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1 Introduction

For any variable quantity x, the Fibonacci polynomials F,,(x) and Lucas polynomials L, (x)
are defined by F.a(x) = xF,.1(x) + F,(x), n > 0, with the initial values Fy(x) = 0 and
Fi(x) =1; L,.2(x) = xL,;,1(x) + L,,(x), n > 0, with the initial values Lo (x) = 2 and L; (x) = x. For
x =1, we obtain the usual Fibonacci numbers and Lucas numbers. Let o = %(x + /%% + 4)
and B = %(x — /%% + 4), then from the properties of second-order linear recurrence se-

quences, we have

F,(x) = % and L,(x)=a" +p".

Various authors studied the properties of the Fibonacci polynomials and Lucas polynomi-
als and obtained many interesting results; see [1-3], and [4].

The so-called Fibonacci zeta function and Lucas zeta function defined by

1 1
GE=Y 2 and =Y
n=1 """ n=1 "N

where the F,, and L,, denote the Fibonacci numbers and Lucas numbers, have been con-
sidered in several different ways. Navas [5] discussed the analytic continuation of these
series. In [6] it is shown that for any positive distinct integer s3, s, s3, the numbers ¢r(2s;),
Cr(2sy), and ¢p(2s3) are algebraically independent if and only if at least one of s1, 57, s3 is

even.
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Ohtsuka and Nakamura [7] studied the partial infinite sums of reciprocal Fibonacci

numbers and proved the following conclusions:

L(i 1 >_1J ~ F, ., if nisevenand n > 2;
E =

on F,»,-1 ifnisoddandn>1.

i 1 - F,1F,-1 ifnisevenandn > 2;
F? -

eon F,_1F, if nisodd and n > 1.

Wu and Zhang [8] generalized these identities to the Fibonacci polynomials and Lucas
polynomials. Similar properties were investigated in several different ways; see [9, 10],
and [11]. Recently, some authors considered the nearest integer of the sum of recipro-
cal Fibonacci numbers and other famous sequences and obtained several new interesting
identities; see [12] and [13]. Kilic and Arikan [14] defined a kth-order linear recursive se-

quence u, for any positive integer p, g and n > k as follows:
Uy =PUpy1+qUy 2+ Uy 3+ -+ Uy

and they proved that there exists a positive integer ny such that

(E2)

where || - || denotes the nearest integer. (Clearly, ||x|| = [x + %J.)

=uy —Uy1 (1> ny),

In this paper, we consider the subseries of infinite sums derived from the reciprocals of

the Fibonacci polynomials and Lucas polynomials and prove the following.

Theorem 1 For any positive integer x, n and even a > 2, we have

00 -1
) (Z . ) = F®) - Fara®) 1 (1 1)

=Lan(%) = Lan-a(x) (n>=1).

@ (ZL !

=12 (x)-L} ()+1 (n>2).

an—a

k=n )

00 -1

(3) (Z ng(x)) = FuZn(x) - an—a(x) -1 (l’l Z 1)'
@) (Z " )

Theorem 2 For any positive integer x and odd b > 1, we have

M i 1 - _ Fp, (%) = Fppep(x) ifnisevenandn>2;
P Fi(x) Fpu(x) = Fpup(x) =1 ifnisodd and n > 1.
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41
1 Ly, (%) = Lpu—p(x) -1
2 =
@ L(g Lk (x)) J Ly (%) — Lpn—p(x)

1 B FZn (%) - Fl?n—b (*)
3) . 4
P () F? (x) - F ,(x) -1

Nk

Particularly, for x > 2, we have

ifnisevenandn>2;

ifnisodd andn> 3.

ifnisevenandn>2;

ifnisoddandn>1.

ifnisevenandn>2;

a
= 1 L%n (%) - Lin—b (x) -3

4 _ =

@) L(,;; Lik(x)> J L? (x)-L2 ,(x)+2 ifnisoddandn>3.

Ifx=1,b=1(respectively,x =2,b =1) orx =1, b = 3, then from our theorems we can deduce

the conclusions of [7-10], and [11].

2 Proof of theorems

To complete the proof of our theorems, we need the following lemma.

