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Abstract
In this study we introduce the concept of Sαλ (f )-statistical convergence of sequences
of real valued functions. Also some relations between Sαλ (f )-statistical convergence

and strong wβ
λp(f )-summability are given.
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1 Introduction
The idea of statistical convergence was given by Zygmund [] in the first edition of his
monograph published in Warsaw in . The concept of statistical convergence was in-
troduced by Steinhaus [] and Fast [] and then reintroduced by Schoenberg [] inde-
pendently. Over the years and under different names, statistical convergence has been
discussed in the theory of Fourier analysis, ergodic theory, number theory, measure the-
ory, trigonometric series, turnpike theory and Banach spaces. Later on, it was further in-
vestigated from the sequence space point of view and linked with summability theory by
Connor [], Edely et al. [], Et et al. [–], Fridy [], Güngör et al. [–], Kolk [],
Orhan et al. [, ], Mursaleen [], Kumar and Mursaleen [], Rath and Tripathy [],
Salat [], Savaş [] andmany others. In recent years, generalizations of statistical conver-
gence have appeared in the study of strong integral summability and the structure of ideals
of bounded continuous functions on locally compact spaces. Statistical convergence and
its generalizations are also connected with subsets of the Stone-Čech compactification of
the natural numbers. Moreover, statistical convergence is closely related to the concept of
convergence in probability.
In the present paper, we introduce and examine the concepts of pointwise λ-statistical

convergence of order α and pointwise [V ,λ]-summability of order α of sequences of real
valued functions. In Section , we give a brief overview about statistical convergence and
strong p-Cesàro summability. In Section , we establish some inclusion relations between
wβ

λp(f ) and Sα
λ (f ) and between Sα

λ (f ) and Sλ(f ).

2 Definition and preliminaries
The definitions of statistical convergence and strong p-Cesàro convergence of a sequence
of real numbers were introduced in the literature independently of one another and fol-
lowed different lines of development since their first appearance. It turns out, however,
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that the two definitions can be simply related to one another in general and are equiva-
lent for bounded sequences. The idea of statistical convergence depends on the density of
subsets of the set N of natural numbers. The density of a subset E of N is defined by

δ(E) = lim
n→∞


n

n∑
k=

χE(k) provided the limit exists,

where χE is the characteristic function of E. It is clear that any finite subset of N has zero
natural density and δ(Ec) =  – δ(E).
The α-density of a subset E of N was defined by Çolak []. Let α be a real number such

that  < α ≤ . The α-density of a subset E of N is defined by

δα(E) = lim
n


nα

∣∣{k ≤ n : k ∈ E}∣∣ provided the limit exists,

where |{k ≤ n : k ∈ E}| denotes the number of elements of E not exceeding n.
It is clear that any finite subset of N has zero α density and δα(Ec) =  – δα(E) does not

hold for  < α <  in general, the equality holds only if α = . Note that the α-density of any
set reduces to the natural density of the set in case α = .
The order of statistical convergence of a sequence of numbers was given by Gadjiev

and Orhan in [] and after then statistical convergence of order α and strong p-Cesàro
summability of order α studied by Çolak [, ] and generalized by Çolak and Asma [].
Let λ = (λn) be a nondecreasing sequence of positive real numbers tending to ∞ such

that λn+ ≤ λn + , λ = . The generalized de la Vallée-Poussin mean is defined by tn(x) =


λn

∑
k∈In xk , where In = [n–λn+,n] for n = , , . . . . A sequence x = (xk) is said to be (V ,λ)-

summable to a number � if tn(x)→ � as n→ ∞ []. If λn = n, then (V ,λ)-summability is
reduced to Cesàro summability. By � we denote the class of all nondecreasing sequence
of positive real numbers tending to ∞ such that λn+ ≤ λn + , λ = .
Throughout the paper, unless stated otherwise, by ‘for all n ∈ Nno ’ we mean ‘for all n ∈

N except finite numbers of positive integers’ where Nno = {no,no + ,no + , . . .} for some
no ∈ N = {, , , . . .}.
Let A be any non empty set, by B(A) we denote the class of all bounded real valued

functions defined on A.

3 Main results
In this section we give the main results of this paper. In Theorem ., we give the inclu-
sion relations between the sets of Sα

λ (f )-statistically convergent sequences for different α′s
and μ′s. In Theorem ., we give the relationship between the strong wα

λp(f )-summability
and the strong wβ

μp(f )-summability. In Theorem ., we give the relationship between the
strong wβ

μp(f )-summability and Sα
λ (f )-statistical convergence.

