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Abstract

In this paper, we use the multivariate Bernstein-Durrmeyer operators defined on the
simplex to characterize anisotropic Besov spaces.
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1 Introduction and some notations
Let T be the simplex in R? defined by

d
T={x=(x,%,...,%9):%;>0,i=1,2,...,d,|x| :infl .
i=1

Let L,(T) := Ly(T), p = (p1,p2s--»Pa)s PL=Pp2 = -+ = pa = p, 1 < p <00, be the space
consisting of all Lebesgue measurable functions f on T for which the norm |f||, :=
(J3 [f X) 1P dx)"'? is finite. Let C(T) := Loo(T), 00 = (00,00, ...,00) be the space consisting
of all continuous functions f on T for which the norm maxycr |[f(x)] is finite.

Let f € L,(T). For each # € N, the multivariate Bernstein-Durrmeyer operators of f are
defined by [1]

n+d)!
Muatfi) = 3 ) [ patastr (L)
K| <n mJr
where
_ n! k1 _ Ikl
Pui(x) = - |l<|)!X 1-x"M xeT,

d
X = (%1, %0,...,%4) € R%, k = (ki, ko, ..., ky) € N4, Nﬁ =Ny x Ny x --- x Ng, Ny = NU {0},
|x| = Zil x5, XK = xf‘xé2 ---XZd, k| = Zil ki, K= ki'ky!- - - kgl
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For x € T, we denote

) x(1-1|x]) fori=j=1,2,...,d,
‘Pij(x) =
XiXj forl<i<j<d.

LetD;=Dj = 5-,1<i<d;Dy=D;—Dj,1<i<j<d; D*=D{'D5--- D, k e N¢, and

xi’

92 ..

<5 fori=j=1,2,...,d
5 B axiz )& 4y
D) = FI R

in forl<i<j<d.

Definition 1.1 Let L, := L,(T), 1 < p < 0o, and weighted Sobolev spaces are given by
W3, = {¢|g €L, Dig Ikl <2arein Lioo(T), and 2D € L, 1 <i<j<d),

o
where the derivatives are in the sense of distributions, and T is the interior of T.
The K-functional of Ditzian-Totik type is given by

Ko(fith), = inf {[|f-g], +®@)y,} 6>0.1=12....d,

g€ W(p‘p

where t = (&1, 8, .., ta), P@)p := I€llp + X1<i<j<a 197078 -
The anisotropic Besov spaces [2] are given by

9
Blg=(Lp Wé,p)%,q,

where 6 = (01,0,...,0;),1<p,g<oo,neN,n>2>6;>0.

By [3] and the definition of anisotropic Besov spaces, it is not difficult to get the follow-
ing.

Theorem 1.2 Supposel <p,gq<oo,neN,n>2>6,>0,1=1,2,...,d. Then

3 % 2 2\ 129t
feBl, & /0 [t,zl((p(f;t,)p] Pl (1.2)
and
©__9 dt Lo dt
/o [ K2 fie), I S <0 o /0 [6 K238}, I < (13)

In this paper, we use the multivariate Bernstein-Durrmeyer operators defined on the
simplex to characterize anisotropic Besov spaces. We will show, for 1 <p,g < oo, n € N,
n>2>6;>0, that

n=1

resly o {3l -rrh] e

For convenience, throughout this paper, M denotes a positive constant independent of
x, n and f which may be different in different places.
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2 Auxiliary lemmas
To prove the theorems, we need the following lemmas. The following two lemmas were

proved in [4].

Lemma 2.1 If1<p<oo,f €L, neN,then

”Mn,d(f)Hp SMHf”pr (21)

|0;D5Mua(P, < Mnlfll,, 1<i<j<d. (2.2)

Lemma2.2 [fl<p<oo,feWg , neN, n>2, then

leiDiMualf)|, < M| ;D;

; i=1,2,...,d. (2.3)

Lemma 2.3 Supposel <p<oo,f €L, neN,n>2. Then

|Moa(F) - f||p < MK (f; n'l)p. (2.4)
Proof Let f € Ly, It is shown in [5] that there exists a constant M > 0 such that

M7 (fit), < K2 (f: ), < Mo (fi 1),
where w(zp (f; 1), is the modulus of smoothness of Ditzian-Totik type defined by

, 4>0,0=12,...,4d,
r

Lt) (f tl)P - Sllp Z h(p,}e,

=n= 11<z<}<d

flx+2)—of(x+ %)+ f(x- %), x+&eT,

0, otherwise,

| A%fCol, =

ith
h>0,e=(0,0,..,1,0,..,0) is the unit vector in R? e; = e; — ¢j, e € R". K (f;17), is
another K-functional of Ditzian-Totik type defined by

1(;’2(f;t12)p: 1nf {Hf gH +t1 Z ||¢5ijng}, 4>0,0=12,....d.

