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1 Introduction
Classification, in its widest sense, has to do with forms of the relatedness and with the
organization and display of the relations in a useful manner. The items to be studied could
be anything: people, bacteria, religions, books, etc. The attributes in each case would be
those features of the items that are of interest for the purpose of the study [1]. Classifi-
cations are generally pictured in the form of hierarchical trees, also called a dendrogram.
A dendrogram is the graphical representation of an ultrametric (= cophenetic) matrix; so
dendrograms can be compared to one another by comparing their cophenetic matrices [2].
Cluster Analysis (CA), Principal Components Analysis (PCA) and Discriminant Analy-
sis (DA) are three of the primary methods of modern multivariate analysis. Because of its
utility, clustering has emerged as one of the leading methods of multivariate analysis [3].
Cluster analysis is a multivariate statistical technique which was originally developed for
biological classification. Biologists Robert Sokal and Peter Sneath published their semi-
nal text ‘Principles of Numerical Taxonomy in 1963. Sokal and Sneath demonstrated that
cluster analysis could be utilized to efficiently classification a data set which contained all
relevant characteristics of an organism. When the organisms had been classified based on
these characteristics, it could be determined in which way they differed, and if they be-
longed to different species. In this way, Sokal and Sneath asserted, researchers could trace

the path of evolution from one species to another [4].
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In this study for clustering, two measures of cluster ‘goodness’ or quality are used. One
type of measure allows us to compare different sets of clusters without reference to ex-
ternal knowledge and is called an internal quality which is used as a measure of ‘overall
similarity’ based on the pairwise similarity of documents in a cluster. The other type of
measures allows evaluating how well the clustering is working by comparing the groups
produced by the clustering techniques to known classes. This type of measure is called an
external quality measure, which is not scope of this study [5].

The joining or tree clustering method uses the dissimilarities (similarities) or distances
(Euclidean distance, squared Euclidean distance, city-block (Manhattan) distance, Cheby-
chev distance, power distance, Mahalanobis distance, etc.) between objects when forming
the clusters. Similarities are a set of rules that serve as criteria for grouping or separat-
ing items. These distances (similarities) can be based on a single dimension or multiple
dimensions, with each dimension representing a rule or condition for grouping objects.
The joining algorithm does not ‘care’ whether the distances that are ‘fed’ to it are actual
real distances, or some other derived measure of distance that is more meaningful to the
researcher; and it is up to the researcher to select the right method for his/her specific
application [6].

The next step is to identify how one can find the natural clusters among items char-
acterized by many attributes. A number of cluster analysis procedures (single linkage
(nearest neighbor), Complete linkage (furthest neighbor), Unweighted pair-group aver-
age (UPGMA), Weighted pair-group average (WPGMA), Unweighted pair-group centroid
(UPGMC), Weighted pair-group centroid (median), Ward’s method, etc.) are available;
many of these begin with an n-dimensional space in which each entity is represented by
a single point. The dimensions in the space represent the characteristics upon which the
entities are to be compared. Similarity between entities can be measured by: (1) the cor-
relation of entities’ scores on the dimensions (cophenetic correlation) or (2) the distance
between points in the space (points closest to each other are most similar) [7, 8].

Suppose that the original data {X;} have been modeled using a cluster method to pro-
duce a dendrogram {7}}; that is, a simplified model in which data that are ‘close” have been
grouped into a hierarchical tree. Define the following distance measures. x(i, j) = | X; — Xjl,
the ordinary Euclidean distance between the ith and jth observations. £(i, ) = the dendro-
grammatic distance between the model points T; and T;. This distance is the height of the
node at which these two points are first joined together. Then, letting x be the average of
the x(i,), and letting ¢ be the average of the £(i, ), the cophenetic correlation coefficient ¢
is defined as in (1) [9].