Definition . Let the sequence λ = (λn) be as above and α ∈ (, ] be any real number.
A sequence of functions {fk} is said to be Sα

λ (f )-statistical convergence (or pointwise λ-
statistically convergent of order α) to the function f on a set A if, for every ε > ,

lim
n


λα
n

∣∣{k ∈ In :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣ = ,
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where In = [n – λn + ,n] and λα
n denote the αth power (λn)α of λn, that is λα = (λα

n) =
(λα

 ,λα
 , . . . ,λα

n , . . .). In this case, we write Sα
λ – lim fk(x) = f (x) on A. Sα

λ – lim fk(x) = f (x)
means that for every δ >  and  < α ≤ , there is an integer N such that


λα
n

∣∣{k ∈ In :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣ < δ,

for all n > N (= N(ε, δ,x)) and for each ε > . The set of all pointwise λ-statistically con-
vergent function sequences of order α will be denoted by Sα

λ (f ). In this case, we write
Sα

λ – lim fk(x) = f (x) on A. For λn = n for all n ∈N, we shall write Sα(f ) instead of Sα
λ (f ) and

in the special case α = , we shall write Sλ(f ) instead of Sα
λ (f ).

The Sα
λ (f )-statistical convergence is well defined for  < α ≤ , but it is not well defined

for α >  in general. Let us define the sequence {fk} as follows:

fk(x) =

⎧⎨
⎩
, if k = n,


+kx if k �= n,
n = , , , . . .

then both

lim
n→∞


λα
n

∣∣{k ∈ In :
∣∣fk(x) – 

∣∣ ≥ ε for every x ∈ A
}∣∣ ≤ lim

n→∞
[λn] + 
λα

n
= 

and

lim
n→∞


λα
n

∣∣∣∣
{
k ∈ In :

∣∣∣∣fk(x) – 
 + kx

∣∣∣∣ ≥ ε for every x ∈ A
}∣∣∣∣ ≤ lim

n→∞
([λn] + )

λα
n

= 

for α > , and so Sα
λ (f )-statistically converges both to  and , i.e. Sα

λ – lim fk(x) =  and
Sα

λ – lim fk(x) = . But this is impossible.

Definition . Let the sequence λ = (λn) be as above, α ∈ (, ] be any real number and
let p be a positive real number. A sequence of functions {fk} is said to be strongly wα

λp(f )-
summable (or pointwise [V ,λ]-summable of order α), if there is a function f such that

lim
n→∞


λα
n

∑
k∈In
x∈A

∣∣fk(x) – f (x)
∣∣p = .

In this case, we write wα
λp – lim fk(x) = f (x) on A. The set of all strongly wβ

λp(f )-summable
sequences of function will be denoted by wα

λp(f ). For λn = n for all n ∈ N, we shall write
wα
p (f ) instead ofwα

λp(f ) and in the special case α = , we shall writewλp(f ) instead ofwα
λp(f ).

Theorem . Let λ = (λn) and μ = (μn) be two sequences in � such that λn ≤ μn for all
n ∈Nno ,  < α ≤ β ≤  and {fk} be a sequence of real valued functions defined on a set A.

(i) If

lim inf
n→∞

λα
n

μ
β
n
> 

then Sβ
μ(f ) ⊆ Sα

λ (f );

http://www.journalofinequalitiesandapplications.com/content/2013/1/204
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(ii) If

lim
n→∞

μn

λ
β
n
= 

then Sα
λ (f ) ⊆ Sβ

μ(f ).

Proof (i) Suppose that λn ≤ μn for all n ∈ Nno and let () be satisfied. Then In ⊂ Jn and so
that ε >  we may write

{
k ∈ Jn :

∣∣fk(x)– f (x)∣∣ ≥ ε for every x ∈ A
} ⊃ {

k ∈ In :
∣∣fk(x)– f (x)∣∣ ≥ ε for every x ∈ A

}

and so


μ

β
n

∣∣{k ∈ Jn :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣

≥ λα
n

μ
β
n


λα
n

∣∣{k ∈ In :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣

for all n ∈ Nno , where Jn = [n – μn + ,n]. Now taking the limit as n → ∞ in the last in-
equality and using (), we get Sβ

μ(f ) ⊆ Sα
λ (f ).

(ii) Let Sα
λ – lim fk(x) = f (x) onA and () be satisfied. Since In ⊂ Jn, for ε > , wemay write


μ

β
n

∣∣{k ∈ Jn :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣

=


μ
β
n

∣∣{n –μn +  ≤ k ≤ n – λn :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣

+


μ
β
n

∣∣{k ∈ In :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣

≤ μn – λn

μ
β
n

+


μ
β
n

∣∣{k ∈ In :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣

≤ μn – λ
β
n

λ
β
n

+


μ
β
n

∣∣{k ∈ In :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣

≤
(

μn

λ
β
n
– 

)
+


λα
n

∣∣{k ∈ In :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣

for all n ∈ Nno . Since limn
μn
λ
β
n
=  by () the first term and since Sα

λ – lim fk(x) = f (x) on A,
the second term of right-hand side of above inequality tends to  as n → ∞. (Note that
(μn

λ
β
n
– )≥  for all n ∈Nno .) This implies that Sα

λ (f ) ⊆ Sβ
μ(f ). �

From Theorem ., we have the following results.

