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1 Introduction
Let f : [a,b]−→ R be a convex function, then the inequality

f
(
a + b


)
≤ 

b – a

∫ b

a
f (x)dx≤ f (a) + f (b)


, a,b ∈R, ()

is known in the literature as the Hermite-Hadamard inequality (see [, ] for more infor-
mation).
Let X be a vector space, x, y ∈ X, x �= y and [x, y] = {( – t)x + ty, t ∈ [, ]}. We consider

the function f : [x, y] −→R and the associated function

g(x, y) : [, ] −→R, g(x, y)(t) := f
[
( – t)x + ty

]
, t ∈ [, ].

Note that f is convex on [x, y] if and only if g(x, y) is convex on [, ].
For any convex function defined on a segment [x, y] ⊂ X, we have the Hermite-

Hadamard integral inequality

f
(
x + y


)
≤

∫ 


f
[
( – t)x + ty

]
dt ≤ f (x) + f (y)


, ()

which can be derived from the classical Hermite-Hadamard inequality () for the convex
function g(x, y) : [, ]−→ R.
A real-valued continuous function f on an interval I is said to be operator convex (op-

erator concave) if

f
(
( – λ)A + λB

) ≤ (≥) ( – λ)f (A) + λf (B)
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in the operator order for all λ ∈ [, ] and for every self-adjoint operator A and B on a
Hilbert space H whose spectra are contained in I . Notice that a function f is operator
concave if –f is operator convex.
In recent years, many authors have been interested in giving some refinements and ex-

tensions of the Hermite-Hadamard inequality in (). Formore about convex functions and
the Hermite-Hadamard inequality, see [–].
The author in [] shows some new integral inequalities analogous to the well-known

Hermite-Hadamard inequality. We give a general form of the second of these inequalities
and show that the inequalities therein are satisfied for operator convex functions.
The author in [] shows some new Hermite-Hadamard inequalities similar to Pach-

patte’s results.
Pachpatte () gives some integral inequalities analogous to thewell-knownHermite-

Hadamard inequality by using a fairly elementary analysis in [].

Theorem  Let f and g be real-valued, nonnegative and convex functions on [a,b]. Then
(i)


b – a

∫ b

a
f (x)g(x)dx≤ 


M(a,b) +



N(a,b), ()

(ii)

f
(
a + b


)
g
(
a + b


)
≤ 

b – a

∫ b

a
f (x)g(x)dx +



M(a,b) +



N(a,b), ()

where M(a,b) = f (a)g(a) + f (b)g(b), N(a,b) = f (a)g(b) + f (b)g(a).

Tunç () gives an inequality for convex functions in [] as follows.

Theorem  Let f , g : [a,b]−→R be two convex functions. Then


(b – a)

∫ b

a
(b – x)

(
f (a)g(x) + g(a)f (x)

)
dx

+


(b – a)

∫ b

a
(x – a)

(
f (b)g(x) + g(b)f (x)

)
dx

≤ M(a,b)


+
N(a,b)


+


b – a

∫ b

a
f (x)g(x)dx, ()

where M(a,b) = f (a)g(a) + f (b)g(b), N(a,b) = f (a)g(b) + f (b)g(a).

Tunç () gives another inequality for convex functions in [], too.

Theorem  Let f , g : [a,b]−→ R be two convex functions. Then


b – a

∫ b

a

(
f
(
a + b


)
g(x) + g

(
a + b


)
f (x)

)
dx

≤ 
(b – a)

∫ b

a
f (x)g(x)dx +




M(a,b) +


N(a,b) + f

(
a + b


)
g
(
a + b


)
, ()

where M(a,b) = f (a)g(a) + f (b)g(b), N(a,b) = f (a)g(b) + f (b)g(a).
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Ghazanfari () gives an inequality for two operator convex functions in [] as follows.

Theorem  Let f , g : I −→ R be operator convex functions on the interval I . Then for any
self-adjoint operators A and B on a Hilbert space H with spectra in I , the inequality

〈
f
(
A + B


)
x,x

〉〈
g
(
A + B


)
x,x

〉

≤ 


∫ 



〈
f
(
tA + ( – t)

)
Bx,x)

〉〈
g
(
tA + ( – t)

)
Bx,x)

〉
dt

+



M(A,B)(x) +


N(A,B)(x) ()

holds for any x ∈ H with ‖x‖ = , where

M(A,B)(x) =
〈
f (A)x,x

〉〈
g(A)x,x

〉
+

〈
f (B)x,x

〉〈
g(B)x,x

〉
,

N(A,B)(x) =
〈
f (A)x,x

〉〈
g(B)x,x

〉
+

〈
f (B)x,x

〉〈
g(A)x,x

〉
.

