(x)

)
> . ()

Since Fn(x) is monotone increasing for n and a fixed positive integer x, we have Fbk+b(x)–
Fbk+b(x) > , Fbk+b(x) – Fbk–b(x) > , and Fbk(x) – Fbk–b(x) >  for any positive inte-
ger x, k and odd b ≥ . Hence the numerator of each part in parentheses of the left-hand
side of inequality () is positive, so inequality () holds for any positive integer x, k and
odd b≥ . Hence inequality () is true. Using () repeatedly, we have

∞∑
k=m


Fbk(x)

=
∞∑
k=m

(


Fbk(x)
+


Fbk+b(x)

)

<
∞∑
k=m

(


Fbk(x) – Fbk–b(x)
–


Fbk+b(x) – Fbk+b(x)

)

=


Fbm(x) – Fbm–b(x)
. ()

On the other hand, we prove that for any positive integer x, k and odd b ≥ ,


Fbk(x)

+


Fbk+b(x)
>


Fbk(x) – Fbk–b(x) + 

–


Fbk+b(x) – Fbk+b(x) + 
. ()

Inequality () is equivalent to

Fbk+b(x) + 
Fbk+b(x)(Fbk+b(x) – Fbk+b(x) + )

>
Fbk–b(x) – 

Fbk(x)(Fbk(x) – Fbk–b(x) + )
,

or

Fbk(x)
(
Fbk+b(x) + 

)(
Fbk(x) – Fbk–b(x) + 

)
> Fbk+b(x)

(
Fbk–b(x) – 

)(
Fbk+b(x) – Fbk+b(x) + 

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/205
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Using identities () and (), the above inequality is equivalent to

Lbk+b(x) – Lbk–b(x) – Fbk+b(x) – Fbk+b(x) + Fbk+b+(x)

+ Fbk+b(x) – Lb(x) –  + Fbk+b–(x) + Fbk+(x) + Fbk(x) + Fbk–(x)

+ Fbk–b(x) + Fbk–b(x) > . ()

Since Fn(x) and Ln(x) are monotone increasing for n and a fixed positive integer x, using
identity (), we have

Lbk+b(x) – Lbk–b(x) – Fbk+b(x) – Fbk+b(x)

= Fbk+b+(x) + Fbk+b–(x) – Fbk–b+(x) – Fbk–b–(x) – Fbk+b(x) – Fbk+b(x)

>
(
x + x + 

)
Fbk+b–(x) – Fbk–b+(x) > ,

and

Fbk+b+(x) + Fbk+b(x) – Lb(x) – 

= xFbk+b+(x) –  + Fbk+b(x) – Fb+(x) – Fb–(x) > .

Hence the numerator of each part in parentheses of the left-hand side of inequality ()
is positive, so inequality () holds for any positive integer x, k and odd b ≥ . Hence
inequality () is true. Using () repeatedly, we have

∞∑
k=m


Fbk(x)

=
∞∑
k=m

(


Fbk(x)
+


Fbk+b(x)

)

>
∞∑
k=m

(


Fbk(x) – Fbk–b(x) + 
–


Fbk+b(x) – Fbk+b(x) + 

)

=


Fbm(x) – Fbm–b(x) + 
. ()

Now inequality () follows from () and ().
Similarly, we can consider the case that n = m +  ≥  is odd. At this time, for any odd

b ≥ , Theorem () is equivalent to the inequality


Fbm+b(x) – Fbm(x)

<
∞∑

k=m+


Fbk(x)

≤ 
Fbm+b(x) – Fbm(x) – 

. ()

First we can prove that for any positive integer x, k and odd b ≥ ,


Fbk+b(x)

+


Fbk+b(x)
<


Fbk+b(x) – Fbk(x) – 

–


Fbk+b(x) – Fbk+b(x) – 
. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/205
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Inequality () is equivalent to

Fbk+b(x) – 
Fbk+b(x)(Fbk+b(x) – Fbk+b(x) – )

<
Fbk(x) + 

Fbk+b(x)(Fbk+b(x) – Fbk(x) – )
.

Using identities () and (), the above inequality is equivalent to

Lbk+b(x) – Lbk+b(x) – Fbk+b(x) – Fbk+b(x) +
(
L(x) + 

)
Fbk+b(x)

–
(
L(x) + 

)
Fbk+b(x) + Fbk(x) + Fbk–b(x) + Lb(x) +  > . ()

Since Fn(x) and Ln(x) are monotone increasing for n and a fixed positive integer x, using
identity (), we have

Lbk+b(x) – Lbk+b(x) – Fbk+b(x) – Fbk+b(x)

= Fbk+b+(x) + Fbk+b–(x) – Fbk+b+(x) – Fbk+b–(x) – Fbk+b(x) – Fbk+b(x)

>
(
x + x

)
Fbk+b–(x) +

(
x + 

)
Fbk+b–(x) – Fbk+b+(x) > ,

and

(
L(x) + 

)
Fbk+b(x) –

(
L(x) + 

)
Fbk+b(x) > .

