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Abstract

Purpose: This study proposes the best clustering method(s) for different distance
measures under two different conditions using the cophenetic correlation coefficient.

Methods: In the first one, the data has multivariate standard normal distribution
without outliers for n = 10, 50, 100 and the second one is with outliers (5%) for
n = 10, 50, 100. The proposed method is applied to simulated multivariate normal
data viaMATLAB software.

Results: According the results of simulation the Average (especially for n = 10) and
Centroid (especially for n = 50 and n = 100) methods are recommended at both
conditions.

Conclusions: This study hopes to contribute to literature for making better decisions
on selection of appropriate cluster methods by using subgroup sizes, variable
numbers, subgroup means and variances.

Keywords: cophenetic correlation; hierarchical clustering methods; distance
measures

1 Introduction
Classification, in its widest sense, has to do with forms of the relatedness and with the
organization and display of the relations in a useful manner. The items to be studied could
be anything: people, bacteria, religions, books, etc. The attributes in each case would be
those features of the items that are of interest for the purpose of the study []. Classifi-
cations are generally pictured in the form of hierarchical trees, also called a dendrogram.
A dendrogram is the graphical representation of an ultrametric (= cophenetic) matrix; so
dendrograms can be compared to one another by comparing their copheneticmatrices [].
Cluster Analysis (CA), Principal Components Analysis (PCA) and Discriminant Analy-

sis (DA) are three of the primary methods of modern multivariate analysis. Because of its
utility, clustering has emerged as one of the leading methods of multivariate analysis [].
Cluster analysis is amultivariate statistical techniquewhichwas originally developed for

biological classification. Biologists Robert Soka and Peter Sneath published their semi-
nal text ‘Principles of Numerical Taxonomy’ in . Sokal and Sneath demonstrated that
cluster analysis could be utilized to efficiently classification a data set which contained all
relevant characteristics of an organism.When the organisms had been classified based on
these characteristics, it could be determined in which way they differed, and if they be-
longed to different species. In this way, Sokal and Sneath asserted, researchers could trace
the path of evolution from one species to another [].
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In this study for clustering, two measures of cluster ‘goodness’ or quality are used. One
type of measure allows us to compare different sets of clusters without reference to ex-
ternal knowledge and is called an internal quality which is used as a measure of ‘overall
similarity’ based on the pairwise similarity of documents in a cluster. The other type of
measures allows evaluating how well the clustering is working by comparing the groups
produced by the clustering techniques to known classes. This type of measure is called an
external quality measure, which is not scope of this study [].
The joining or tree clustering method uses the dissimilarities (similarities) or distances

(Euclidean distance, squared Euclidean distance, city-block (Manhattan) distance, Cheby-
chev distance, power distance, Mahalanobis distance, etc.) between objects when forming
the clusters. Similarities are a set of rules that serve as criteria for grouping or separat-
ing items. These distances (similarities) can be based on a single dimension or multiple
dimensions, with each dimension representing a rule or condition for grouping objects.
The joining algorithm does not ‘care’ whether the distances that are ‘fed’ to it are actual
real distances, or some other derived measure of distance that is more meaningful to the
researcher; and it is up to the researcher to select the right method for his/her specific
application [].
The next step is to identify how one can find the natural clusters among items char-

acterized by many attributes. A number of cluster analysis procedures (single linkage
(nearest neighbor), Complete linkage (furthest neighbor), Unweighted pair-group aver-
age (UPGMA),Weighted pair-group average (WPGMA),Unweighted pair-group centroid
(UPGMC), Weighted pair-group centroid (median), Ward’s method, etc.) are available;
many of these begin with an n-dimensional space in which each entity is represented by
a single point. The dimensions in the space represent the characteristics upon which the
entities are to be compared. Similarity between entities can be measured by: () the cor-
relation of entities’ scores on the dimensions (cophenetic correlation) or () the distance
between points in the space (points closest to each other are most similar) [, ].
Suppose that the original data {Xi} have been modeled using a cluster method to pro-

duce a dendrogram {Ti}; that is, a simplifiedmodel in which data that are ‘close’ have been
grouped into a hierarchical tree. Define the following distance measures. x(i, j) = |Xi –Xj|,
the ordinary Euclidean distance between the ith and jth observations. t(i, j) = the dendro-
grammatic distance between the model points Ti and Tj. This distance is the height of the
node at which these two points are first joined together. Then, letting x be the average of
the x(i, j), and letting t be the average of the t(i, j), the cophenetic correlation coefficient c
is defined as in () [].