For further inequalities, see [–].

2 Main results
In this section, we give some new Hermite-Hadamard type inequalities for operator con-
vex functions and mention the differences related to the results in recent papers. We em-
phasize the difference by giving an example.
The following theorem is a generalization for the product of two operator convex func-

tions.

Theorem  Let f , g : I −→ R be operator convex, nonnegative functions on the interval I .
Then for any self-adjoint operators A and B with spectra in I , we have the inequality

〈
f
(
A + B


)
x,x

〉〈
g
(
A + B


)
x,x

〉

≤ 


∫ 



〈
f
(
tA + ( – t)B

)
x,x)

〉〈
g
(
tA + ( – t)B

)
x,x)

〉
dt

+


k

k–∑
i=

[〈
f (Z)x,x

〉〈
g(T)x,x

〉
+

〈
f (Z)x,x

〉〈
g(T)x,x

〉

+
〈
f (T)x,x

〉〈
g(Z)x,x

〉
+

〈
f (T)x,x

〉〈
g(Z)x,x

〉]

+


k

k–∑
i=

[〈
f (Z)x,x

〉〈
g(Z)x,x

〉
+

〈
f (T)x,x

〉〈
g(T)x,x

〉

+
〈
f (T)x,x

〉〈
g(T)x,x

〉
+

〈
f (Z)x,x

〉〈
g(Z)x,x

〉]
, ()

where

(k – i)A + iB
k

= Z,
(i + )A + (k – (i + ))B

k
= T, ()

iA + (k – i)B
k

= Z,
(k – (i + ))A + (i + )B

k
= T ()

and k is the number of steps.
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Proof Let x ∈ H , ‖x‖ =  and A, B be two self-adjoint operators with spectra in I . Using
the convexity of f , g and the change of variable u = kt, we have

〈
f
(
( – t)A + tB

)
x,x

〉
=

〈
f
((

 –
u
k

)
A +

u
k
B
)
x,x

〉

=
〈
f
(
( – u)A + u

(k – )A + B
k

)
x,x

〉

≤ ( – u)
〈
f (A)x,x

〉
+ u

〈
f
(
(k – )A + B

k

)
x,x

〉
()

and

〈
f
(
tA + ( – t)B

)
x,x

〉
=

〈
f
(
u
k
A +

(
 –

u
k

)
B
)
x,x

〉

=
〈
f
(
u
A + (k – )B

k
+ ( – u)B

)
x,x

〉

≤ u
〈
f
(
A + (k – )B

k

)
x,x

〉
+ ( – u)

〈
f (B)x,x

〉
. ()

By the change of variable u = kt – , we have

〈
f
(
( – t)A + tB

)
x,x

〉
=

〈
f
((

 –
u + 
k

)
A +

u + 
k

B
)
x,x

〉

=
〈
f
(
( – u)

(k – )A + B
k

+ u
(k – )A + B

k

)
x,x

〉

≤ ( – u)
〈
f
(
(k – )A + B

k

)
x,x

〉
+ u

〈
f
(
(k – )A + B

k

)
x,x

〉

and

〈
f
(
tA + ( – t)B

)
x,x

〉
=

〈
f
(
u + 
k

A +
(
 –

u + 
k

)
B
)
x,x

〉

=
〈
f
(
u
A + (k – )B

k
+ ( – u)

A + (k – )B
k

)
x,x

〉

≤ u
〈
f
(
A + (k – )B

k

)
x,x

〉
+ ( – u)

〈
f
(
A + (k – )B

k

)
x,x

〉
.

