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Abstract

In this paper, we present integral versions of some recently proved results which
refine the Jensen-Steffensen inequality. We prove the n-exponential convexity and
log-convexity of the functions associated with the linear functionals constructed from
the refined inequalities and also prove the monotonicity property of the generalized
Cauchy means. Finally, we give several examples of the families of functions for which
the results can be applied.
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1 Introduction
In mathematics, Jensen’s inequality is a powerful mathematical tool which relates the value
of a convex function of an integral to the integral of the convex function. A basic form of

the Jensen weighted integral inequality is given below.

Theorem 1.1 Let g,p: [a,b] — R be functions defined on [a,b] and ] be an interval such
that g(x) € ] for every x € [a,D]. Let f : ] — R be a convex function and suppose that p,
pg p - (f og) are all integrable on [a,b]. If p(u) > 0 on [a,b] and fabp(u) du > 0, then the

inequality

1)

f<fabp(u)g(u) du> - fabp(u)f(g(u)) du
fabp(u) du /) f:p(u) du

holds.

Theorem 1.2 Let g,p : [a,b] — R be functions defined on [a,b) and ] be an interval such
that g(x) € ] for every x € [a, b]. Let f : ] — R be a convex function and suppose that p, pg,
p - (f og) are all integrable on [a, b). If g is monotonic on [a, b] and p satisfies

x b b
0 5/ p(u)du 5/ p(u)du forevery x € [a, b] and/ pw)du >0, (2)

then (1) holds.
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Inequality (1) under conditions from Theorem 1.2 is known as the Jensen-Steffensen
weighted integral inequality.

In Section 2, we present an integral version of some results recently proved in [1]. We
define linear functionals constructed from the non-negative difference of the refined in-
equalities and give mean value theorems for the linear functionals. In Section 3, we give
definitions and results that will be needed later. Further, we investigate the n-exponential
convexity and log-convexity of the functions associated with the linear functionals and
also deduce Lyapunov-type inequalities. We also prove the monotonicity property of the
generalized Cauchy means obtained via these functionals. Finally, in Section 4, we give

several examples of the families of functions for which the obtained results can be applied.

2 Main results

The following theorem is our first main result.

Theorem 2.1 Let g,p : [a,b] — R be functions defined on [a, b] such that g is monotonic
and differentiable. Let ] be an interval such that g(x) € ] for every x € [a,b]l and f : ] - R
be a differentiable convex function. If p, pg, p - (f o g) are all integrable on [a,b] and (2)
holds, then the function

[ p)f () du + f(g()) [ p(u) du

F =
@)= fpu)du

—f(f p(u)g(u du+g f plu ) o
[ pu
is increasing on [a, b), i.e., for all x,y € [a,b] such that a <x <y < b, we have
b b
0< F(x) < F(y) < fa p(’:).f(g(u)) du —f(f p g(u) dbt) (4)
Jo plu)du 1P pu
Proof We have
reon (b
F(@:M[ﬂgw) (f p)g(w)du +g(x) [, Pu)du)il,
Ji plw)du f () du
where ﬁii:; ZZ > 0 as (2) holds. The claim will follow if F'(x) > 0, i.e., if
i (b
¢ pidn .
. p(w)du
and
)d
f'(g) -f (‘/ Pl g(uf u+g(xf Pl )zo )
pu
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hold or if
Lo\ b
g (xlfx p(u) du <0 @)
[, p(w)du
and
X b
£(e@) —f’(f“ Pegh) da 312 P& “) <o ®
[, p(w)du

hold.
Now, we discuss the following two cases.
plu)g (u)du+g x)fx
J4 plu
a differentiable convex function defined on J, f’ is increasing on ] R and so (6) holds, which
together with (5) implies that F/(x) > 0.

Case L. If g is increasing, then (5) holds and g(x) — du > 0. Since f is

Pwg(u) du+g(x) [} plu) du
1P plu)du
using the convexity of f, (8) holds, which together with (7) implies that F'(x) > 0

Now, as F(x) is increasing on [a, b], for all x,y € [a, b] such that a <x <y < b, we have

Case II. If g is decreasing, then (7) holds and g(x) — Ja < 0. Again, by

F(a) < F(x) < F(y) < F(b). )

Atx =aandatx = b, (3) gives F(a) = 0 and F() = L f )d “_f( J“f (g(L; d") respectively.
p(u)du p(u)du

By using these values of F(a) and F(b) in (9), we have (4). O

The second main result states the following.

Theorem 2.2 Let all the conditions of Theorem 2.1 be satisfied. Then the function

7 plu)f (g(w)) du + f(g(x)) [ p(u) du

F(x) =
@ fbp (u) du
(f p(u)g(u) du +g() [, P(u)du) (10)
f p(u)du
is decreasing on [a, b], i.e., for all x,y € [a, b] such that a <x <y < b, we have
b
0 Sﬁ()/) Sﬁ(x) S fa P(:l)f(g(u))du _ (.[ p g(u)du)' (11)
[ p(u) du 17 plu) du
Proof We have
. g/(x)bfa p(u) du [f/(g(x)) (f pu)g(u)du +g(x) [ p(u) du)}
[ p(u)du f p(u)du
where ﬁ’ “ > 0 as (2) holds. The claim will follow if F'(x) < 0, i.e., if
) [ pu (12)

fp
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and

b X
f(g)) —f’(fx Pg) L:u *£0), pe) du) <0 (13)
[ p(w)du
hold or if
g/(xifa p(u) du 0 14)
[ p(w)du
and
b X
o) - f/(fx p(u)g(u) fu +g() [ p(u) du) 0 (15)
[, p(w)du

hold.