D > G R o
I i) = 2P (6Gf) — 2]

Since its introduction by Sokal and Rohlf [10], the cophenetic correlation coefficient
has been widely used in numerical phenetic studies, both as a measure of degree of fit of
a classification to a set of data and as a criterion for evaluating the efficiency of various
clustering techniques [11]. In statistics, and especially in biostatistics, cophenetic corre-
lation (more precisely, the cophenetic correlation coefficient) is a measure of how faith-
fully a dendrogram preserves the pairwise distances between the original unmodeled data
points. Although it has been most widely applied in the field of biostatistics (typically to
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assess cluster-based models of DNA sequences, or other taxonomic models), it can also
be used in other fields of inquiry where raw data tend to occur in clumps, or clusters. This
coefficient has also been proposed for use as a test for nested clusters [12].

The problem of comparing classifications with numerical methods is not new; the first
effective numerical method known to us is the ‘cophenetic correlation’ technique of Sokal
and Rohlf [10]. Beginning with the development of cophenetic correlations methods for
comparison of dendrograms have recently been the object of strong interest. Baker [13]
investigated the impact of observational errors on the dendrograms produced by the com-
plete linkage and single linkage hierarchical grouping techniques. The goodness of fit of
the dendrograms was measured by means of the Goodman-Kruskal gamma coefficient.
The gamma coefficients indicated that the single linkage grouping technique was more
sensitive to the type of data errors employed than the complete linkage technique. Hu-
bert [14] compared two rank orderings of the object pairs. He tested hypothesis that the
given set of proximity values have been assigned randomly by referring the Goodman-
Kruskal rank correlation y statistic to an approximate permutation distribution. Kuiper
and Fisher [15] compared six hierarchical clustering procedures (single linkage, complete
linkage, median, average linkage, centroid and Ward’s method) for multivariate normal
data, assuming that the true number of clusters was known. The authors used the Rand
index, which gives a proportion of correct groupings, to compare the clustering methods.
In their study for clusters of equal sizes, Ward’s method and complete linkage method,
with very unequal cluster sizes centroid and average linkage method found best, respec-
tively. Blashfield [16] compared four types of hierarchical clustering methods (single link-
age, complete linkage, average linkage and Ward’s method) for accuracy in recovery of
original population clusters. He used Cohen’s statistic to measure the accuracy of the clus-
tering methods. According to his results, Ward’s method performed significantly better
than the other clustering procedures and average linkage gave relatively poor results. Ac-
cording to Milligan [17], complete linkage and Ward’s method reacted badly when outliers
were introduced into the simulated data.

Hands and Everitt [18] compared five hierarchical clustering techniques (single link-
age, complete linkage, average, centroid, and Ward’s method) on multivariate binary data.
They found that Ward’s method was the best overall than other hierarchical methods. Yao
[19] discussed six classical clustering algorithms: k-means, SOM, EM-based clustering,
classification EM clustering, fuzzy k-means, leader clustering and different combination
scenarios of these algorithms. He used a count of cluster categories, classification accu-
racy and cluster entropy. Ferreira and Hitchcock [20] compared the performance of four
major hierarchical methods (single linkage, complete linkage, average linkage and Ward’s
method) for clustering functional data. They used the Rand index to compare the perfor-
mance of each clustering method. According to their study, Ward’s method was usually the
best, while average linkage performed best in some special situations, in particular, when
the number of clusters is over specified. Milligan and Cooper [21] used four agglomera-
tive hierarchical clustering methods to generate partition solutions and formed one factor
in the overall design. These were the single link, complete link, group average (UPGMA)
and Ward’s minimum variance methods. As a result, they found that the single link tech-
nique was least effective while the group average and Ward’s methods gave the best overall

recovery.
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Consider the studies in the literature and the importance of using the most convenient
cluster method under different conditions (sample size, variables number and distance
measures), a detailed simulation study is undertaken. This study gives more insight into
the functioning of the cluster method under different conditions. The purpose of this re-

search is to investigate the best clustering method under different conditions.