Lemma For any positive integer x, m, and n,

I%@EM@=;%Z

Lyy(%)Ly(%) = Lypsn(%) + (=1)" Ly (),

Fm(x)Ln(x) = Fm+n(x) + (_l)nFm—n(x) = Fm+n(x) -

Fn—l(x) + Fn+l(x) = Ln(x)'

(Linen(®) = (<1)"Lynn(%)),

(_l)an—m(x)¢

@
(2)
(3)
(4)

Proof We only prove identities (1) and (4), and other identities are proved similarly. For

any positive integer x, m, and #, from the identity

F,(x) = fl/y;z_—f:; and L,(x) =" + 13;4’
we have
Fm(x)Fn(x) _ (am — IB””)(O[V! _ ﬁﬂ) _ (amﬂ't + :3m+n —Olnﬁm _ C{mﬁ”)

x2+4
1

= 5 Loen®) = (D"Lyps (),

x° +4
and

n-1 n-1 n+l n+l
o' - p o - p

x2 +4

oo )= BB+ )

Fp1(%) + Fpa(x) =

Va2 + 4 Va2 + 4

x2+4

This proves identities (1) and (4).

(Va2 + 4)a" + (V> + 4)p" Ve

Va? + 4

ﬂn = Ln(x)-

O

Now we shall complete the proof of our theorems. We shall prove only Theorems 1(1),

1(3), 2(1), and 2(4), and other identities are proved similarly and omitted. First, we prove

Theorem 1(1).
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Proof of Theorem 1(1) Theorem 1(1) is equivalent to

oo

1 1 1
Fun(x) — Fap—a(x) ) kZ:y; Fr(x) = Fun(x) — Fap—a(x) — 1 ©)

For any positive integer x, k and even a > 2, using identity (1), we have

1 1 1
Fu(®)  Fa®) — Fata(®)  Fatra(®) — Fau(x)
1 Fai—alx)
" Fakea®) = Far(x)  Far(®)(Farc (%) = Far—a(x))
~ F2.(%) = Fak—a(%)Fagsa(x)
" Fut(0) (o (%) = Fat—a () Fatera (%) — Eat ()
Ly, (x) -2

B Fak(x)(x2 + 4')(Fak(x) - Fak—a(x))(Fzzk+a(x) - Fak(x)) ’ (6)

Since F,(x) and L,(x) are monotone increasing for n and a fixed positive integer x, we have
Lou(x) =2 > 0, Fape(x) = Fak—q(x) > 0, and F . (%) — F4x(x) > O for any positive integer x, k and
even a > 2. Hence the numerator of the right-hand side of the above identity is positive

for any positive integer x, k and even a > 2, so we get

1 1 1

> - . (7)
Fak(x) Fux (x) —Fuk (x) Fuira (x) — Fui (x)
Using (7) repeatedly, we have
oo o0
1 1 1
> e 2 - )
on For(x) on Fur(%) = Far—a(®)  Farra(x) — Far(x)
B 1 1 s 1
Fﬂ}’l (x) - Fan—a (x) FﬂVl+ﬂ (x) - Fan (x) FHVI+ﬂ (x) - Fa}’l (x)
1 s 1
Fan+2u (x) - Fan+a(x) Fan+2a (x) - Fan+a (x)
1
=" 8
Fan(x) - Fan—a(x) ( )
On the other hand, we prove that for any positive integer x, k and even a > 2,
1 1 1
)

< - .
Foi(x)  Far(x) = Fara(®) =1 Fagra(x) = Far(x) = 1
Inequality (9) is equivalent to

Fu_.x)+1 . 1
Fak(x)(Fak(x) - Fﬂk—a(x) - 1) Fak+a(x) - Fak(x) -1

’

or

Fak—a (x)Fak-m (x) - Fak—a (x) + Fak+a (x) -1> ij (x)

Page 4 of 14


http://www.journalofinequalitiesandapplications.com/content/2013/1/205

Wu and Zhang Journal of Inequalities and Applications 2013, 2013:205
http://www.journalofinequalitiesandapplications.com/content/2013/1/205

Using identity (1), the above inequality is equivalent to

Fak+a+2 (x) + Fak+a—2 (x) - Fak—a+2(x) - Fak—a—Z (x)