Now, we discuss the following two cases.

b X
I p(u)g(u);’mg(x)fa p(u)du < 0. Since f is
fa p(w)du

a differentiable convex function defined on /, f” is increasing on J and so (13) holds, which
together with (12) implies that F'(x) < 0.

Case L. If g is increasing, then (12) holds and g(x) —

b "X
Case II. If g is decreasing, then (14) holds and g(x) — Lp (u)g(";,fl u:g)(:)j” pl) du
Ja plu)au

by using the convexity of f, (15) holds, which together with (14) implies that F'(x) < 0.
Now, as F is decreasing on [a, b], for any x,y € [a, b] such that a <x <y < b, we have

> 0. Again,

F(b) < F(y) < F(x) < F(a). (16)

b b
. = |, PW)f (g(u)) di  p)g(u)d z
At x = a and at x = b, (10) gives F(a) = / ?;p(u)zu i —f(f [jb:(i)l;u “) and F(b) = 0 respec-

tively. By using these values of F(a) and F(b) in (16), we have (11). O

Let us observe the inequalities (4) and (11). Motivated by them, we define two linear
functionals ®; (i = 1,2)

O1(x%,y5p,8,f) =F(y) —F(x), x=<y, 17)

Oy, y3p,8.f) =Fx) - F(y), x<y, (18)

where x,y € [a,b], p is a function satisfying (2), g is a monotone differentiable function
and the functions F and F are as in (3) and (10) respectively. If f is a differentiable convex
function defined on J, then Theorems 2.1 and 2.2 imply that ®;(x,y;p,g,f) >0, i=1,2.
Now, we give mean value theorems for the functionals ®;, i = 1,2. These theorems enable
us to define various classes of means that can be expressed in terms of linear functionals.

First, we state the Lagrange-type mean value theorem related to ®;, i =1,2.

Theorem 2.3 Let x,y € [a, b] be such that x <y, p be a function satisfying (2) and g be a
monotone differentiable function. Let | be a compact interval such that g(x) € ] for every
x € a,b] and f € C2(]). Suppose that ®, and ®, are linear functionals defined as in (17)
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and (18). Then there exist &1, &, € ] such that

"(&) .
¢i(x1y;p;g,f) :f ) q)i(x)y;p;g;_ﬂ)); 1= 1;2) (19)
where fo(x) = x%.
Proof Analogous to the proof of Theorem 2.4 in [2]. O

The following theorem is a new analogue of the classical Cauchy mean value theorem,
related to the functionals ®;, i =1,2.

Theorem 2.4 Let x,y € [a, b] be such that x <y, p be a function satisfying (2) and g be a
monotone differentiable function. Let | be a compact interval such that g(x) € ] for every
x € [a,b] and f,k € C2(]). Suppose that ®, and ®, are linear functionals defined as in (17)
and (18). Then there exist &, &, € ] such that

(%, 50,8, f) :f//(éi)
Qi(x, 30,8 k) k(&)

i=12, (20)

provided that the denominators are not equal to zero.

Proof Analogous to the proof of Theorem 2.6 in [2]. d
Remark 2.5
(i) By taking f(x) = %* and k(x) = x? in (20), where s,q € R\ {0,1} are such that s # g, we
have

£ q(q - 1)®(x, y; p, g, %°)
: s(s—1)®;(x,y;p,g,x7)°

i=1,2.

(ii) If the inverse of the function JZ—/,: exists, then (20) gives

7\ 1 . .
gi:(f_) (Cbl(x,y,p,g,f)), 1o,
k" q)i(x,y;l?;g;k)

3 n-exponential convexity and log-convexity of the functions associated with
integral Jensen-Steffensen differences
In this section, we give definitions and properties which will be needed for the proofs of
our results. In the sequel, let I be an open interval in R.
We recall the following definition of a convex function (see [3, p.2]).

Definition1 A function f :/ — R is convex on [ if

(%3 — x2)f (1) + (1 — x3)f (x2) + (02 —1)f (x3) = O (21)
holds for all x;,x5,x3 € I such that x; < x, < x3.

The following proposition will be useful further (see [3, p.2]).
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Proposition 3.1 Iff is a convex function on an interval I and if x; < y1, x3 <y, X1 # %2,
Y1 7 ¥, then the following inequality is valid:

Ja) —fl) _ f02) =fOn)

Xp—X1 Y2=N

(22)

If the function f is concave, the inequality reverses (see [3, p.2]).
Another interesting type of convexity we consider is the n-exponential convexity.

Definition 2 A function /: I — R is n-exponentially convex in the Jensen sense on [ if

n
X+ %;
ZO[,‘O[/]’I( l2 1) >0

ij=1

holds for everyo; e Rand x; € 1,i=1,...,n (see [2, 4]).