2 Method

In this study, seven cluster analysis methods are compared by the cophenetic correlation
coefficient computed according to different clustering methods with a sample size (n = 10,
n =50 and n = 100), variables number (x = 3, x = 5 and x = 10) and distance measures
via a simulation study. The simulation program is developed in a MATLAB software de-
velopment environment by the authors. We have 567 different simulation scenarios and
100,000/n replications for each scenario. The performance is monitored by two different
conditions that are mentioned in Table 1 and Table 2 with 7 cluster methods, 9 distance
measures by cophenetic correlation coefficient in various settings of subgroup means,
variances, sample size and variable numbers simultaneously.

For 567 different simulation scenarios, the data was derived from multivariate normal
distribution for u = 0, §2 = 1 with and without outliers, respectively. The data set for out-
liers is obtained according to Dixon’s [22] ‘Outlier Model’ like (N — r) ~ N(0,1) + r ~
N(0,5). In this study, = [0,5 + 0,1 x N] means that while 95% of the data set does not
include any outliers, 5% of the data set includes outliers.

3 Results and discussion

All numerical results, obtained by running the simulation program, are given in Table 1
and Table 2. According to Table 1 and Table 2, the average method gives the best results
at all measures and at all variable numbers for both distributions with sample size n = 10.
Moreover, increasing the sample size to n = 50 and # = 100 favors the complete, weighted,
and centroid methods for all measures. However, the cophenetic correlation coefficient
for the Mahalanobis measure cannot be calculated in both distributions when there are
10 variables with sample size # = 10, whereas there is not any meaningful explanation for
this unexpected result, we still could not find the main reason for this situation, but the
same result is obtained for more than three times run of the simulation program.

4 Conclusion

In general, researchers especially nonstatisticians use cluster analysis methods and dis-
tance measures in different conditions. In addition, they choose to use the most famous
cluster analysis methods and distance measures, which are available in statistical packages,
without evaluating the validity of different conditions. When the different conditions are
considered, drawn inferences are dubious, and may lead the decision-makers to incorrect
decisions. It is noted that, with respect to the selection of a distance measures, the re-
searcher must be aware that their choice can often significantly affect the results of the
clustering. For example, some distance measures are inappropriate when different condi-
tions of the variables are not met. On this point, the determination of the correct distance
measures to use under various cases is the main motivation of researchers working on this
subject to determine which distance measures should be used in case of different condi-

tions.
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Table 1 The cophenetic correlation coefficient values for . =0, 62 = 1 (without outliers)