c =
∑

i<j(x(i, j) – x)(t(i, j) – t)√
[
∑

i<j(x(i, j) – x)][
∑

i<j(t(i, j) – t)]
. ()

Since its introduction by Sokal and Rohlf [], the cophenetic correlation coefficient
has been widely used in numerical phenetic studies, both as a measure of degree of fit of
a classification to a set of data and as a criterion for evaluating the efficiency of various
clustering techniques []. In statistics, and especially in biostatistics, cophenetic corre-
lation (more precisely, the cophenetic correlation coefficient) is a measure of how faith-
fully a dendrogram preserves the pairwise distances between the original unmodeled data
points. Although it has been most widely applied in the field of biostatistics (typically to
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assess cluster-based models of DNA sequences, or other taxonomic models), it can also
be used in other fields of inquiry where raw data tend to occur in clumps, or clusters. This
coefficient has also been proposed for use as a test for nested clusters [].
The problem of comparing classifications with numerical methods is not new; the first

effective numerical method known to us is the ‘cophenetic correlation’ technique of Sokal
and Rohlf []. Beginning with the development of cophenetic correlations methods for
comparison of dendrograms have recently been the object of strong interest. Baker []
investigated the impact of observational errors on the dendrograms produced by the com-
plete linkage and single linkage hierarchical grouping techniques. The goodness of fit of
the dendrograms was measured by means of the Goodman-Kruskal gamma coefficient.
The gamma coefficients indicated that the single linkage grouping technique was more
sensitive to the type of data errors employed than the complete linkage technique. Hu-
bert [] compared two rank orderings of the object pairs. He tested hypothesis that the
given set of proximity values have been assigned randomly by referring the Goodman-
Kruskal rank correlation γ statistic to an approximate permutation distribution. Kuiper
and Fisher [] compared six hierarchical clustering procedures (single linkage, complete
linkage, median, average linkage, centroid and Ward’s method) for multivariate normal
data, assuming that the true number of clusters was known. The authors used the Rand
index, which gives a proportion of correct groupings, to compare the clustering methods.
In their study for clusters of equal sizes, Ward’s method and complete linkage method,
with very unequal cluster sizes centroid and average linkage method found best, respec-
tively. Blashfield [] compared four types of hierarchical clustering methods (single link-
age, complete linkage, average linkage and Ward’s method) for accuracy in recovery of
original population clusters. He used Cohen’s statistic tomeasure the accuracy of the clus-
tering methods. According to his results, Ward’s method performed significantly better
than the other clustering procedures and average linkage gave relatively poor results. Ac-
cording toMilligan [], complete linkage andWard’s method reacted badly when outliers
were introduced into the simulated data.
Hands and Everitt [] compared five hierarchical clustering techniques (single link-

age, complete linkage, average, centroid, andWard’s method) on multivariate binary data.
They found thatWard’s method was the best overall than other hierarchical methods. Yao
[] discussed six classical clustering algorithms: k-means, SOM, EM-based clustering,
classification EM clustering, fuzzy k-means, leader clustering and different combination
scenarios of these algorithms. He used a count of cluster categories, classification accu-
racy and cluster entropy. Ferreira and Hitchcock [] compared the performance of four
major hierarchical methods (single linkage, complete linkage, average linkage andWard’s
method) for clustering functional data. They used the Rand index to compare the perfor-
mance of each clusteringmethod. According to their study,Ward’smethodwas usually the
best, while average linkage performed best in some special situations, in particular, when
the number of clusters is over specified. Milligan and Cooper [] used four agglomera-
tive hierarchical clusteringmethods to generate partition solutions and formed one factor
in the overall design. These were the single link, complete link, group average (UPGMA)
and Ward’s minimum variance methods. As a result, they found that the single link tech-
nique was least effective while the group average andWard’s methods gave the best overall
recovery.
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Consider the studies in the literature and the importance of using the most convenient
cluster method under different conditions (sample size, variables number and distance
measures), a detailed simulation study is undertaken. This study gives more insight into
the functioning of the cluster method under different conditions. The purpose of this re-
search is to investigate the best clustering method under different conditions.