Definition3 A function/: ] — R is n-exponentially convex ifit is n-exponentially convex

in the Jensen sense and continuous on 1.

Remark 3.2 From the above definition, it is clear that 1-exponentially convex functions in
the Jensen sense are non-negative functions. Also, n-exponentially convex functions in the
Jensen sense are k-exponentially convex functions in the Jensen sense forall k e N, k < n.

Positive semi-definite matrices represent a basic tool in our study. By the definition
of positive semi-definite matrices and some basic linear algebra, we have the following
proposition.

Proposition 3.3 If h is n-exponentially convex in the Jensen sense, then the matrix

[h(x’;x/ )]{szl is a positive semi-definite matrix for all k € N, k < n. Particularly,

det[h(%)] >0 foreverykeN, k<mn x;€l,i=1,...,n.

ij=1

Definition 4 A function /% : I — R is exponentially convex in the Jensen sense if it is
n-exponentially convex in the Jensen sense for all #n € N.

Definition 5 A function /: I — R is exponentially convex if it is exponentially convex in

the Jensen sense and continuous.

Lemma 3.4 A function h: I — (0,00) is log-convex in the Jensen sense, that is, for every
x,y€l,

(52 < hwiho)
holds if and only if the relation
@2h(x) + 2aﬁh(’%) + B2h(y) = 0

holds for every o, 8 e Rand x,y € 1.
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Remark 3.5 It follows that a function is log-convex in the Jensen sense if and only if it
is 2-exponentially convex in the Jensen sense. Also, by using the basic convexity theory, a
function is log-convex if and only if it is 2-exponentially convex. For more results about
log-convexity, see [5] and the references therein.

Definition 6 The second-order divided difference of a function f : [4,b] — R at mutually
distinct points yo, y1, 2 € [, b] is defined recursively by

o) —fo)
[er)’nle] = Vil — ; , i=0,1,
[yo,yhyz;f] _ [J/l,yz;f] - b’o,yl;f]' (23)
Y2—Yo

Remark 3.6 The value [yo,y1,¥2;f] is independent of the order of the points yg, y; and
¥>. This definition may be extended to include the case in which some or all the points
coincide (see [3, p.16]). Namely, taking the limit y; — y in (23), we get

lim [yo, y1,¥2:/1 = [y, ¥0,¥2: ] f02)~f0o) -/ (y;)(y2 _yO); Y2 7 Yo
=90 2 = y0)

provided that f” exists; and furthermore, taking the limits y; — yo, i = 1,2, in (23), we get

lim 1im [yo, y1,2: /1= [y0, y0, Y0 /1 _ )

Y2—>Y0 Y150 2

provided that /" exists.

The following definition of a real-valued convex function is characterized by the second-
order divided difference (see [3, p.15]).

Definition 7 A function f : [a,b] — R is said to be convex if and only if for all choices of

three distinct points yo,y1,¥2 € [a, b], [¥0,y1,¥2;f]1 = 0.

Next, we study the n-exponential convexity and log-convexity of the functions associ-
ated with the linear functionals ®; (i = 1,2) defined in (17) and (18).

Theorem 3.7 Let Q = {f; : s € I C R} be a family of differentiable functions defined on J
such that the function s — [yo,y1,¥2:f;] is n-exponentially convex in the Jensen sense on I
for every three mutually distinct points yo,y1,y2 € J. Let ®; (i =1,2) be linear functionals
defined as in (17) and (18). Then the following statements hold.
(i) The function s+ ®(x,y;p,g.f:) is n-exponentially convex in the Jensen sense on I
and the matrix [®i(x, y; p, & fss )iy is a positive semi-definite matrix for all
meN, m<nands,...,sm € 1. Particularly,

det[@i(x,y;p,g,fm)];”k_l >0, YmeN m<n.
k) k=

(ii) If the function s+ ®;(x,y;p, g, f;) is continuous on I, then it is n-exponentially

convex on 1.
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Proof The idea of the proof is the same as that of Theorem 3.9 in [2].
(i) Letaj e R (j=1,...,n) and consider the function

00) =D oefss ),

k=1

where s; € I andf@ € Q. Then

o, y1, 92 0] = Z ok [yo,yl,yz;fg]
k=1

and since [yo, y1, y2; 5+ | is n-exponentially convex in the Jensen sense on I by assumption,
E
it follows that

n
3 V1, Y23 = p V1 Vs [si+se | = 0.
o, 51,92 ¢] ];%ak[yo Y2 ,Tk] >

And so, by using Definition 7, we conclude that ¢ is a convex function. Hence,
q)i(xy}/;p;g;@) > 07 i=112;

which is equivalent to

n
Zajakq)i(xry;pyg’fﬁ)zo) i:1727
Jk=1

and so we conclude that the function s — ®;(x, y; p,g,f;) is n-exponentially convex in the
Jensen sense on 1.

The remaining part follows from Proposition 3.3.

(ii) If the function s — ®;(x,y;p, g, f;) is continuous on I, then from (i) and by Defini-
tion 3, it follows that it is #-exponentially convex on I. O

The following corollary is an immediate consequence of the above theorem.