Similarly, by using the change of variables u = kt –,u = kt –, . . . ,u = kt – (k –), we have
some inequalities. By the change of variable u = kt – (k – ), we get

〈
f
(
( – t)A + tB

)
x,x

〉
=

〈
f
((

 –
u + k – 

k

)
A +

u + k – 
k

B
)
x,x

〉

=
〈
f
(
( – u)

A + (k – )B
k

+ uB
)
x,x

〉

≤ ( – u)
〈
f
(
A + (k – )B

k

)
x,x

〉
+ u

〈
f (B)x,x

〉
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and

〈
f
(
tA + ( – t)B

)
x,x

〉
=

〈
f
(
u + k – 

k
A +

(
 –

u + k – 
k

)
B
)
x,x

〉

=
〈
f
(
uA + ( – u)

(k – )A + B
k

x,x
)〉

≤ u
〈
f (A)x,x

〉
+ ( – u)

〈
f
(
(k – )A + B

k

)
x,x

〉
.

Using the convexity of f , g , we have

〈
f
(
A + B


)
x,x

〉
=

〈
f
(
tA + ( – t)B


+
( – t)A + tB



)
x,x

〉

≤ 〈f (tA + ( – t)B)x,x〉 + 〈f (( – t)A + tB)x,x〉


()

and
〈
g
(
A + B


)
x,x

〉
=

〈
g
(
tA + ( – t)B


+
( – t)A + tB



)
x,x

〉

≤ 〈g(tA + ( – t)B)x,x〉 + 〈g(( – t)A + tB)x,x〉


. ()

Firstly, if we write the values obtained from the change of variable u = kt in () and (),
we get

〈
f
(
A + B


)
x,x

〉
≤ 〈f (tA + ( – t)B)x,x〉 + 〈f (( – t)A + tB)x,x〉



=
〈f (uA+(k–)B

k + ( – u)B)x,x〉 + 〈f (( – u)A + u (k–)A+B
k )x,x〉


()

and
〈
g
(
A + B


)
x,x

〉

≤ 〈g(tA + ( – t)B)x,x〉 + 〈g(( – t)A + tB)x,x〉


=
〈g(uA+(k–)B

k + ( – u)B)x,x〉 + 〈g(( – u)A + u (k–)A+B
k )x,x〉


. ()

If we multiply () and () and suppose (–u)A+u (k–)A+B
k = X and uA+(k–)B

k + (–u)B =
Y, we get

〈
f
(
A + B


)
x,x

〉〈
g
(
A + B


)
x,x

〉

≤ 


(〈
f (X)x,x

〉
+

〈
f (Y)x,x

〉)(〈
g(X)x,x

〉
+

〈
g(Y)x,x

〉)

=



[〈
f (X)x,x

〉〈
g(X)x,x

〉
+

〈
f (X)x,x

〉〈
g(Y)x,x

〉
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+
〈
f (Y)x,x

〉〈
g(X)x,x

〉
+

〈
f (Y)x,x

〉〈
g(Y)x,x

〉]

≤ 


[〈
f (X)x,x

〉〈
g(X)x,x

〉
+

〈
f (Y)x,x

〉〈
g(Y)x,x

〉]

+



[
u
〈
f
(
A + (k – )B

k

)
x,x

〉
+ ( – u)

〈
f (B)x,x

〉]

×
[
( – u)

〈
g(A)x,x

〉
+ u

〈
g
(
(k – )A + B

k

)
x,x

〉]

+



[
( – u)

〈
f (A)x,x

〉
+ u

〈
f
(
(k – )A + B

k

)
x,x

〉]

×
[
u
〈
g
(
A + (k – )B

k

)
x,x

〉
+ ( – u)

〈
g(B)x,x

〉]

=



[〈
f (X)x,x

〉〈
g(X)x,x

〉
+

〈
f (Y)x,x

〉〈
g(Y)x,x

〉]

+



[
u( – u)

〈
f
(
A + (k – )B

k

)
x,x

〉〈
g(A)x,x

〉

+ u
〈
f
(
A + (k – )B

k

)
x,x

〉〈
g
(
(k – )A + B

k

)
x,x

〉

+ ( – u)
〈
f (B)x,x

〉〈
g(A)x,x

〉

+ ( – u)u
〈
f (B)x,x

〉〈
g
(
(k – )A + B

k

)
x,x

〉]

+



[
( – u)u

〈
f (A)x,x

〉〈
g
(
A + (k – )B

k

)
x,x

〉

+ ( – u)
〈
f (A)x,x

〉〈
g(B)x,x

〉

+ u
〈
f
(
(k – )A + B

k

)
x,x

〉〈
g
(
A + (k – )B

k

)
x,x

〉

+ u( – u)
〈
f
(
(k – )A + B

k

)
x,x

〉〈
g(B)x,x

〉]
. ()