+ 2F pra(%) — 2F gk—a(%) — Log (%) — La(x) > 0,
or

(Fak+u+2 (%) = Lag (x)) + (Fuk+a (%) = Fak—as2 (x))
+ (Fuk+a—2 (%) = Fak—q-2(x) — LZ(x)) + (Fakm(x) - 2Fak—a(x)) > 0. (10)
Since F,(x) and L, (x) are monotone increasing for # and a fixed positive integer x, we have

Farea(®) = Fag—ar2(%) > 0, Fagra—2(%) = Fag_a—2(x) — La(x) > 0, and Fgi4(%) — 2F—4(x) > O for
any positive integer x, k and even a > 2. Using identity (4), we have

Fuk+a+2 (x) - L2a (x) > F2a+2 (x) - LZa (x)
= xF24.1(%) + Fog(%) — Foge1(x) — Fag_1(%)

= (x — 1)Fou1 (%) + Fau(x) — Fag_1(x) > 0.

Hence the numerator of each part in parentheses of the left-hand side of inequality (10)
is positive, so inequality (10) holds for any positive integer x, k and even a > 2. Hence
inequality (9) is true. Using (9) repeatedly, we have

oo

1 1 1
ZﬂMﬁ;XﬂM%ﬂmW—fﬂm@—M@—J

k=n

oo

- 1 11)
- Fan(x)_Fan—a(x)_l. (

Now inequality (5) follows from (8) and (11). This proves Theorem 1(1). O

Proof of Theorem 1(3) Now we prove Theorem 1(3). Theorem 1(3) is equivalent to

1 =1 1
2 2 < Z 2 =% 2 :

F2,(0) - Fa, ) = FA() ~ F3,(0) —F2, (01

an—a

For any positive integer x, k and even a > 2, using identities (1) and (2), we have

1 1 1
P2 PR -F (0 F4,0-F4x)

_ F:ZL/( (x) - ij—a (x)ijﬂz (x)

T P@)(EL @) - P () (2, () - F3 ()

ak+a
_ (ng(x) — Fak—a(X)Fapra (x))(ij (%) + Fak—a(%)Fakra(x))
E2 () (F2(x) = Foy_ ()(E2%, (%) — F2 ()

_ (Laax) - 2)(F§k (%) + Fak—a(%)Fakra(x))
F2 (%) (&% + 4)(F2 (x) — F2_ (@) (FX, (%) — F2 (%))

ak+a

(13)
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Since F,(x) and L,(x) are monotone increasing for n and a fixed positive integer x, we have
Ly, (x)-2>0, ﬂk(x) ak_ (x) >0,and akm(x) —ng(x) > 0 for any positive integer x, k and
even a > 2. Hence the numerator of the right-hand side of the above identity is positive

for any positive integer x, k and even a > 2, so we get

1 1 1 )
F2 (%) F2 () —F2 () P2 (x)—F4()
Using (14) repeatedly, we have
=1 = 1 1 1
> . (15)
; Fy () ; (ij(x) ~F ) P2, (x)-FZ (x)) F2,(x) - F2,_,(x)
On the other hand, we prove that for any positive integer x, k and even a > 2,
1 1 1 (16)
< .
Fazk(x) ng(x) F ak— a(x) ak+a(x) F ( ) 1
Inequality (16) is equivalent to
ij ) +1 1
> ’
ka( )(ka( ) - ij ) =1) F3k+a(x)_FZk(x)_1
or
ak a(x)F k+a(x) (X) +F k+a(x) F, ](—ﬂ( ) -1>0.
Using identities (1) and (2), the above inequality is equivalent to
(%% +2) Loaks2a(®) + 4Loak (%) — (%% + 6) Logk—24(x) — 4 + Laa(x) — La(x) > 0. 17)

Since L,(x) are monotone increasing for # and a fixed positive integer x, we have Ly, (x) —
L4 (x) > 0 for any positive integer x and even a > 2. On the other hand, we have

(x2 + 2)L2ak+2u (%) + 4Loak (x) - (x2 + 6)L2ak—2a(x) -4
> (x2 + 6)L2ak(x) - (x2 + 6)L24k_2a(x) —4> (x2 + 6) —4>0.
Hence the numerator of the left-hand side of inequality (17) is positive, so inequality (17)

holds for any positive integer x, k and even a > 2. Hence inequality (16) is true. Using (16)

repeatedly, we have

kXZy; sz(x) ) Z<F§k(x) ak a(x) ak+a(x) E, k(x) 1)
1
F2 L (x) — F2,_ (%) -1 18)