Corollary 3.8 Let Q = {f; : s € I C R} be a family of differentiable functions defined on
J such that the function s — [yo,y1,y2;:f;] is exponentially convex in the Jensen sense on 1
for every three mutually distinct points yo,y1,y2 € J. Let ®; (i = 1,2) be linear functionals
defined as in (17) and (18). Then the following statements hold.

(i) The function s+ ®;(x,y;p,g.f;) is exponentially convex in the Jensen sense on I and
the matrix [Qi(x,y;p,g,fg Nk-1 is a positive semi-definite matrix for all n € N and
S1y..sSy €1

(i) Ifthe function s — ®;(x,y;p,g.fs) is continuous on I, then it is exponentially convex

onl.

Corollary 3.9 Let Q = {f;: s € I C R} be a family of differentiable functions defined on J
such that the function s — [yo,1,2;f:] is 2-exponentially convex in the Jensen sense on I
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for every three mutually distinct points yo,y1,y2 € J. Let ®; (i = 1,2) be linear functionals
defined as in (17) and (18). Further, assume ®;(x,y;p,g.fs) (i = 1,2) is strictly positive for
fs € Q. Then the following statements hold.
(i) Ifthe function s — ®(x,y;p,g.f;) is continuous on I, then it is 2-exponentially
convex on I and so it is log-convex and for r,s,t € I such that r <s < t, we have

[d)i(xxy;p»g) s)]t_r S [cbi(x)y;prgyﬁ)]t_s[q)i(x;y;pygrﬁ)]s_r) (24)

known as Lyapunov’s inequality.
(ii) If the function s+ ®;(x, y;p, g, f;) is differentiable on I, then for every s,q,u,v € I
such that s < u and q < v, we have

I’Ls,q(x7y’p7g; q)i; Q) 5 /’Lu,v(x;y;p;gy q)i; Q), i = ]-y 2: (25)
where

1
( Di(xy:pgfs) ) -4 s+

D;(x,y30:8y ’ 9

Hsq( 7,0, 8 P 2) = (xyipiﬁix)y'zﬂgf)

5 Qi ypgils ), s=q,

exp( i(xy;p.gfs)
Jor fo, fg € Q.

Proof The idea of the proof is the same as that of Corollary 3.11 in [2].

(i) The claim that the function s > ®;(x,;p,g.f;) is log-convex on [ is an immediate
consequence of Theorem 3.7 and Remark 3.5, and (24) can be obtained by replacing the
convex function f with the convex function f(z) = log ®;(x,;p,g.f;) for z =r,s,t in (21),
where r,s,¢ € I such that r <s < t.

(ii) Since by (i) the function s — ®;(x,y;p,g.f;) is log-convex on I, that is, the func-
tion s — log ®;(x,y;p,g.f;) is convex on I. Applying Proposition 3.1 with setting f(z) =
log @;(x,v;p,4.f2) (i =1,2), we get

log d’i(x,y;P,g, s) - 10g ‘bi(x,y;P,g»fq)

$—4q
< log ®i(x,y30:8fu) —log @i, y; .8, f7) 27)
u-v

fors <u,q <v,s+#q, u#v; and therefore, we conclude that

sq(, 90,8 Pi, 2) < puy(x, 3, 0,8 i R2),  i=1,2.
If s = g, we consider the limit when g — s in (27) and conclude that

Ms,s(xxyxpwgy q)i; S.2) =< /'Lu,v(x;y;pvg) q)iw Q); i= 1) 2.
The case u = v can be treated similarly. O

Remark 3.10 Note that the results from Theorem 3.7, Corollary 3.8 and Corollary 3.9
still hold when two of the points yo,y1,y2 € J coincide, say y1 = o, for a family of differ-
entiable functions f; such that the function s+ [y0,1,2;f;] is n-exponentially convex in

Page9of 18
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the Jensen sense (exponentially convex in the Jensen sense, log-convex in Jensen sense on
I); and furthermore, they still hold when all three points coincide for a family of twice
differentiable functions with the same property. The proofs can be obtained by recalling

Remark 3.6 and by using suitable characterizations of convexity.

4 Examples
In this section, we present several families of functions which fulfill the conditions of The-
orem 3.7, Corollary 3.8, Corollary 3.9 and Remark 3.10. This enables us to construct large

families of functions which are exponentially convex.

Example 4.1 Consider the family of functions
Q1 ={g:R—[0,00):s€R}

defined by
&(x) =

We have %gs(x) = e > 0, which shows that g; is convex on R for every s € R and
St ;—;gs(x) is exponentially convex by definition (see also [6]). In order to prove that

the function s — [y9,¥1,¥2;gs] is exponentially convex, it is enough to show that

n n
Zajak[yo,yhyz;g@] = |:yo,y1,y2; Za;akg@} >0, (28)
jik=1 jik=1

]

. . 7 . . . n 7
is convex. Since s > g/'(x) is exponentially convex, ie., Zj,k:l ojougses, > 0, Vn € N,

2
aj,s; € R, j=1,...,n, showing the convexity of Y (x) and so (28) holds. Now, as the func-

Vn e N, aj,5; € R, j =1,...,n. By Definition 7, (28) will hold if T(x) := Z'.szl ajakgw%

tion s — [y0,91,¥2; 4] is exponentially convex, s — [y, ¥1,¥2;&] is exponentially convex
in the Jensen sense and by using Corollary 3.8, we have s — ®;(x,y;p,g,8;) (i =1,2) are
exponentially convex in the Jensen sense. Since these mappings are continuous (although
the mapping s — g; is not continuous for s = 0), so s = ®;(x,y;p,2,8;) (i =1,2) are expo-
nentially convex.