If we integrate both sides of inequality () over [, ], we reach
〈
f
(
A + B


)
x,x

〉〈
g
(
A + B


)
x,x

〉

≤ k


[∫ /k



〈
f
(
tA + ( – t)B

)
x,x

〉〈
g
(
tA + ( – t)B

)
x,x

〉
dt

]

+
k


[∫ /k



〈
f
(
( – t)A + tB

)
x,x

〉〈
g
(
( – t)A + tB

)
x,x

〉
dt

]

+



[〈
f
(
A + (k – )B

k

)
x,x

〉〈
g(A)x,x

〉
+

〈
f (B)x,x

〉〈
g
(
(k – )A + B

k

)
x,x

〉]

+



[〈
f
(
A + (k – )B

k

)
x,x

〉〈
g
(
(k – )A + B

k

)
x,x

〉
+

〈
f (B)x,x

〉〈
g(A)x,x

〉]

+



[〈
f (A)x,x

〉〈
g
(
A + (k – )B

k

)
x,x

〉
+

〈
f
(
(k – )A + B

k

)
x,x

〉〈
g(B)x,x

〉]

+



[〈
f (A)x,x

〉〈
g(B)x,x

〉
+

〈
f
(
(k – )A + B

k

)
x,x

〉〈
g
(
A + (k – )B

k

)
x,x

〉]
.
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If we continue the same operations as above until the change of variable u = kt – (k – ),
we have some inequalities. And then, if we sum these obtained inequalities, we get the
desired inequality. �

Remark  In inequality (), if we take k = , we get the inequality in ().

Now, we show the comparison between Theorems  and  utilizing self-adjoint opera-
tors (Hermitian matrices) as follows.

Example  LetA =
[  
 

]
, B =

[ –. 
 

]
. Let our operator convex functions be f (X) = X and

g(X) = X. Since x ∈ H and ‖x‖ = , then we can choose x as x =
[ 


]
. From the information

given above, for k = , Theorem  gives

(
x∗f

(
A + B


)
x
)(

x∗g
(
A + B


)
x
)

≤ 


∫ 



〈
f
(
tA + ( – t)B

)
x,x

〉〈
g
(
tA + ( – t)B

)
x,x

〉
dt

+



[(
x∗f (A)x

)(
x∗g

(
A + B


)
x
)
+

(
x∗f (B)x

)(
x∗g

(
A + B


)
x
)

+
(
x∗f

(
A + B


)
x
)(

x∗f (A)x
)
+

(
x∗f

(
A + B


)
x
)(

x∗g(B)x
)]

+



[(
x∗f (A)x

)(
x∗g(B)x

)
+ 

(
x∗f

(
A + B


)
x
)(

x∗g
(
A + B


)
x
)

+
(
x∗f (B)x

)(
x∗g(A)x

)]
.

Putting the values of the functions in the above inequality, we get

,  ≤ 


∫ 



〈
f
(
tA + ( – t)B

)
x,x

〉〈
g
(
tA + ( – t)B

)
x,x

〉
dt + .

�⇒
∫ 



〈
f
(
tA + ( – t)B

)
x,x

〉〈
g
(
tA + ( – t)B

)
x,x

〉
dt ≥ –..

Theorem  gives

(
x∗f

(
A + B


)
x
)(

x∗g
(
A + B


)
x
)

≤ 


∫ 



〈
f
(
tA + ( – t)B

)
x,x

〉〈
g
(
tA + ( – t)B

)
x,x

〉
dt

+



[(
x∗f (A)x

)(
x∗g(A)x

)
+

(
x∗f (B)x

)(
x∗g(B)x

)]

+



[(
x∗f (A)x

)(
x∗g(B)x

)
+

(
x∗f (B)x

)(
x∗g(A)x

)]
.

Putting the values of the functions in the above inequality, we obtain

,  ≤ 


∫ 



〈
f
(
tA + ( – t)B

)
x,x

〉〈
g
(
tA + ( – t)B

)
x,x

〉
dt + .

�⇒
∫ 



〈
f
(
tA + ( – t)B

)
x,x

〉〈
g
(
tA + ( – t)B

)
x,x

〉
dt ≥ –..

http://www.journalofinequalitiesandapplications.com/content/2013/1/190
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So, we can conclude that our result, Theorem , is more strict than Theorem  in this case.