Now inequality (12) follows from (15) and (18). This proves Theorem 1(3). O
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Proof of Theorem 2(1) First we consider the case that n = 2m > 2 is even. At this time, for
any odd b > 1, Theorem 2(1) is equivalent to

1 =1 1
< . (19)
Fomp(%) — Fomp-p(x kz;n Fpr(x Fzmb( ) — Fomp—p(x)

Now we prove that for any positive integer x, k and odd b > 1,

1 1 1 1

+ < - . (20)
Fopk(%)  Fopian(®)  Fopk(%) — Fopk—p(®)  Fopks2(%) — Fopksb (%)

Inequality (20) is equivalent to

Fopksop(x) . Fopk—p(x)
Fopkss (%) (Fapir2p(®) — Foprsn(%))  Fopr () (Fapk (%) — Fopi—p (%))

Using identities (1) and (3), the above inequality is equivalent to

(Fapkrap(®) = Fopicrs (%)) + (2Fapicr2p (%) = 2Fapi_p(x)) + (Fap () — Fapksp(x)) > 0. (21)

Since F,(x) is monotone increasing for # and a fixed positive integer x, we have Fypp,4p(x) —
Fopirb(x) > 0, 2Foprs25(%) — 2Fopk_p(x) > 0, and Fop(x) — Faopk_35(x) > O for any positive inte-
ger x, k and odd b > 1. Hence the numerator of each part in parentheses of the left-hand
side of inequality (21) is positive, so inequality (21) holds for any positive integer x, k and
odd b > 1. Hence inequality (20) is true. Using (20) repeatedly, we have

[e¢] o]

1 1 1
Z Fulx) Zm(szk(x) * szk+b(x)>

k=2m k=

> 1
) Z<F2bk(x) Fonep(®)  Foprrap(x) — szk+b(x)>

k=m
1
= ) (22)
Fopm(x) = Fopm—p(x)
On the other hand, we prove that for any positive integer x, k and odd b > 1,
1 1 1 1
(23)

+ > - .
Fopk(%)  Fopken(®)  Fopk(X) — Fopkop(®) + 1 Fopraap(®) — Fopran(x) +1

Inequality (23) is equivalent to

Foprsop(x) +1 S Fopr_p(x) —
Fopes () (Fapicr2n (%) = Foprsn(®) + 1)~ Fope () (Fopic(x) — Fopr—p(x) + 1)

or

Fopic(x) (Fapksp () + 1) (Fopk (%) — Fopk—p(x) + 1)

> Fopiers (%) (Fapk—p (%) — 1) (Fapks26() — Fapiers (%) +1).

Page 7 of 14


http://www.journalofinequalitiesandapplications.com/content/2013/1/205

Wu and Zhang Journal of Inequalities and Applications 2013, 2013:205 Page 8 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/205

Using identities (1) and (3), the above inequality is equivalent to

Lapke3b(%) — Lapk-p(%) — Fopkrab(%) — 2F2pk425(%) + Fopiespe2 (%)
+ 3Fopkep(%) — 2Lop(x) — 4 + Fopirn— (%) + Fopra (%) + Fopi (%) + Fopr—a(%)

+ 2Fopk—p(%) + Fopr—sp(x) > 0. (24)

Since F,(x) and L, (x) are monotone increasing for n and a fixed positive integer x, using
identity (4), we have

Lapks3p(%) — Lapk—p(%) — Fopiran(x) — 2Fopis2p (%)
= Fapir3pe1(%) + Fapke3p-1(%) — Fapk-p+1(%) — Fapk-p-1(%) — Fapkrap(%) — 2Fopi0p(%)

> (2x% + % + 4) Fapks3p-3(%) = 5Fapi_ps1 (%) > 0,
and

Fopksbs2(%) + 3Fopisn () — 2Lop(x) — 4

= XFopksbe1(X) — & + 4Foppip (%) — 2F2p41 (%) — 2F551(x) > 0.