Corollary . Let λ = (λn) and μ = (μn) be two sequences in � such that λn ≤ μn for all
n ∈Nno and {fk} be a sequence of real valued functions defined on a set A. If () holds then,

(i) Sα
μ(f ) ⊆ Sα

λ (f ), for each α ∈ (, ] and for all x ∈ A;
(ii) Sμ(f ) ⊆ Sα

λ (f ), for each α ∈ (, ] and for all x ∈ A;
(iii) Sμ(f ) ⊆ Sλ(f ) for all x ∈ A.
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Corollary . Let λ = (λn) and μ = (μn) be two sequences in � such that λn ≤ μn for all
n ∈Nno and {fk} be a sequence of real valued functions defined on a set A. If () holds then,

(i) Sα
λ (f ) ⊆ Sα

μ(f ) for each α ∈ (, ] and for all x ∈ A;
(ii) Sα

λ (f ) ⊆ Sμ(f ), for each α ∈ (, ] and for all x ∈ A;
(iii) Sλ(f ) ⊆ Sμ(f ) for all x ∈ A.

Theorem . Given for λ = (λn), μ = (μn) ∈ � suppose that λn ≤ μn for all n ∈ Nno ,  <
α ≤ β ≤  and {fk} be a sequence of real valued functions defined on a set A. Then

(i) If () holds then wβ
μp(f ) ⊂ wα

λp(f ) for all x ∈ A;
(ii) If () holds and let f (x) ∈ B(A), then B(A)∩wα

λp(f ) ⊂ wβ
μp(f ) for all x ∈ A.

Proof (i) Omitted.
(ii) Let (fk(x)) ∈ B(A)∩wα

λp(f ) and suppose that () holds. Since (fk(x)) ∈ B(A), then there
exists some M >  such that |fk(x) – f (x)| ≤ M for all k ∈ N and for all x ∈ A. Now, since
λn ≤ μn and In ⊂ Jn for all n ∈Nno , we may write


μ

β
n

∑
k∈Jn
x∈A

∣∣fk(x) – f (x)
∣∣p =


μ

β
n

∑
k∈Jn–In
x∈A

∣∣fk(x) – f (x)
∣∣p + 

μ
β
n

∑
k∈In
x∈A

∣∣fk(x) – f (x)
∣∣p

≤
(

μn – λn

μ
β
n

)
Mp +


μ

β
n

∑
k∈In
x∈A

∣∣fk(x) – f (x)
∣∣p

≤
(

μn – λ
β
n

μ
β
n

)
Mp +


μ

β
n

∑
k∈In
x∈A

∣∣fk(x) – f (x)
∣∣p

≤
(

μn

λ
β
n
– 

)
Mp +


λα
n

∑
k∈In
x∈A

∣∣fk(x) – f (x)
∣∣p

for every n ∈Nno . Therefore, B(A)∩wα
λp(f ) ⊂ wβ

μp(f ). �

From Theorem ., we have the following results.

Corollary . Let λ = (λn) and μ = (μn) be two sequences in � such that λn ≤ μn for all
n ∈Nno and {fk} be a sequence of real valued functions defined on a set A. If () holds then:

(i) wα
μp(f ) ⊂ wα

λp(f ), for each α ∈ (, ] and for all x ∈ A;
(ii) wμp(f ) ⊂ wα

λp(f ), for each α ∈ (, ] and for all x ∈ A;
(iii) wμp(f ) ⊂ wλp(f ) for all x ∈ A.

Corollary . Let λ = (λn) and μ = (μn) be two sequences in � such that λn ≤ μn for all
n ∈Nno and {fk} be a sequence of real valued functions defined on a set A. If () holds then:

(i) B(A)∩wα
λp(f ) ⊂ wα

μp(f ), for each α ∈ (, ] and for all x ∈ A;
(ii) B(A)∩wα

λp(f ) ⊂ wμp(f ), for each α ∈ (, ] and for all x ∈ A;
(iii) B(A)∩wλp(f ) ⊂ wμp(f ) for all x ∈ A.