2 Method
In this study, seven cluster analysis methods are compared by the cophenetic correlation
coefficient computed according to different clustering methods with a sample size (n = ,
n =  and n = ), variables number (x = , x =  and x = ) and distance measures
via a simulation study. The simulation program is developed in a MATLAB software de-
velopment environment by the authors. We have  different simulation scenarios and
,/n replications for each scenario. The performance is monitored by two different
conditions that are mentioned in Table  and Table  with  cluster methods,  distance
measures by cophenetic correlation coefficient in various settings of subgroup means,
variances, sample size and variable numbers simultaneously.
For  different simulation scenarios, the data was derived from multivariate normal

distribution for μ = , δ =  with and without outliers, respectively. The data set for out-
liers is obtained according to Dixon’s [] ‘Outlier Model’ like (N – r) ∼ N(, ) + r ∼
N(, ). In this study, r = [,  + ,  ∗ N] means that while % of the data set does not
include any outliers, % of the data set includes outliers.

3 Results and discussion
All numerical results, obtained by running the simulation program, are given in Table 
and Table . According to Table  and Table , the average method gives the best results
at all measures and at all variable numbers for both distributions with sample size n = .
Moreover, increasing the sample size to n =  and n =  favors the complete, weighted,
and centroid methods for all measures. However, the cophenetic correlation coefficient
for the Mahalanobis measure cannot be calculated in both distributions when there are
 variables with sample size n = , whereas there is not any meaningful explanation for
this unexpected result, we still could not find the main reason for this situation, but the
same result is obtained for more than three times run of the simulation program.

4 Conclusion
In general, researchers especially nonstatisticians use cluster analysis methods and dis-
tance measures in different conditions. In addition, they choose to use the most famous
cluster analysismethods and distancemeasures, which are available in statistical packages,
without evaluating the validity of different conditions. When the different conditions are
considered, drawn inferences are dubious, and may lead the decision-makers to incorrect
decisions. It is noted that, with respect to the selection of a distance measures, the re-
searcher must be aware that their choice can often significantly affect the results of the
clustering. For example, some distance measures are inappropriate when different condi-
tions of the variables are not met. On this point, the determination of the correct distance
measures to use under various cases is themainmotivation of researchers working on this
subject to determine which distance measures should be used in case of different condi-
tions.
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Table 1 The cophenetic correlation coefficient values for μ = 0, σ 2 = 1 (without outliers)

Distance
measure

Clustering
method

Cophenetic correlation coefficient
x = 3 x = 5 x = 10
n = 10 n = 50 n = 100 n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

Euclidean Average 0.7552 0.6358 0.6009 0.7255 0.6017 0.5753 0.6922 0.5728 0.5339
Centroid 0.6927 0.6393 0.6038 0.6463 0.6028 0.5557 0.5829 0.5759 0.5605
Complete 0.6858 0.4940 0.4313 0.6397 0.4135 0.3386 0.5920 0.3439 0.2640
Median 0.7309 0.5600 0.4797 0.6897 0.5412 0.4605 0.6220 0.5338 0.4989
Single 0.7034 0.6033 0.5947 0.6633 0.5663 0.5577 0.6157 0.5332 0.5295
Ward 0.6832 0.4956 0.4422 0.6384 0.4124 0.3496 0.5895 0.3367 0.2664
Weighted 0.7367 0.5428 0.4692 0.7064 0.5024 0.4105 0.6749 0.4791 0.3941