Hence the numerator of each part in parentheses of the left-hand side of inequality ()
is positive, so inequality () holds for any positive integer x, k and odd b ≥ . Hence
inequality () is true. Using () repeatedly, we have

∞∑
k=m+


Fbk(x)

=
∞∑
k=m

(


Fbk+b(x)
+


Fbk+b(x)

)

<
∞∑
k=m

(


Fbk+b(x) – Fbk(x) – 
–


Fbk+b(x) – Fbk+b(x) – 

)

=


Fbm+b(x) – Fbm(x) – 
. ()

On the other hand, we prove that for any positive integer x, k and odd b ≥ ,


Fbk+b(x)

+


Fbk+b(x)
>


Fbk+b(x) – Fbk(x)

–


Fbk+b(x) – Fbk+b(x)
. ()

Inequality () is equivalent to

Fbk+b(x)
Fbk+b(x)(Fbk+b(x) – Fbk+b(x))

>
Fbk(x)

Fbk+b(x)(Fbk+b(x) – Fbk(x))
.

Using identities () and (), the above inequality is equivalent to

Fbk+b(x) + Fbk+b(x) – Fbk+b(x) – Fbk+b(x) – Fbk(x) – Fbk–b(x) > . ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/205
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Since Fn(x) is monotone increasing for n and a fixed positive integer x, using identity (),
we have

Fbk+b(x) + Fbk+b(x) – Fbk+b(x) – Fbk+b(x) – Fbk(x) – Fbk–b(x)

> xFbk+b–(x) + Fbk+b–(x) + xFbk+b–(x) + Fbk+b–(x) – Fbk+b(x)

> (x + )Fbk+b–(x) – Fbk+b(x) > .

Hence the numerator of each part in parentheses of the left-hand side of inequality ()
is positive, so inequality () holds for any positive integer x, k and odd b ≥ . Hence in-
equality () is true. Using () repeatedly, we have

∞∑
k=m+


Fbk(x)

=
∞∑
k=m

(


Fbk+b(x)
+


Fbk+b(x)

)

>
∞∑
k=m

(


Fbk+b(x) – Fbk(x)
–


Fbk+b(x) – Fbk+b(x)

)

=


Fbm+b(x) – Fbm(x)
. ()

Combining () and (), we deduce inequality (). This proves Theorem (). �

Proof of Theorem () First we consider the case that n = m≥  is even. At this time, for
any odd b ≥ , Theorem () is equivalent to


Lbm(x) – Lbm–b(x) – 

<
∞∑

k=m


Lbk(x)

≤ 
Lbm(x) – Lbm–b(x) – 

. ()

Now we prove that for any positive integer k, x ≥  and odd b ≥ ,


Lbk(x)

+


Lbk+b(x)
>


Lbk(x) – Lbk–b(x) – 

–


Lbk+b(x) – Lbk+b(x) – 
. ()

Inequality () is equivalent to

Lbk+b(x) – 
Lbk+b(x)(L


bk+b(x) – Lbk+b(x) – )

>
Lbk–b(x) + 

Lbk(x)(L

bk(x) – Lbk–b(x) – )

.

Using identity (), the above inequality is equivalent to

Lbk+b(x) – Lbk(x) + Lbk+b(x) – Lbk+b(x) + Lbk+b(x)

– Lbk+b(x) – Lbk(x) + Lbk–b(x) – Lbk–b(x) > . ()

Since Ln(x) is monotone increasing for n and a fixed positive integer x, for any positive in-
teger k, x≥  and odd b≥ , we have Lbk+b(x)–Lbk(x) > , Lbk+b(x) – Lbk+b(x) > ,
Lbk+b(x) – Lbk+b(x) – Lbk(x) > , Lbk–b(x) – Lbk–b(x) > .

http://www.journalofinequalitiesandapplications.com/content/2013/1/205
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Hence the numerator of the left-hand side of inequality () is positive, so inequality
() holds for any positive integer k, x ≥  and odd b ≥ . Hence inequality () is true.
Using () repeatedly, we have

∞∑
k=m


Lbk(x)

=
∞∑
k=m

(


Lbk(x)
+


Lbk+b(x)

)

>
∞∑
k=m

(


Lbk(x) – Lbk–b(x) – 
–


Lbk+b(x) – Lbk+b(x) – 

)

=


Lbm(x) – Lbm–b(x) – 
. ()

On the other hand, we prove that for any positive integer k, x ≥  and odd b ≥ ,


Lbk(x)

+


Lbk+b(x)
<


Lbk(x) – Lbk–b(x) – 

–


Lbk+b(x) – Lbk+b(x) – 
. ()

Inequality () is equivalent to

Lbk+b(x) – 
Lbk+b(x)(L


bk+b(x) – Lbk+b(x) – )

>
Lbk–b(x) + 

Lbk(x)(L

bk(x) – Lbk–b(x) – )

.