Theorem . Let α and β be fixed real numbers such that  < α ≤ β ≤ ,  < p < ∞,
λn ≤ μn for all n ∈ Nno and {fk} be a sequence of real valued functions defined on a set A.
Then:

http://www.journalofinequalitiesandapplications.com/content/2013/1/204
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(i) Let () holds, if a sequence of real valued functions defined on a set A is strongly
wβ

μp(f )-summable to f , then it is Sα
λ (f )-statistically convergent to f ;

(ii) Let () holds, f (x) ∈ B(A) and {fk} be a sequence of bounded real valued functions
defined on a set A, if a sequence is Sα

λ (f )-statistically convergent to f then it is strongly
wβ

μp(f )-summable to f .

Proof (i) For any function sequence (fk(x)) and ε > , we have

∑
k∈Jn
x∈A

∣∣fk(x) – f (x)
∣∣p =

∑
k∈Jn ,x∈A

|fk (x)–f (x)|≥ε

∣∣fk(x) – f (x)
∣∣p + ∑

k∈Jn ,x∈A
|fk (x)–f (x)|<ε

∣∣fk(x) – f (x)
∣∣p

≥
∑

k∈In ,x∈A
|fk (x)–f (x)|≥ε

∣∣fk(x) – f (x)
∣∣p + ∑

k∈In ,x∈A
|fk (x)–f (x)|<ε

∣∣fk(x) – f (x)
∣∣p

≥
∑

k∈In ,x∈A
|fk (x)–f (x)|≥ε

∣∣fk(x) – f (x)
∣∣p

≥ ∣∣{k ∈ In :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣εp

and so that


μ

β
n

∑
k∈Jn
x∈A

∣∣fk(x) – f (x)
∣∣p ≥ 

μ
β
n

∣∣{k ∈ In :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣εp

≥ λα
n

μ
β
n


λα
n

∣∣{k ∈ In :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣εp.

Since () holds, it follows that if {fk} is strongly wβ
μp(f )-summable to f , then it is Sα

λ (f )-
statistically convergent to f .
(ii) Suppose that Sα

λ – lim fk(x) = f (x) and (fk(x)) ∈ B(A). Then there exists some M > 
such that |fk(x) – f (x)| ≤ M for all k, then for every ε >  we may write


μ

β
n

∑
k∈Jn
x∈A

∣∣fk(x) – f (x)
∣∣p =


μ

β
n

∑
k∈Jn–In
x∈A

∣∣fk(x) – f (x)
∣∣p + 

μ
β
n

∑
k∈In
x∈A

∣∣fk(x) – f (x)
∣∣p

≤
(

μn – λn

μ
β
n

)
Mp +


μ

β
n

∑
k∈In
x∈A

∣∣fk(x) – f (x)
∣∣p

≤
(

μn – λ
β
n

μ
β
n

)
Mp +


μ

β
n

∑
k∈In
x∈A

∣∣fk(x) – f (x)
∣∣p

=
(

μn

λ
β
n
–

λ
β
n

λ
β
n

)
Mp +


μ

β
n

∑
k∈In ,x∈A

|fk (x)–f (x)|≥ε

∣∣fk(x) – f (x)
∣∣p

+


μ
β
n

∑
k∈In ,x∈A

|fk (x)–f (x)|<ε

∣∣fk(x) – f (x)
∣∣p

http://www.journalofinequalitiesandapplications.com/content/2013/1/204
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≤
(

μn

λ
β
n
– 

)
Mp

+
Mp

λα
n

∣∣{k ∈ In :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣ + ε

for all n ∈ Nno . Using (), we obtain that wβ
μp – lim fk(x) = f (x), whenever Sα

λ – lim fk(x) =
f (x). �

From Theorem ., we have the following results.

Corollary . Let λ = (λn) and μ = (μn) be two sequences in � such that λn ≤ μn for all
n ∈Nno and α ∈ (, ] be any real number. If () holds, then:

(i) If a sequence of real valued functions defined on a set A is strongly wα
μp(f )-summable

to f , then it is Sα
λ (f )-statistically convergent to f ;

(ii) If a sequence of real valued functions defined on a set A is strongly wμp(f )-summable
to f , then it is Sα

λ (f )-statistically convergent to f ;
(iii) If a sequence of real valued functions defined on a set A is strongly wμp(f )-summable

to f , then it is Sλ(f )-statistically convergent to f .

Corollary . Let λ = (λn) and μ = (μn) be two sequences in � such that λn ≤ μn for all
n ∈Nno , α ∈ (, ] be any real number. If () holds, then:

(i) If a sequence of bounded real valued functions defined on a set A is
Sα

λ (f )-statistically convergent to f , then it is strongly wα
μp(f )-summable to f ;

(ii) If a sequence of bounded real valued functions defined on a set is Sα
λ (f )-statistically

convergent to f , then it is strongly wμp(f )-summable to f ;
(iii) If a sequence of bounded real valued functions defined on a set A is

Sλ(f )-statistically convergent to f , then it is strongly wμp(f )-summable to f .
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