Distance Clustering Cophenetic correlation coefficient
measure method x=3 x=5 x=10
n=10 n=50 n=100 n=10 n=50 n=100 n=10 n=50 n=100
Euclidean Average 0.7552 06358 06009 0.7255 06017 05753 0.6922 05728 0.5339
Centroid 06927 0.6393 0.6038 0.6463 0.6028 0.5557 05829 0.5759 0.5605
Complete 06858 04940 04313 06397 04135 03386 05920 03439 0.2640
Median 07309 0.5600 04797 06897 05412 04605 06220 05338 04989
Single 0.7034 06033 05947 06633 05663 05577 06157 05332 05295
Ward 06832 04956 04422 06384 04124 03496 05895 03367 02664
Weighted 07367 05428 04692 07064 0.5024 04105 06749 04791 03941
Squared Average 0.7381 06352 05978 0.7090 05974 05546 0.6792 05700 0.5315
Euclidean Centroid 07285 0.6402 0.6056 06874 0.6085 0.5765 06254 0.5831 0.5632
Complete 06565 04826 04271 06128 04014 03325 05659 03318 0.2586
Median 07102 05538 04745 06679 05386 04553 06013 05344 05039
Single 0.6874 06038 05950 0.6453 05656 05578 06009 05324 0.5301
Ward 06533 04830 04350 06093 03995 03421 05661 03264 02589
Weighted 07191 05351 04615 06904 04978 04054 0.6623 04768 03969
Mahalanobis Average 0.6957 06276 05950 0.6176 0.5865 05469 NaN 05591 0.5284
Centroid 06749 0.6325 0.6010 05864 0.5993 0.5723 NaN  0.5789 0.5630
Complete 05627 04578 04121 03958 03625 03097 NaN 02711 0.2270
Median 06587 05426 04719 05762 05320 04538 NaN 05385 05106
Single 0.6565 0.6032 05956 05642 0.5655 05589 NaN 05293 0.5317
Ward 05541 04621 04235 03876 03539 03147 NaN 02495 02155
Weighted 06760 05202 04549 06078 04843 03963 NaN 04869 04013
Cityblock Average 0.7427 06228 05844 0.7120 05810 05349 0.6787 05484 0.5076
Centroid 07372 0.6280 0.5944 0.6983 0.5902 0.5557 06343 0.5579 0.5368
Complete 06716 04780 04229 06247 03976 03272 05771 03285 0.2502
Median 0.7194 05460 04710 06799 0.5233 04455 06129 05117 04774
Single 06876 05839 05756 06443 05410 05324 05975 05037 0.5009
Ward 06728 04869 04348 06281 04052 03427 05823 03322 0259
Weighted 07244 05290 04546 06936 04878 03969 0.6615 04601 03824
Minkowski Average 0.7552 06393 06009 0.7255 06017 05557 0.6922 05728 0.5339
Centroid 07497 0.6447 0.6087 0.7099 0.6124 0.5791 06450 0.5833 0.5629
Complete 06858 04940 04313 06397 04135 03386 05920 03439 0.2640
Median 07309 0.5600 04797 06897 05412 04605 06220 05338 04989
Single 0.7034 06033 05947 06633 05663 05577 06157 05332 05295
Ward 0.6832 04956 04422 06384 04124 0349 05895 03367 02664
Weighted 07367 05428 04692 07064 0.5024 04105 06749 04791 03941
Cosine Average 0.7590 0.6277 0.5839 0.6994 0.5143 0.4524 0.6441 0.4152 0.3413
Centroid 0.7518 06045 05478 06866 04711 03894 06097 03242 02312
Complete 07230 05782 05320 06501 04518 03929 05808 03428 0.2700
Median 0.7340 05530 05040 06681 04273 03546 05911 03004 0.2146
Single 06931 04695 03898 06034 03070 02202 05211 02017 0.1275
Ward 07381 06142 05730 06716 04979 04418 06083 03974 03280
Weighted 07433 05786 05336 06854 04711 04093 06311 03834 03069
Correlation  Average 0.8217 0.7470 0.7226 0.7229 0.5581 0.5065 0.6507 0.4268 0.3542
Centroid 08169 07358 07037 0.7124 05245 04594 06212 03441 02518
Complete 07979 07083 06775 06791 04987 04514 05893 03545 0.2855
Median 0.7982 0.6886 0.6621 06952 04754 04128 06028 03177 02324
Single 0.7939 06715 06285 0.6389 03624 02781 05307 02124 0.1355
Ward 0.8069 0.7388 0.7155 0.6974 05429 04938 06170 04099 0.3426
Weighted 08052 07061 06816 07075 05105 04534 0.6379 03916 03185
Spearman Average 0.8207 0.7600 0.7441 0.7240 0.5636 0.5163 0.6487 0.4274 0.3567
Centroid 08116 07413 07199 07132 05336 04715 06184 03452 0.2511
Complete 08094 0.7788 0.7780 06815 05337 04966 05884 03572 0.2896
Median 0.7903 07162 07114 06958 04818 04235 05990 03175 0.2329
Single 0.6854 06737 06738 06397 04010 0.1830 05287 02198 0.1427
Ward 0.7892 07358 07275 06973 05488 05030 06145 04093 03434
Weighted 08118 0.7788 0.7780 07086 0.5154 04672 0.6357 03916 03194
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Table 1 (Continued)