For this family of functions, by taking Q = Q; in (26), Eé,q;l = g (%9, 0,8 i 1) (i =
1,2) are of the from

o ( ¢ Jpwet du+ et [7p(u)du - e [ pu)du + (e - &) [7 pu)du ) &
SR plu)ess® du+ ex0) [ plu) du— e [7 plu)du + (5 &) [* pluydu)

2l - (3 J2 e di + 50 [ ) dos — ) [2 pla i + (& —e”)ffp(”)du)%
NP plu)gwdu + 820) [ pu) du - g2@) [ plu) du + (X2 - 12) [? puydu)
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771 gww%() 2)du + eV (sg(y) - 2) [ plu)

B x| O =) [Pl du (X 2)—e”<sY 2) f plu

55 s(J? p( esgu)du+esg(y)fp ) du — e fxp u) du + (eX — est) fup du)
s#0,

gl (1 [P @) du+ &) [ p) du - g(x) [} plu) du+ (X° = 12) [} p(a) )
So01 = P 3 fyp(u)gz(u Ydu +g2(y) [} plu) e~ g2(3) f7 pla)dus + (X2 = ¥2) [ pluwydu )

. (q2 I p(w)e™ du + €@ [* p(u) du — e [7 p(u) du + (e"y—e‘x)fa p(w) du )ﬁi
Tl 52 fy u)eds(®) du+e‘1g(x)f p(u) du — e18®) fay u)du + (eq?—eq)_()fabp(u)du

57470,
=2 _(2 I plu sg")du+esg")f plu)du — e [7 p( Wdu + (@7 - eX) f olu )i
5,051 s2 jJ’ u)du + g*(x fap )du — g%(y) jJ’ du+(Y2 Xz f p(w)du
s#0,
J? plu)es® (sg(u) - 2) du + 59 (sg(x) - 2) [ plu
2 —exp - e20(sg(y) - 2) [7 pu) du + (e (s¥ - 2) - e‘X(sX 2)fp
5,51 fy u)ess® du+esgx)f pu) du — ese0) fyp(u Ydu + (e¥ — eSX)f () du)
s#0,
% (1 fyp(u)g (”)d“g () [a P du () [} pa) du+ (V2 - X )be(u)du>
0,01 = 3 fy u)du + g*(x f:p( )du — g(yfy u)du + (V2 Z)f plu)du
where

I pla)g () du + g(x) [ plu) du 2 g (w) du -+ g0) [ pu) du

%- : i :
[, p(w)du [, p(u)du 29)
5o fb (u)g (u)du+g f p(u)d 7. f pl)g()du+g() [ p (u)du
fa p(u ' f p(u)du

By using (25), B¢ il (i =1,2) are monotonous in parameters s and g. By using Theorem 2.4,
it follows that

Ms,q(x)y)pvg) q)i1 Ql) = log /Ls,q(x;y;p1gy q>i1 Ql)v i= 1; 2)

satisfy mingepqp (%) < Myq(%,y,p, 8 ®i, Q1) < MaXye[s,p g(x), showing that M, (x,y,p, g,
®;, Q1) (i =1,2) are means.

Example 4.2 Consider the family of functions
Q= {fS:(O,oo)—HR:seR}
defined by

X
mr 57/071:
f®)={-Inx, s=0,

xlnx, s=1.
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s—2 5—2)

Here, %fs(x) = x°2 = 6% 5 0, which shows that f; is convex for x > 0 and s
%fs(x) is exponentially convex by definition (see also [6]). It is easy to prove that the
function s > [yo,91,¥2;f;] is exponentially convex. Arguing as in Example 4.1, we have
s> D;(x,y;p,4,f;) (i = 1,2) are exponentially convex.

If se R\ {0,1} and r, ¢ € {0,1} such that r < s < £, then from (24) we have

£

Ss—.

i(x,1:p.8f) < [Py g )] @il g )] (30)

5

If r <t <sors<r<t, then opposite inequalities hold in (30).
Particularly, for 0 <s <1 and for i = 1,2, we have

1 <f,fp(u>g5(u)du+§@)pr(u)du—g%x)ffp(u)du . )
+ X' =Y

s(s—1) fabp(”) du
7 p() In(g(w)) du + In(g(y)) fy" pW)du-n@w) [ pwydu N\
< <— 5 —InX +1n Y)
[ p(u) du
(fy p(u)g(u) In(g(u)) du + g(y) ln(g(y))f p(u) du — g(x) ln(g(x))f p(u)du
17 plu) du