Hence the numerator of each part in parentheses of the left-hand side of inequality (24)
is positive, so inequality (24) holds for any positive integer x, kK and odd » > 1. Hence
inequality (23) is true. Using (23) repeatedly, we have

i 1 i( 1 1 )
= +
S For) =\ Fopi(x)  Fapir (%)
. i( 1 1 )
=\ Fopi(%) = Fopip(®) + 1 Fopperop (%) = Fapirp (%) + 1

1

 Fop(®) = Fopmp(®) + 1

(25)

Now inequality (19) follows from (22) and (25).
Similarly, we can consider the case that # = 2m + 1 > 1 is odd. At this time, for any odd

b >1, Theorem 2(1) is equivalent to the inequality

o]

1 1
<2
Fapm (%) = Fopm(%) T~ Fpr(x)
1
- . (26)
Fme+b(x) — Fopm (x) -1
First we can prove that for any positive integer x, k and odd b > 1,
1 1 1 1
(27)

+ < — .
Fopken(®)  Fopraap(®)  Fopran(%) — Fopr (%) =1 Fopgasp(%) — Foprsan(®) — 1
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Inequality (27) is equivalent to

Foprasp(x) — 1 . Fopr(x) +1
Fopks26(®) (Fopis 3 (%) — Faprs2p(®) = 1) Fopieas (%) (Fapicr(x) — Fop(x) — 1)

Using identities (1) and (3), the above inequality is equivalent to

Lapicsb (%) = Laiers (%) — Fapisp (%) = 2Fapiersp (%) + (La(x) + 3) Fapsp (%)

— (L2 (%) + 1) Fapr (%) + Fop() + 2Fpi2p(%) + 2Ly (x) + 4 > 0. (28)

Since F,(x) and L, (x) are monotone increasing for # and a fixed positive integer x, using
identity (4), we have

Lapkssp(%) = Laprrb (%) — Fapiasp (%) — 2Fopp35(%)
= Fapks5b41(%) + Fapkssb-1(%) = Fapisbe1(X) — Fapksb-1(%) — Fopirsp(%) — 2Fapk+35(%)

> (&% + 3%) Fapkssp-2 (%) + (8 + 2) Fapirsp-3(%) — 5Fapicsps1(x) > 0,

and

(L2(x) + 3) Fapks2s () — (L2 (%) + 1) Fapis(x) > 0.

Hence the numerator of each part in parentheses of the left-hand side of inequality (28)
is positive, so inequality (28) holds for any positive integer x, k and odd b > 1. Hence

inequality (27) is true. Using (27) repeatedly, we have

[ee] o0

1 1 1
Z Fy(x) ;(Fzzmh(x) * szk+2b(x))

k=2m+1

o0
. Z ( 1 ~ 1 )
Fopken (%) — Fopr(®) =1 Foprasp(®) — Fapraan(®) — 1

k=m
1
= . (29)
Fopmib (%) — Fopm(x) — 1
On the other hand, we prove that for any positive integer x, k and odd b > 1,
1 1 1 1
(30)

+ > - )
Fopket(®)  Fopraap®)  Fopran (%) — Fopr(%)  Fapre3p (%) — Faprr2p (%)

Inequality (30) is equivalent to

Fopri3p(x) Fopi(x)
Fopks26(®) (Fapis36(%) = Foprs2s (%))~ Fopier () (Fapicsp (%) — Fopr (%))

Using identities (1) and (3), the above inequality is equivalent to

Fopkasp (%) + 2Fopii3p(%) — Fopiaon (%) — Fopian (%) — 2Fopi (%) — 2Fopk—2p (%) > 0. (31)

Page 9 of 14
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Since F,(x) is monotone increasing for # and a fixed positive integer x, using identity (4),

we have

Fopks5p(X) + 2Fopi436(%) — Fapirap (%) — Fopian (%) — 2Fopx (%) — 2Fppx_2p ()
> %Fopkasp-1(%) + Fapkasp-2(X) + 26Fopk.3p-1(%) + 2F2pks3p-2(%) — 6 Fopiop (%)

> (3% + 3) Fopks3p—2 (%) — 6 Foprrap(x) > 0.