Distance  Clustering Cophenetic correlation coefficient

measure  method x=3 x=5 x=10
n=10 n=50 n=100 n=10 n=50 n=100 n=10 n=50 n=100
Chebychev Average 0.7375 06183 05804 0.6933 05595 05141 0.6448 04958 04523
Centroid 07317 0.6241 0.5870 06811 0.5693 0.5334 06100 0.5067 0.4805
Complete 06647 04780 04235 06035 03824 03164 05423 0.2962 0.2281
Median 07140 05431 04630 06625 05036 04287 05928 04628 04249
Single 06833 05792 05695 06223 05199 05084 05536 04468 04405
Ward 06680 04852 04317 06128 03949 03341 05595 03140 0.2423
Weighted 0.7189 05255 04494 06759 04734 03878 06294 04249 03525
Table 2 The cophenetic correlation coefficient values for i =0, 62 = 1 (with outliers)
Distance Clustering Cophenetic correlation coefficient
measure method x=3 x=5 x=10
n=10 n=50 n=100 n=10 n=50 n=100 n=10 n=50 n=100
Euclidean Average 0.8478 0.8065 0.7848 0.8280 0.7818 07629 0.8102 0.7647 0.7488
Centroid 0.8188 08061 0.7875 0.7872 0.7816 0.7704 0.7484 0.7638 0.7606
Complete 08095 0.7273 0.7006  0.7808 0.6865 0.6551 0.7535 06494 06136
Median 0.8342 07644 07262 08073 0.7509 0.7182 07661 07432 0.7311
Single 08168 0.7836 0.7774 07903 0.7582 0.7578 0.7653 0.7400 0.7426
Ward 0.8064 0.7278 0.7050 0.7801 0.6869 06606 07531 06464 06161
Weighted 0.8382 07551 07185 08182 0.7352 06918 08006 0.7197 0.6835
Squared Average 0.8434 08088 0.7859 0.8239 07837 07636 0.8087 0.7663 0.7490
Euclidean Centroid 0.8386 0.8107 0.7900 08123 0.7880 0.7730 0.7768 0.7695 0.7629
Complete 08022 07331 07027 07724 06937 06580 0.7505 0.6550 06166
Median 0.8289 07652 07275 08017 0.7525 0.7177 07637 07417 07313
Single 0.8142 07838 0.7774 07865 0.7584 0.7575 0.7633 0.7397 0.7424
Ward 0.7996 0.7337 07070 07725 06929 06645 07506 06532 06191
Weighted 0.8333 07592 07197 08141 0.7358 06956 07997 07192 0.6824
Mahalanobis Average 0.8103 0.8565 08315 0.6965 0.8239 08053 NaN 0.7705 0.7782
Centroid 0.7976 08570 0.8333 06701 0.8276 0.8113 NaN 0.7770 0.7882
Complete 06966 08051 0.7787 04529 07575 0.7380 NaN 0.6480 0.6848
Median 0.7895 08219 0.7843 06695 0.7875 0.7600  NaN 0.7453  0.7309
Single 0.7908 0.8220 0.8030 0.6633 0.7841 0.7680 NaN 0.7510 0.7515
Ward 0.7313 08018 0.7755 05497 0.7523 0.7350 NaN 0.6442 0.6839
Weighted 0.7980 08181 0.7848 06899 0.7824 0.7531 NaN 0.7230 0.7173
Cityblock Average 0.8404 07982 0.7767 0.8206 0.7707 0.7518 0.8027 0.7522 0.7352
Centroid 0.8367 0.7997 0.7805 08113 0.7741 0.7611 0.7739 0.7552 0.7482
Complete  0.7995 07226 06935 07727 06761 06484 07464 06418 0.6059
Median 0.8267 07566 0.7196 08018 0.7412 0.7074 07623 07306 0.7174
Single 0.8077 07737 07676 07804 0.7448 0.7447 07533 0.7248 0.7269
Ward 0.8004 0.7243 0.7003 0.7744 06817 06568 07493 06446 06131
Weighted 0.8305 07507 07114 08111 0.7241 06867 07936 07102 06718
Minkowski Average 0.8478 0.8065 0.7848 0.8280 0.7818 0.7629 0.8102 0.7647 0.7488
Centroid 0.8441 0.8088 0.7883 08179 0.7860 0.7721 07797 0.7695 0.7628
Complete 08095 0.7273 0.7006  0.7808 0.6865 0.6551 0.7535 0.6494 06136
Median 08342 0.7644 0.7262 08073 07509 0.7182 0.7661 0.7432 0.7311
Single 08168 07836 0.7774 07903 0.7582 0.7578 0.7653 0.7400 0.7426
Ward 08064 07278 07050 07801 06869 06606 0.7531 0.6464 06161
Weighted 0.8382 07551 07185 08182 0.7352 06918 08006 07197 0.6835
Cosine Average 0.7689 0.6484 0.6138 0.7107 0.5463 0.4946 0.6596 0.4549 0.3908
Centroid 0.7618 06285 05866 06982 05106 04462 06270 03717 0.2936
Complete  0.7320 05960 05568 06604 04773 04226 05977 03743 03064
Median 07438 05702 05265 06802 04521 03862 06058 03286 02517
Single 0.7082 04942 04287 06182 03484 0.2651 05429 0.2451 0.1693
Ward 07467 06325 05991 06808 05240 04733 06213 04232 03521
Weighted 0.7534 05961 05531 06961 04958 04296 06454 04104 03378
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Table 2 (Continued)