Using identity (), the above inequality is equivalent to

Lbk+b(x) – Lbk+b(x) – Lbk+b(x) + Lbk(x) – Lbk–b(x) + Lbk+b(x)

– Lbk+b(x) + Lbk+b(x) + Lbk(x) – Lbk–b(x) + Lbk–b(x) > . ()

Since Ln(x) is monotone increasing for n and a fixed positive integer x, for any positive
integer k, x ≥  and odd b≥ , we have

Lbk+b(x) – Lbk+b(x) – Lbk+b(x)

=
(
x + 

)
Lbk+b–(x) + xLbk+b–(x) – Lbk+b(x) – Lbk+b(x)

>
(
x – 

)
Lbk+b(x) + (x – )Lbk+b(x) > ,

and

Lbk+b(x) – Lbk+b(x)

=
(
x + 

)
Lbk+b–(x) + xLbk+b–(x) – Lbk+b(x)

> Lbk+b–(x) – Lbk+b(x) > ,

and Lbk(x) – Lbk–b(x) > , Lbk(x) – Lbk–b(x) > .
Hence the numerator of the left-hand side of inequality () is positive, so inequality

() holds for any positive integer k, x ≥  and even b ≥ . Hence inequality () is true.
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Using () repeatedly, we have

∞∑
k=m


Lbk(x)

=
∞∑
k=m

(


Lbk(x)
+


Lbk+b(x)

)

<
∞∑
k=m

(


Lbk(x) – Lbk–b(x) – 
–


Lbk+b(x) – Lbk+b(x) – 

)

=


Lbm(x) – Lbm–b(x) – 
. ()

Now inequality () follows from () and ().
Similarly, we can consider the case that n = m +  ≥  is odd. At this time, for any odd

b ≥ , Theorem () is equivalent to the inequality


Lbm+b(x) – Lbm(x) + 

<
∞∑

k=m+


Lbk(x)

≤ 
Lbm+b(x) – Lbm(x) + 

. ()

Now we prove that for any positive integer k, x ≥  and odd b ≥ ,


Lbk+b(x)

+


Lbk+b(x)
>


Lbk+b(x) – Lbk(x) + 

–


Lbk+b(x) – Lbk+b(x) + 
. ()

Inequality () is equivalent to

Lbk+b(x) + 
Lbk+b(x)(L


bk+b(x) – Lbk+b(x) + )

>
Lbk(x) – 

Lbk+b(x)(L

bk+b(x) – Lbk(x) + )

.

Using identity (), the above inequality is equivalent to

Lbk+b(x) – Lbk+b(x) + Lbk+b(x) – Lbk+b(x) – Lbk+b(x)

+ Lbk+b(x) – Lbk+b(x) – Lbk+b(x) + Lbk(x) – Lbk–b(x) > . ()

Since Ln(x) is monotone increasing for n and a fixed positive integer x, for any positive
integer k, x ≥ , and odd b ≥ , we have

Lbk+b(x) – Lbk+b(x) =
(
x + 

)
Lbk+b–(x) + xLbk+b–(x) – Lbk+b(x)

> Lbk+b(x) – Lbk+b(x) + xLbk+b–(x) > ,

and

Lbk+b(x) – Lbk+b(x) – Lbk+b(x)

= xLbk+b–(x) + Lbk+b–(x) – Lbk+b(x) – Lbk+b(x) > ,

and Lbk(x) – Lbk–b(x) > , Lbk+b(x) – Lbk+b(x) – Lbk+b(x) > .
Hence the numerator of the left-hand side of inequality () is positive, so inequality

() holds for any positive integer k, x ≥  and odd b ≥ . Hence inequality () is true.
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Using () repeatedly, we have

∞∑
k=m+


Lbk(x)

=
∞∑
k=m

(


Lbk+b(x)
+


Lbk+b(x)

)

>
∞∑
k=m

(


Lbk+b(x) – Lbk(x) + 
–


Lbk+b(x) – Lbk+b(x) + 

)

=


Lbm+b(x) – Lbm(x) + 
. ()

On the other hand, we prove that for any positive integer k, x ≥  and odd b ≥ ,


Lbk+b(x)

+


Lbk+b(x)
<


Lbk+b(x) – Lbk(x) + 

–


Lbk+b(x) – Lbk+b(x) + 
. ()

Inequality () is equivalent to

Lbk+b(x) + 
Lbk+b(x)(L


bk+b(x) – Lbk+b(x) + )

>
Lbk(x) – 

Lbk+b(x)(L

bk+b(x) – Lbk(x) + )

.

Using identity (), the above inequality is equivalent to

Lbk+b(x) – Lbk+b(x) + Lbk+b(x) – Lbk+b(x)

+ Lbk+b(x) + Lbk+b(x) – Lbk(x) + Lbk–b(x) > . ()

It is clear that inequality () holds for any positive integer k, x ≥  and odd b ≥ . So,
inequality () is true. Using () repeatedly, we have

∞∑
k=m+


Lbk(x)

=
∞∑
k=m

(


Lbk+b(x)
+


Lbk+b(x)

)

<
∞∑
k=m

(


Lbk+b(x) – Lbk(x) + 
–


Lbk+b(x) – Lbk+b(x) + 

)

=


Lbm+b(x) – Lbm(x) + 
. ()

Combining () and (), we deduce inequality (). This proves Theorem (). �
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