Hence the numerator of each part in parentheses of the left-hand side of inequality (31)
is positive, so inequality (31) holds for any positive integer x, k and odd b > 1. Hence in-
equality (30) is true. Using (30) repeatedly, we have

oo oo

3 1 Z( Lo, )
e For®) =\ Fapian(®)  Fopirop (%)

> 1 1

> p—
,; <F2bk+b(x) — Fop(®)  Fopks3p(%) — Fapisan(%) )

1

= ) (32)

Fopmib(%) — Fopp (%)
Combining (29) and (32), we deduce inequality (26). This proves Theorem 2(1). O

Proof of Theorem 2(4) First we consider the case that # = 2m > 2 is even. At this time, for

any odd b > 1, Theorem 2(4) is equivalent to

o]

1 ¥ < &
< < .
L3, (%) = L3y, (%) =2 k=2m Ly (%) = L3,,(®) — L3, (%) -3

Now we prove that for any positive integer k, x > 2 and odd b > 1,

1 1 1 1

+ > - . (34)
L) Loy () L3 (0) = L3 (1) =2 L3, 05(%) = L3, (x) =2
Inequality (34) is equivalent to
L3y0p (%) =2 S L2, ,(x) +2
L%bk+b(x) (Lgbk+2b(x) - Lgbk+b(x) -2) L%bk(x) (Lgbk(x) - L%bk—b (x) - 2)
Using identity (2), the above inequality is equivalent to
ALgpirap(x) — dLgpi (%) + 2Lgpir26(%) — Lapkrsn (%) + 6 Lapiran(x)
— 3Lapk+26(%) — Lapi (%) + 6 Lapk_2p(%) — Lapk—ep(x) > 0. (35)

Since L,(x) is monotone increasing for # and a fixed positive integer x, for any positive in-
teger k,x > 2 and odd b > 1, we have 4 Lgpg.ap(x) — 4Lgpi (%) > 0, 2Lgpir25(X) — Lapk+sn(x) > 0,

6Lapk+ab(%) — 3Lapks2b (%) — Lapk(x) > 0, 6 Lapr—2p(%) — Lapk—65(x) > 0.
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Hence the numerator of the left-hand side of inequality (35) is positive, so inequality
(35) holds for any positive integer k, x > 2 and odd b > 1. Hence inequality (34) is true.
Using (34) repeatedly, we have

o0

1
Z Lik(")

k=2m

%) 1 1
) g(%bk(") ' Lgbkarb(x))

2z o 2)

2bk(x) Lzbk p(®) =2 L2bk+2b(x) L2bk+b(x) 2

k=m
1
(36)
L%bm( ) = L3 &) =2
On the other hand, we prove that for any positive integer k, x > 2 and odd b > 1,
1 1 1 1 (37)
+ < - .
L3 ) Loy () Loy () = L3y () =3 L3y 0, (0) = L3y, (%) = 3
Inequality (37) is equivalent to
2 2
L2bk+2b( x) -3 Lzbk_b(x) +3
Lzbk+b(x)( 2bk+2b(x) L3 bk (®) = 3) L%bk(x) (Lgbk(‘x) - L%bk—b (*) - 3)
Using identity (3), the above inequality is equivalent to
Lgpicrop(%) — dLgpiran(x) — 2Lgpir2p (%) + 4Lgpr (%) — Lepk—25 (%) + Lapkisp(x)
— 6Lapirap(%) + 6Lapirap(x) + 4Lapi (%) — 6Lapk_25(%) + Lapr-ep(x) > 0. (38)

Since L,(x) is monotone increasing for n and a fixed positive integer x, for any positive
integer k, x > 2 and odd b > 1, we have

Lspiren (%) — 4Lgpr+ap(x) — 2Lgpis2p (%)
= (%% + 1) Lspkrob-1(%) + ¥Lprob-3() — 4Lsprap(X) — 2Lgpis2(%)

> (&% = 3) Lapksan(x) + (x — 2)Laprsap(x) > 0

and

Lapk+8p (%) — 6Lapkran(x)
= (& + 1) Lapkssp-1(%) + ¥Lapkrsp-3(%) — 6 Lapkrap(x)
> 7L4pks8p-3(%) — 6Lapiran(x) > 0,
and 4Lgpi (%) — Lgpk—25(%) > 0, 4Lapi (%) — 6 Lapk_op(x) > 0.