S
+InXX —In f’Y>

and

1 (f,fp(uw(u) du+g'() [y p0) dus —g'0) J P du _5(5)
s(s—1) 1?7 plu) du

y x 1-s
- (_ J7 p(u) In(g(u)) du + ln(g(ﬁi)) [ p(u) du —In(g(y)) fayp(u) ¥+ ln5(>
[, p(w)du
( [7 p(w)g(w) In(g(w)) du + g(x) In(g(x)) [ p(u) du — g(y) In(g(y)) [ p(u) du
f p(u)du

+ In f/? - ln)~(5()

respectively, where X , f’, X and Y are the same as defined in (29).
By taking Q = Q5 in (26), Eé,q;2 = g%, 9, 0,8 @iy ) (i =1,2) for x,y > 0, where &,y €

|a, b] are of the form

fy du+gs(y f pu s
. fp(u du+ X - 1) f plu

42 s(s—-1) fy (u)g9(u) du +g‘1(y)f pu)du

-gx fp Ydu + ( X‘I—Y‘pr

on
=
S
|
=

]

» s7970,1,

=

S pgs @) du+ () [} plu) du
1 ~ 8@ [ pw) du + (X - 79 f”p
02 s(s 1) 12 p(u) In(g()) du + In(g(y)) f plu
—1In(g(x) fp ) du + ( lnX—lan p(u

)

, 40,1,
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[~
L

(7 pog () du + g (9) [ plu) du -
- @) [} P du+ X = 1) [} pw) du)
Ss12 = » 701
fy (u)g(u) In(g(u)) du + g(y) In(g(y)) fp
x) In(g(x)) f p(w)du + (In XX - lnYY fp

fyp(u)g(u) In(g(w)) du + g(y) ln(g(y))f pu)du
x) In(g(x) fp )du +(XInX - Ylanp

Eo12 [2 p(w) In(g(w)) du + In(g(y)) fy plu
—In(g(x)) fbp(u) du+(InX-Y) f:p(u) du
fy (u)g* () In(g () du + g*(y) In(g(y)) f pu
- 1-2s %) In(g(x) fp Ydu + (XX - Yslanp
Bl ., =exp + ,
” s(s=1) fy u)du+g(yfp
f pu)du+(XS ¥9) f pu
s0,1,
12 p(u) In(g()) (2 + In(g())) du + In(g(»))(2 + In(g(y))) fybp(u) du
—~ In(g(®)(2 + In(g())) [ pw) du + (InX(2 + In X)
) ~In Y2+ 1) [* plu) du
So,02 = CXP )

2(f7 ) In(@() du + In(g() [, p(u) s
—In(g(x)) fxbp(u) du+(InX -In?) fabp(u) du)

fyp(u () In*(g(00)) dut + g3) In* (g 3) ' p)
(%) In?(g(x) f pu)du) + XIn® X - ¥1n? ¥
p(u)g(u) In(g(u)) du + g(y) In(g(y)) fy p(u)du
—g®)In(g®)) [” pw) du) + 2XIn X - VIn )

5 p(u) du

B, =exp| -1+

1

J2 p(u)g* (u) du + g* (x f p(u Ydu =
2 |ag-1) -£0) 2 pw)du + (Y° - X) fp(u )du
sa2 7| g(s—1) ' fy (u)g? () dus + g1 (x f p(u Ydu 574701,

-g') 2 pw) du + (Y1 - X9) fp(u

[ p(w)g* (w) du + g* (x f p(u Ydu :
s -1 -2 2 p( u)du + (Y° - X°) f p(u Ydu
Ss02 = s(s—1) ‘ fxy u) In(g(u)) du + In(g(x) fa p(u
~In(g(») J” p(w)du + (In ¥ - 1InX) ff p(u) du

, s§#0,1,

A (7 Pl ) it + &) [ plos) 1
o ~8'0) J; pw) du+ (¥ = X°) [} p(u) du)
s /@mgwm@mmwgmm@mfpwmu
-g(y) ln(g(y)jy w)du + (In 77 —InX%) f p(u
12 p(w)g(u) In(g(w)) du + g(x) In(g(x)) [ p(u) du
o —80)InEY) ) pu)du+ (¥ InY - XInX) [ p(u) du
Col2 17 p(w) In(g(w)) du + In(g(x)) [ p(u) du
~In(g®)) 2 pu)du + (Y —nX) [* p(us) du

J2 p(u)g* () In(g () du + g°(x) In(g(x)) [ p(u) du
s 1-2s  —-g»ngy) [ pu M+WWM mefp
Sssn = XP s6-1) J2 pw)g* (w) du + g°(x) [ p(u) ’
—gs(y)fy du+(Ys Xsfp

, 40,1,

s#0,1,
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7 p() In(g())(2 + In(g())) du + In(g(x))(2 + In(g(x))) [ p(u) du
~In(g®))(2 + Ing(y)) [ p(u)du+ (InY (2 +InY)
—InX(2 +1InX)) fabp(u) du
2(7 p(u) In(g(w)) du + In(g(x)) [ p(u) du
~1In(g)) 7 p(u) du + ( lnY—lanp du)

-
=2 =
Zip,02 = CXP

2 p(u)g(u) In*(g(w)) du + g( x)lnz(g ) [, p(

) u

— )1 2 4 )d Y] oy L "