1<i<j<d
We notice that [6] for f € L,, we have
| Muah) = £, = M(@(f; V1) + 17 I 1)-
Thus, for g € W, ,, by the definition of K-functional K*(f; £}),, we have
”Mﬂ,d(f) _f”p =< M(wi(fr \/E)p + n_lllf”p)
<M(KP(Fm )+t |f — g, + 7 igll)

_M(2|Lf—g||p+n-1ng||p+n > leiniel )

1<i<j<d

According to the definition of K-functional Ké (f;£})p, Lemma 2.3 has been proved. [
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Lemma 2.4 Supposel <p<oo,feL,, neN,n>2. Then
2(f. -1
cb(Mn,d(f))p < MnK;(f;n )p. (2.5)

Proof Forf €L, g € Wg ,, by Lemma 2.1 and Lemma 2.2, we get

O(Mua(f)), = |MuaH)l, + D eiD5Mua(f)l,

1<l<]<d

< |Mualf -], + | Mua(@],

+ 30 DMt -9, + 3 [¢iDiMua@l,

1<i<j<d 1<i<j<d

< M(n}y-gup g+ Y Hgo,%D%,-gll,,)

I<i<j<d

5Mn<|V—g||p+n1(llgllp+ > lleipiel ))

1<i<j<d
According to the definition of K-functional Kg (f;£})p, Lemma 2.4 has been proved. [

3 Main results
In this section we will prove our main results.

Theorem 3.1 Let1 <p,g<oo,neN,n>2>6;>0,1=1,2,...,d. Then

6 >\, 8 1
feBi, & Z(n%HMmd(f)_f”p)qZ <00

n=1

& on

QI»—A

n? (Myaf:x) — F(9) € 1(L,). (31)

Proof First we prove the direct result of (3.1). By applying Lemma 2.3, we have

co 211

i ql o
>l M) 11,15 = 3 X [t aaki o) 1o
n=1 r=0 n=2

oo

MY [ ¥ K (fr:27), ]
r=0

IA

M@ s [ e,
JR— 2 t_7 ;t J—
In2 ( ) ; L—(r+1)[ (p(f )19]
1 o 1 o dt
<M—(2"%2 ‘7/ C2KAfL),] —.
- 1n2( ) 0 [ w(f )P] t
0

In virtue of f € B, and by Theorem 1.2, we have

Z[ﬂz | M0 () -£1,]* —<<>O (3.2)

n=1

The necessity has been proved.
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Next, we prove the inverse result of (3.1). We take a constant A € N, which will be de-
termined later. For r € N, we take n, € N, which satisfies the following conditions:

DA <m <A ”M,,rd(f f”p Ar_{lim ”Mm,d(f) —f||p.

By using the definition of K-functional and Lemma 2.4, we derive by induction
] _ o o ~
Aszz(f;A V)p < A2 |V—Mnr,d(f)||p + MAG r)”er(f;”rl)p

0 7
<AZ|f =My alf)], + A (M |f M, af)],

+ Man_lK; (f; n;_ll)p]

IA

r-1
2 2
<A? If = Mo, a(f) ||p +ATED [2 M'ny_ya||f = My, a(f) Hp
v=1

M mK2(f; n;l)p]
6 r-1 o
< a8 S a0 T I - Mt
v=1

+ AMATY £,

0,
We now choose A € N, A > 2, such that « := MAZ < % For 1< g < 00, we have

A~ -1
/o [t 2Kz(f t),]" dfl (3.3)

| /\

o0
A% 1n AN [ (4% K2 (f:47),]°
r=0

1 q
<214 (1nA)a0+% QZ[[Z‘X 1|[f—Mn,_V,d(f)Hp] +Aq(ot"|[f||p)q}

r=1

o0 o0 ﬂ
< AA7 % NG +27 A0 Y S o[ f = Moa(D],]°

v=1l r=v+l

R
<24 AYNFIIE+ 27 A Y [ |f - MiaD, ]

v=1

§M{|[f||;§+§: 3 [m%”f_Mm,d(f)Hp]q}wo. (3.4)

v=l gAv-l<pcpAv

The proof for g =1 is easy and we shall omit it. Thus, we have

L9 dt;
/ ¢, 21(;(f;t1)p]qt—l < 00.
0

By Theorem 1.2, the sufficiency has also been proved. The proof is completed. d
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Remark 1 For other integral-type operators, the method and the results are similar.
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