Hence the numerator of the left-hand side of inequality (38) is positive, so inequality
(38) holds for any positive integer k, x > 2 and even b > 1. Hence inequality (37) is true.
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Using (37) repeatedly, we have

o0 o0

1 1 1
> :Z< 2 t 72 >
k—2m Ly (x) o Lop®) Ly, ()

(gt e3)
< p—
L3 () = L3y, (0) =3 L3y 05(0) = L3y, (%) = 3

k=m
1

B : 39
13,,,%) — 12, ,(x)-3 (39)

Now inequality (33) follows from (36) and (39).
Similarly, we can consider the case that # = 2m + 1 > 3 is odd. At this time, for any odd
b >1, Theorem 2(4) is equivalent to the inequality

o]

1 1 1

< < .
L3 (%) = L3,,,(x) + 3 kedmel Ly () ™ L3y, (x0) = L3, (x) +2

(40)

Now we prove that for any positive integer k, x > 2 and odd b > 1,

1 1 1 1
+

> - .
L%bk+b(x) L%bk+2b(x) L%bk+b(x) - L%bk(x) +3 L%bk+3b(x) - L%bk+2h(x) +3

(41)

Inequality (41) is equivalent to

L33 () +3 S L3, () -3 '
L2 tsap (L33 (%) = L%bk+2b(x) +3) L%bk+b(x)(L%bk+b(x) - L%bk(x) +3)

Using identity (2), the above inequality is equivalent to

Lgpicr106(%) — 4Lgpirsp (%) + 4Lgpirab (%) — Lapksan (%) — Lapi10(%)

+ 6Lapkrop(%) — 4Lapkrap(%) — 4Lapkr2p(X) + 6Lapi (%) — Lapk_ap(x) > 0. (42)

Since L,(x) is monotone increasing for n and a fixed positive integer x, for any positive

integer k, x > 2, and odd b > 1, we have

Lspicsr06 (%) — 4Lspicssp () = (5 + 1) Lapkr10p-2 (%) + *Lgpics105-3(%) — 4Lpirsp (%)

> 5Lgpk+8b (%) — 4Lgpicrsp (%) + XLgpir105-3(%) > 0,

and

6Lapkrob(%) — 4Lapkrab(%) — 4Lapiron(x)
= 6xLapkr6b-1(%) + 6Lapkrop-2(%) — 4Lapksap (%) — 4Lapksop(x) > 0,
and 6Lapk (%) — Lapk—ap(%) > 0, 4Lgpicran(%) — Lapisn (%) — Lapk+106(%) > 0.

Hence the numerator of the left-hand side of inequality (42) is positive, so inequality
(42) holds for any positive integer k, x > 2 and odd b > 1. Hence inequality (41) is true.
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Using (41) repeatedly, we have

o0 o0
1 1 1
> 7 :Z< ) 72 )
it L) =\ Ly ) Loprnp(®)

CwCE )

o Lopp@) = L3y () 3 L3y, (%) = L35 (%) + 3

1
T2 2 :
L2bm+b(x) - L2bm (x) +3

(43)

On the other hand, we prove that for any positive integer k, x > 2 and odd b > 1,

1 1 1 1
+ < — .
L%hkm(x) L%bkﬂb(x) L%bk+b(x) - L%bk(x) +2 L%bk+3b (x) - L%bk+2b () +2

(44)

Inequality (44) is equivalent to

L%bk+3b (%) +2 S L%bk (%) -2
L@ L35 () = L300 +2) ~ L3, (L3, (0) = L5, (%) +2)

Using identity (2), the above inequality is equivalent to

4Lgpiisn (%) — 4Lgprran(X) + Lapks10b(%) — 6Lapkrop(%)

+ Lapiran(x) + Lapkrop(%) — 6Lap (%) + 6 Lapi_ap(x) > 0. (45)

It is clear that inequality (45) holds for any positive integer &, x > 2 and odd b > 1. So,
inequality (44) is true. Using (44) repeatedly, we have

o0 o0
1 1 1
Z 2 =Z< 2 ) )
kemil Ly (%) om Lopees®)  Loprnp(®)

o0

Z ( 1 1 )
< f—
om Lopgesp®) = Lo (0) 2 L35 (%) = L3pp05(0) + 2

1

= . (46)
L%bnﬁb(x) - L%bm (x) +2

Combining (43) and (46), we deduce inequality (40). This proves Theorem 2(4). O
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