Eim:exp -1+ g(y n (g(y zfap(u 14+ n )fu
)

Z(fy u) In(g()) du + g(x )1n(g(x))f:p(u
-g) ln(g(y [Fpwdu+ (Y InY -XInX) [ p(u)du)

where X, ¥, X and Y are the same as defined in (29).
If ®; (i = 1,2) are positive, then Theorem 2.4 applied to ] = [minye[,,5) g(*), MaXye[ap) £(%)],
f =f; € Qy and k =f; € Q, yields that there exists &; € J such that

®i(xy;0:8./)

, i=1,2.
(%, 0,8, f7)

s—q
‘i:i =

Since the functions & > &7 (i = 1,2) are invertible for s # g, we have

1
dDi N 234 s
min g(x) < <M> ax g(x), i=1,2, (31)
x€la,b] CDi(x,y;p,g, q) xe[ah]

which together with the fact that & us - (i = 1,2) are continuous, symmetric and monoto-

nous (by (25)) shows that E 42 Ar€ means.

Now, by the subst1tut10nsx—> xy—=>9ys—>1,q—>1(t#0,5s7q), wherex,y € [a,b],

from (31) we have

min (i ¢)' (max e00) | = (Garaasst )

< max{ (Xmln g(x)) (max g (x)) }

We define a new mean (for i = 1, 2) as follows:

1
(:u'%,% (xt,yt»l%g’ q)i’ QZ))?r t 7/0’

Mgt X9, 0,8 Pi, Qo) =
,U«s,q(lnx:ln)/,}ﬂ,g, q)inI); t= 0.

These new means are also monotonous. More precisely, for s,q,u,v € R such that s <

u,q <v,s#q,u+v,wehave
lu‘S;q;t(x’y’p’g’ qu’ QZ) =< Mu,v;t(x’y’p)g; cbi, Qz), i= 1; 2.
We know that

M%Y% (xtvyt)p)g1 CI)L') S22) =< M%,% (xt;yt1p)g; q)i) 92)7 i= 11 2)
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equivalently

t
(q>i(xtryt;p¢gtf;/t)>s_q < (q)i(xtryt;p’grﬁl/t)

Q;(xt, v, & fq1t) D,(x%, 550,80 fore)

for s,q,u,v € I such that s/t < u/t, q/t <v/t and t # 0, since w4 (x,y,p,8 Pi, 2) (i =1,2)
are monotonous in both parameters, so the claim follows. For ¢ = 0, we obtain the required

result by taking the limit t — 0.
Example 4.3 Consider the family of functions

Q3 = {h;:(0,00) — (0,00) : 5 € (0,00)}

defined by
sEos#1,
hs(x) = 111223 #
5, s=L
We have %hs(x) = s > 0, which shows that %, is convex for all s > 0. Since s

& () =

dx?

nentially convex. It is easy to see that the function s — [yg,y1,¥2; 4] is also exponentially
convex. Arguing as in Example 4.1, we have s — ®;(x,y; p, g, k) (i = 1,2) are exponentially

convex.

In this case, by taking Q = Q3 in (26), Eé’qﬂ = g%, 0,8 @i, 23) (i = 1,2) for x,y > 0,

where %, y € [a, b] are of the form

1]

1]

© -

- 1 -
Siss3 = CXP

©» o=
—_
=
BN

f p(u ) du

I p(w)s™¢“) du + g(y)f pu o
_—g(x)fxp Ydu + (s —Yfp

! p)q ¥ du+q =¥ [} plu)d
~q ¢ [{pw)du+ (@ -q77) f;’p(u) du

12 p(u)s) dy +s‘g(y) fbp(u) du s
—s’g(")fbp )du + (s ’y f pu
fy wdu+g*0) [, plu
jp Ydu + (X% - Y2 j p(u

» s#qFL,

s#1,

— 58 (2+gx)lnsfp du]+s’f((2+)A(lns)—s’f/(2+f/lns)

(7 p(u)s) (2 + g(u) Ins) du + 5400 (2 + g(y) Ins) fybp(u) du

~1
113 = €Xp

O L
S,

1 fpu)dl,t+(X3 ¥3) fp

3 fy

In?s

fb—s(ln)sd f,fl plu)s=8 dy + sfg(y) f b p(u)du
a plu)au
=578 [” p(u) du + ( 7y 2 puw) du)

fy du+g(yfp

M)dlﬁg()’fp
fpu)du+()(2 Yzfp

12 p(u) ”)du+s‘g("f p(u
-5 [7p udu+( Y _ Xy fp

L2 p()g¢" du + g~ g(x)f p(u)du
—q'g(y)fy u)du + (q - _ jpu)du

o
(|~
4

» S#q#],

~* is the Laplace transform of a non-negative function (see [6, 7]), it is expo-

s#1,
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fy g(”du+sg")fp 51
o 2 -5tV fy du+( —s’X)f pu)du 41
i1 = b ) N )
BN s plu)g(w) du + ¢ x) [T plu
-g20) [ p( du+ (Y2- Xzfp
fb( y 2 p()s™¢¥)(2 + g(u) Ins) duu + 574 (2 + g(x) Ins) [ p(u) du
plu)du
. - 5729)(2 + g(y) Ins) fy du]+s‘Y(2+Ylns)—s X(2 + X1ns)
Sgs3 = CXp —slns y -g(x) » s7L
T (fp “ duy + 578 [* p(u
—570) 7 p(u) du + (57 - fp
[ pw)gw) du+gx) [ plu
=2 =exp _l. g(yfy u)du+(Y3 Xpr
113 3 [ pw)g*(w) du + g*x) [ p(u

g(yfy dM+Y2 Xzfp

where X, ¥, X and Y are the same as in (29). By using (25), (%, y, ®i, 23) (i = 1,2) are
monotonous in parameters s and g. By using Theorem 2.4, it can be seen that