Squared
Euclidean

Average 0.7381 0.6352 0.5978 0.7090 0.5974 0.5546 0.6792 0.5700 0.5315
Centroid 0.7285 0.6402 0.6056 0.6874 0.6085 0.5765 0.6254 0.5831 0.5632
Complete 0.6565 0.4826 0.4271 0.6128 0.4014 0.3325 0.5659 0.3318 0.2586
Median 0.7102 0.5538 0.4745 0.6679 0.5386 0.4553 0.6013 0.5344 0.5039
Single 0.6874 0.6038 0.5950 0.6453 0.5656 0.5578 0.6009 0.5324 0.5301
Ward 0.6533 0.4830 0.4350 0.6093 0.3995 0.3421 0.5661 0.3264 0.2589
Weighted 0.7191 0.5351 0.4615 0.6904 0.4978 0.4054 0.6623 0.4768 0.3969

Mahalanobis Average 0.6957 0.6276 0.5950 0.6176 0.5865 0.5469 NaN 0.5591 0.5284
Centroid 0.6749 0.6325 0.6010 0.5864 0.5993 0.5723 NaN 0.5789 0.5630
Complete 0.5627 0.4578 0.4121 0.3958 0.3625 0.3097 NaN 0.2711 0.2270
Median 0.6587 0.5426 0.4719 0.5762 0.5320 0.4538 NaN 0.5385 0.5106
Single 0.6565 0.6032 0.5956 0.5642 0.5655 0.5589 NaN 0.5293 0.5317
Ward 0.5541 0.4621 0.4235 0.3876 0.3539 0.3147 NaN 0.2495 0.2155
Weighted 0.6760 0.5202 0.4549 0.6078 0.4843 0.3963 NaN 0.4869 0.4013

Cityblock Average 0.7427 0.6228 0.5844 0.7120 0.5810 0.5349 0.6787 0.5484 0.5076
Centroid 0.7372 0.6280 0.5944 0.6983 0.5902 0.5557 0.6343 0.5579 0.5368
Complete 0.6716 0.4780 0.4229 0.6247 0.3976 0.3272 0.5771 0.3285 0.2502
Median 0.7194 0.5460 0.4710 0.6799 0.5233 0.4455 0.6129 0.5117 0.4774
Single 0.6876 0.5839 0.5756 0.6443 0.5410 0.5324 0.5975 0.5037 0.5009
Ward 0.6728 0.4869 0.4348 0.6281 0.4052 0.3427 0.5823 0.3322 0.2596
Weighted 0.7244 0.5290 0.4546 0.6936 0.4878 0.3969 0.6615 0.4601 0.3824

Minkowski Average 0.7552 0.6393 0.6009 0.7255 0.6017 0.5557 0.6922 0.5728 0.5339
Centroid 0.7497 0.6447 0.6087 0.7099 0.6124 0.5791 0.6450 0.5833 0.5629
Complete 0.6858 0.4940 0.4313 0.6397 0.4135 0.3386 0.5920 0.3439 0.2640
Median 0.7309 0.5600 0.4797 0.6897 0.5412 0.4605 0.6220 0.5338 0.4989
Single 0.7034 0.6033 0.5947 0.6633 0.5663 0.5577 0.6157 0.5332 0.5295
Ward 0.6832 0.4956 0.4422 0.6384 0.4124 0.3496 0.5895 0.3367 0.2664
Weighted 0.7367 0.5428 0.4692 0.7064 0.5024 0.4105 0.6749 0.4791 0.3941

Cosine Average 0.7590 0.6277 0.5839 0.6994 0.5143 0.4524 0.6441 0.4152 0.3413
Centroid 0.7518 0.6045 0.5478 0.6866 0.4711 0.3894 0.6097 0.3242 0.2312
Complete 0.7230 0.5782 0.5320 0.6501 0.4518 0.3929 0.5808 0.3428 0.2700
Median 0.7340 0.5530 0.5040 0.6681 0.4273 0.3546 0.5911 0.3004 0.2146
Single 0.6931 0.4695 0.3898 0.6034 0.3070 0.2202 0.5211 0.2017 0.1275
Ward 0.7381 0.6142 0.5730 0.6716 0.4979 0.4418 0.6083 0.3974 0.3280
Weighted 0.7433 0.5786 0.5336 0.6854 0.4711 0.4093 0.6311 0.3834 0.3069