Distance  Clustering Cophenetic correlation coefficient
measure  method x=3 x=5 x=10
n=10 n=50 n=100 n=10 n=50 n=100 n=10 n=50 n=100

Correlation  Average 0.8214 0.7466 0.7239 0.7213 0.5584 0.5060 0.6508 0.4269 0.3550
Centroid 08171 07330 07064 07117 05248 04587 06210 03434 0.2560
Complete  0.7978 07102 06794 06770 04992 04457 05887 03561 02874
Median 0.7984 06852 06596 06935 04756 04128 06027 03150 0.2328
Single 07931 06647 06319 06374 03624 02748 05293 02157 0.1354
Ward 0.8069 07378 0.7162 06955 05431 04940 06161 04096 0.3428
Weighted ~ 0.8052 07017 0.6843 07059 05106 04557 06373 03914 03191

Spearman  Average 0.8198 0.7583 0.7455  0.7233 0.5638 0.5159 0.6505 0.4267 0.3567
Centroid 08113 0739 07212 07133 05336 04729 06199 03429 0.2537
Complete  0.8090 0.7788 0.7762 06802 0.5341 04983 05909 03558 0.2887
Median 0.7887 07136 0.7140 06960 04819 04238 06021 03126 0.2304
Single 06861 06736 06742 06404 04008 0.1821 05302 0.2190 0.1404
Ward 0.7881 07364 0.7273 06963 05488 05037 06170 04081 0.3425
Weighted 08112 0.7788 0.7762 0.7076 0.5157 04687 06366 03926 03197

Chebychev Average 0.8373 07945 0.7740 0.8094 0.7588 0.7398  0.7824 0.7246 0.7059
Centroid 0.8338 0.7966 0.7774 08008 0.7627 0.7483 0.7601 0.7280 0.7181
Complete  0.7965 07182 0.6953 07581 06707 06424 07262 06226 0.5951
Median 08244 07546 07195 07913 07315 0699  0.7510 07061 0.6907
Single 08044 0.7700 0.7640 0.7663 0.7329 0.7324 07289 0.6940 0.6951
Ward 0.7978 07216 0699 07647 06761 06495 0.7351 06345 06038
Weighted ~ 0.8279 07470 0.7135 08007 0.7171 06783 07745 06895 0.6557

One may conclude that the results of this study, which is similar to findings of Johnson
and Wichern [23], indicate the data set with outliers have higher cophenetic correlation
values than the data set without outliers.

This study hopes to contribute to literature for making better decisions on selection of
appropriate cluster methods by using subgroup sizes, variable numbers, subgroup means

and variances.
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