Ms,q(x’y’p’g' cbi’ QS) = —L(S, q) IOg Ms,q(x’y’p’g' CI)i, QS): i= 1,2,

satisfy minye(qp g(x) < M 4(x%, 5, 9,8, (Di: 93) < MaXye[qp) g(¥) and so M, (x,y,p, g, Pi, 23)
(i = 1,2) are means, where L(s,q) = s#q, L(s,s) = s, is known as the logarithmic

logs logq ?
mean.

Example 4.4 Consider the family of functions
Q4= {ks :(0,00) = (0,00):5 € (O,oo)}

defined by

x5
k() = &

Here, %ks(x) = V5 > 0, which shows that &, is convex for all s > 0. Since s > ;2 s(x) =
e~V is the Laplace transform of a non-negative function (see [6, 7]), it is exponentially
convex. It is easy to prove that the function s — [yo,¥1,2; ks] is also exponentially convex.
Arguing as in Example 4.1, we have s > ®;(x, y; p, £, ks) (i = 1,2) are exponentially convex.

In this case, by taking Q2 = Q4 in (26), Eiqﬂ = g%, 9, 0,8 iy Q4) (i = 1,2) for x,5 > 0,

where x,y € [a, D] are of the form

fxyp( )e el fdu+eg(y‘[f p(u)d
o e —*Wﬁfp )du + (e - -“Ufmw
Ssga T | J2 p(w)e 4V dy + ¢80 ff p(u) e
g ffx plu) du + (XY - _Yﬁ)f P(M) du
b e N2 4 g)B) i+ X024 g0)VB) ) () s
. _eg(x)f(2+g 3) [2 pw) dul + e V2 + X f5) - e T2+ T 5)
R fbp(u)du ()2 p(w)e Vs duy + e g(y)‘/—fy plu)du— e [Ppwydu) |’

+ 25(6‘_?‘/; - e'X‘/E)
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Jpu )e 8V dy 4 e8IV [ p(y 3
—2 q _eg()/ffy W) du + (e T 7X“/—)fpu)du
g = ' jy )e€Va dyy 4 =8 x)‘[fp , s#q,
_eg(yffy )du + (e -V g _ 7X[)fapu)du
K p(lu) - [ p(u)e 2V (2 + gu)/5) du + e €52 + g(x)/5) [ plu) du
E2, = exp — N2 1 g) ) [ plae) dd) + € T2 + T /5) _ef)(\/' @+ X5) |

(2 p(w)e8OV5 duy + e8OV5 [* p(u) du — e 8O3 [7 p(u) du)
+ 25(e’X“/— - e’Yf)

Ja bp(u

where X, ¥, X and Y are the same as in (29).

Remark 4.5
(i) If ®; (i =1,2) are positive, then applying Theorem 2.4 to J = [minye[,,» g(x),
MaXye[q,5) £(*)] in Examples 4.1, 4.3 and 4.4, we have

MS,q(x)y)p;gr q)i; Ql) = log H’S,q(x)y>p,gr cbi, Ql)! (32)

Ms,q(x:y;p,g CI)L': 93) = —L(S, Q) 10g /’Ls,q(x;y;p,gr CI)L', 93)! (33)
and

Ms,q(x:y;p,g CI)L': 94) = _(\/E + \/5) log Ms,q(%y,l?,g; cDir S-24) (34')

(i =1,2) respectively, where L(s,q) = s#q, L(s,s) = s, is known as the

Togs bgg’
logarithmic mean. By using the same ;iigtflilg as in Example 4.2, (32), (33) and (34)
satisfy minge(s,p) g(%) < Mg (%, ¥, p, & Pi, ) < MaXye(q,p) g(¥) for Q = Q1, Q3, 24,
showing that M;,(x,y, p,g, ®i, Q) (i =1,2) are means for Q = Q1, 23, 24. Also, from
(25) it is clear that pu4(x,y, p, g, i, Q) (i =1,2) for 2 =, Q23 and 4 are
monotonous functions in parameters s and q.

(ii) If we make the substitutions p(x) =1 and g(&) = u in our means fi4(x, ¥, p, g, i, 22)
and g g, (%, 9, p, g, @i, Qo) (i = 1,2), then the results for the means pu;4(x, y, s, Q25)
and fug g, (%, y, P5, Q22) (i =1,2) given in [8] are recaptured. In this way, our results for

means are the generalizations of the above mentioned means.
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