Correlation Average 0.8217 0.7470 0.7226 0.7229 0.5581 0.5065 0.6507 0.4268 0.3542
Centroid 0.8169 0.7358 0.7037 0.7124 0.5245 0.4594 0.6212 0.3441 0.2518
Complete 0.7979 0.7083 0.6775 0.6791 0.4987 0.4514 0.5893 0.3545 0.2855
Median 0.7982 0.6886 0.6621 0.6952 0.4754 0.4128 0.6028 0.3177 0.2324
Single 0.7939 0.6715 0.6285 0.6389 0.3624 0.2781 0.5307 0.2124 0.1355
Ward 0.8069 0.7388 0.7155 0.6974 0.5429 0.4938 0.6170 0.4099 0.3426
Weighted 0.8052 0.7061 0.6816 0.7075 0.5105 0.4534 0.6379 0.3916 0.3185

Spearman Average 0.8207 0.7600 0.7441 0.7240 0.5636 0.5163 0.6487 0.4274 0.3567
Centroid 0.8116 0.7413 0.7199 0.7132 0.5336 0.4715 0.6184 0.3452 0.2511
Complete 0.8094 0.7788 0.7780 0.6815 0.5337 0.4966 0.5884 0.3572 0.2896
Median 0.7903 0.7162 0.7114 0.6958 0.4818 0.4235 0.5990 0.3175 0.2329
Single 0.6854 0.6737 0.6738 0.6397 0.4010 0.1830 0.5287 0.2198 0.1427
Ward 0.7892 0.7358 0.7275 0.6973 0.5488 0.5030 0.6145 0.4093 0.3434
Weighted 0.8118 0.7788 0.7780 0.7086 0.5154 0.4672 0.6357 0.3916 0.3194
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Table 1 (Continued)

Distance
measure

Clustering
method

Cophenetic correlation coefficient
x = 3 x = 5 x = 10
n = 10 n = 50 n = 100 n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

Chebychev Average 0.7375 0.6183 0.5804 0.6933 0.5595 0.5141 0.6448 0.4958 0.4523
Centroid 0.7317 0.6241 0.5870 0.6811 0.5693 0.5334 0.6100 0.5067 0.4805
Complete 0.6647 0.4780 0.4235 0.6035 0.3824 0.3164 0.5423 0.2962 0.2281
Median 0.7140 0.5431 0.4630 0.6625 0.5036 0.4287 0.5928 0.4628 0.4249
Single 0.6833 0.5792 0.5695 0.6223 0.5199 0.5084 0.5536 0.4468 0.4405
Ward 0.6680 0.4852 0.4317 0.6128 0.3949 0.3341 0.5595 0.3140 0.2423
Weighted 0.7189 0.5255 0.4494 0.6759 0.4734 0.3878 0.6294 0.4249 0.3525

Table 2 The cophenetic correlation coefficient values for μ = 0, σ 2 = 1 (with outliers)

Distance
measure

Clustering
method

Cophenetic correlation coefficient
x = 3 x = 5 x = 10
n = 10 n = 50 n = 100 n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

Euclidean Average 0.8478 0.8065 0.7848 0.8280 0.7818 0.7629 0.8102 0.7647 0.7488
Centroid 0.8188 0.8061 0.7875 0.7872 0.7816 0.7704 0.7484 0.7638 0.7606
Complete 0.8095 0.7273 0.7006 0.7808 0.6865 0.6551 0.7535 0.6494 0.6136
Median 0.8342 0.7644 0.7262 0.8073 0.7509 0.7182 0.7661 0.7432 0.7311
Single 0.8168 0.7836 0.7774 0.7903 0.7582 0.7578 0.7653 0.7400 0.7426
Ward 0.8064 0.7278 0.7050 0.7801 0.6869 0.6606 0.7531 0.6464 0.6161
Weighted 0.8382 0.7551 0.7185 0.8182 0.7352 0.6918 0.8006 0.7197 0.6835

Squared
Euclidean

Average 0.8434 0.8088 0.7859 0.8239 0.7837 0.7636 0.8087 0.7663 0.7490
Centroid 0.8386 0.8107 0.7900 0.8123 0.7880 0.7730 0.7768 0.7695 0.7629
Complete 0.8022 0.7331 0.7027 0.7724 0.6937 0.6580 0.7505 0.6550 0.6166
Median 0.8289 0.7652 0.7275 0.8017 0.7525 0.7177 0.7637 0.7417 0.7313
Single 0.8142 0.7838 0.7774 0.7865 0.7584 0.7575 0.7633 0.7397 0.7424
Ward 0.7996 0.7337 0.7070 0.7725 0.6929 0.6645 0.7506 0.6532 0.6191
Weighted 0.8333 0.7592 0.7197 0.8141 0.7358 0.6956 0.7997 0.7192 0.6824

Mahalanobis Average 0.8103 0.8565 0.8315 0.6965 0.8239 0.8053 NaN 0.7705 0.7782
Centroid 0.7976 0.8570 0.8333 0.6701 0.8276 0.8113 NaN 0.7770 0.7882
Complete 0.6966 0.8051 0.7787 0.4529 0.7575 0.7380 NaN 0.6480 0.6848
Median 0.7895 0.8219 0.7843 0.6695 0.7875 0.7600 NaN 0.7453 0.7309
Single 0.7908 0.8220 0.8030 0.6633 0.7841 0.7680 NaN 0.7510 0.7515
Ward 0.7313 0.8018 0.7755 0.5497 0.7523 0.7350 NaN 0.6442 0.6839
Weighted 0.7980 0.8181 0.7848 0.6899 0.7824 0.7531 NaN 0.7230 0.7173

Cityblock Average 0.8404 0.7982 0.7767 0.8206 0.7707 0.7518 0.8027 0.7522 0.7352
Centroid 0.8367 0.7997 0.7805 0.8113 0.7741 0.7611 0.7739 0.7552 0.7482
Complete 0.7995 0.7226 0.6935 0.7727 0.6761 0.6484 0.7464 0.6418 0.6059
Median 0.8267 0.7566 0.7196 0.8018 0.7412 0.7074 0.7623 0.7306 0.7174
Single 0.8077 0.7737 0.7676 0.7804 0.7448 0.7447 0.7533 0.7248 0.7269
Ward 0.8004 0.7243 0.7003 0.7744 0.6817 0.6568 0.7493 0.6446 0.6131
Weighted 0.8305 0.7507 0.7114 0.8111 0.7241 0.6867 0.7936 0.7102 0.6718

Minkowski Average 0.8478 0.8065 0.7848 0.8280 0.7818 0.7629 0.8102 0.7647 0.7488
Centroid 0.8441 0.8088 0.7883 0.8179 0.7860 0.7721 0.7797 0.7695 0.7628
Complete 0.8095 0.7273 0.7006 0.7808 0.6865 0.6551 0.7535 0.6494 0.6136
Median 0.8342 0.7644 0.7262 0.8073 0.7509 0.7182 0.7661 0.7432 0.7311
Single 0.8168 0.7836 0.7774 0.7903 0.7582 0.7578 0.7653 0.7400 0.7426
Ward 0.8064 0.7278 0.7050 0.7801 0.6869 0.6606 0.7531 0.6464 0.6161
Weighted 0.8382 0.7551 0.7185 0.8182 0.7352 0.6918 0.8006 0.7197 0.6835

Cosine Average 0.7689 0.6484 0.6138 0.7107 0.5463 0.4946 0.6596 0.4549 0.3908
Centroid 0.7618 0.6285 0.5866 0.6982 0.5106 0.4462 0.6270 0.3717 0.2936
Complete 0.7320 0.5960 0.5568 0.6604 0.4773 0.4226 0.5977 0.3743 0.3064
Median 0.7438 0.5702 0.5265 0.6802 0.4521 0.3862 0.6058 0.3286 0.2517
Single 0.7082 0.4942 0.4287 0.6182 0.3484 0.2651 0.5429 0.2451 0.1693
Ward 0.7467 0.6325 0.5991 0.6808 0.5240 0.4733 0.6213 0.4232 0.3521
Weighted 0.7534 0.5961 0.5531 0.6961 0.4958 0.4296 0.6454 0.4104 0.3378

http://www.journalofinequalitiesandapplications.com/content/2013/1/203


Saraçli et al. Journal of Inequalities and Applications 2013, 2013:203 Page 7 of 8
http://www.journalofinequalitiesandapplications.com/content/2013/1/203

Table 2 (Continued)

Distance
measure

Clustering
method

Cophenetic correlation coefficient
x = 3 x = 5 x = 10
n = 10 n = 50 n = 100 n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

Correlation Average 0.8214 0.7466 0.7239 0.7213 0.5584 0.5060 0.6508 0.4269 0.3550
Centroid 0.8171 0.7330 0.7064 0.7117 0.5248 0.4587 0.6210 0.3434 0.2560
Complete 0.7978 0.7102 0.6794 0.6770 0.4992 0.4457 0.5887 0.3561 0.2874
Median 0.7984 0.6852 0.6596 0.6935 0.4756 0.4128 0.6027 0.3150 0.2328
Single 0.7931 0.6647 0.6319 0.6374 0.3624 0.2748 0.5293 0.2157 0.1354
Ward 0.8069 0.7378 0.7162 0.6955 0.5431 0.4940 0.6161 0.4096 0.3428
Weighted 0.8052 0.7017 0.6843 0.7059 0.5106 0.4557 0.6373 0.3914 0.3191

Spearman Average 0.8198 0.7583 0.7455 0.7233 0.5638 0.5159 0.6505 0.4267 0.3567
Centroid 0.8113 0.7396 0.7212 0.7133 0.5336 0.4729 0.6199 0.3429 0.2537
Complete 0.8090 0.7788 0.7762 0.6802 0.5341 0.4983 0.5909 0.3558 0.2887
Median 0.7887 0.7136 0.7140 0.6960 0.4819 0.4238 0.6021 0.3126 0.2304
Single 0.6861 0.6736 0.6742 0.6404 0.4008 0.1821 0.5302 0.2190 0.1404
Ward 0.7881 0.7364 0.7273 0.6963 0.5488 0.5037 0.6170 0.4081 0.3425
Weighted 0.8112 0.7788 0.7762 0.7076 0.5157 0.4687 0.6366 0.3926 0.3197

Chebychev Average 0.8373 0.7945 0.7740 0.8094 0.7588 0.7398 0.7824 0.7246 0.7059
Centroid 0.8338 0.7966 0.7774 0.8008 0.7627 0.7483 0.7601 0.7280 0.7181
Complete 0.7965 0.7182 0.6953 0.7581 0.6707 0.6424 0.7262 0.6226 0.5951
Median 0.8244 0.7546 0.7195 0.7913 0.7315 0.6996 0.7510 0.7061 0.6907
Single 0.8044 0.7700 0.7640 0.7663 0.7329 0.7324 0.7289 0.6940 0.6951
Ward 0.7978 0.7216 0.6996 0.7647 0.6761 0.6495 0.7351 0.6345 0.6038
Weighted 0.8279 0.7470 0.7135 0.8007 0.7171 0.6783 0.7745 0.6895 0.6557

One may conclude that the results of this study, which is similar to findings of Johnson
and Wichern [], indicate the data set with outliers have higher cophenetic correlation
values than the data set without outliers.
This study hopes to contribute to literature for making better decisions on selection of

appropriate cluster methods by using subgroup sizes, variable numbers, subgroup means
and variances.
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