The following theorem is a lower bound for the product of two operator convex func-
tions.

Theorem  Let f , g : I −→ R be operator convex, nonnegative functions on the interval I .
Then for any self-adjoint operators A and B with spectra in I , we have the inequality

〈
g(A)x,x

〉 ∫ 


( – t)

〈
f
(
( – t)A + tB

)
x,x

〉
dt

+
〈
g(B)x,x

〉 ∫ 


t
〈
f
(
( – t)A + tB

)
x,x

〉
dt

+
〈
f (A)x,x

〉 ∫ 


( – t)

〈
g
(
( – t)A + tB

)
x,x

〉
dt

+
〈
f (B)x,x

〉 ∫ 


t
〈
g
(
( – t)A + tB

)
x,x

〉
dt

≤
∫ 



〈
f
(
( – t)A + tB

)
x,x

〉〈
g
(
( – t)A + tB

)
x,x

〉
dt

+


M(A,B) +



N(A,B), ()

where

M(A,B) =
〈
f (A)x,x

〉〈
g(A)x,x

〉
+

〈
f (B)x,x

〉〈
g(B)x,x

〉
,

N(A,B) =
〈
f (A)x,x

〉〈
g(B)x,x

〉
+

〈
f (B)x,x

〉〈
g(A)x,x

〉
.

Proof Let x ∈ H , ‖x‖ =  and A, B be two self-adjoint operators with spectra in I . Define
the real-valued functions ϕx,A,B : [, ] −→ R given by ϕx,A,B(t) = 〈f (( – t)A + tB)x,x〉 and
ψx,A,B : [, ] −→ R given by ψx,A,B(t) = 〈g(( – t)A + tB)x,x〉. Since f and g are operator
convex functions, then for every t ∈ [, ], we have

〈
f
(
( – t)A + tB

)
x,x

〉 ≤ ( – t)
〈
f (A)x,x

〉
+ t

〈
f (B)x,x

〉
, ()

〈
g
(
( – t)A + tB

)
x,x

〉 ≤ ( – t)
〈
g(A)x,x

〉
+ t

〈
g(B)x,x

〉
. ()

If a ≤ b and c≤ d for a,b, c,d ∈R, we have ad + bc ≤ ac + bd. Using this inequality analo-
gous to () and (), we get

〈
f
(
( – t)A + tB

)
x,x

〉(
( – t)

〈
g(A)x,x

〉
+ t

〈
g(B)x,x

〉)
+

〈
g
(
( – t)A + tB

)
x,x

〉(
( – t)

〈
f (A)x,x

〉
+ t

〈
f (B)x,x

〉)
≤ 〈

f
(
( – t)A + tB

)
x,x

〉〈
g
(
( – t)A + tB

)
x,x

〉
+

(
( – t)

〈
f (A)x,x

〉
+ t

〈
f (B)x,x

〉)(
( – t)

〈
g(A)x,x

〉
+ t

〈
g(B)x,x

〉)
. ()

Since ϕx,A,B(t) and ψx,A,B(t) are operator convex on [, ], they are integrable on [, ] and
consequently ϕx,A,B(t)ψx,A,B(t) is also integrable on [, ]. Integrating both sides of inequal-
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ity () over [, ], we get

〈
g(A)x,x

〉 ∫ 


( – t)

〈
f
(
( – t)A + tB

)
x,x

〉
dt +

〈
g(B)x,x

〉 ∫ 


t
〈
f
(
( – t)A + tB

)
x,x

〉
dt

+
〈
f (A)x,x

〉 ∫ 


( – t)

〈
g
(
( – t)A + tB

)
x,x

〉
dt

+
〈
f (B)x,x

〉 ∫ 


t
〈
g
(
( – t)A + tB

)
x,x

〉
dt

≤
∫ 



〈
f
(
( – t)A + tB

)
x,x

〉〈
g
(
( – t)A + tB

)
x,x

〉
dt

+
〈
f (A)x,x

〉〈
g(A)x,x

〉 ∫ 


( – t) dt

+
[〈
f (A)x,x

〉〈
g(B)x,x

〉
+

〈
f (B)x,x

〉〈
g(A)x,x

〉] ∫ 


t( – t)dt

+
〈
f (B)x,x

〉〈
g(B)x,x

〉 ∫ 


t dt. ()

It can be easily controlled that

∫ 


( – t) dt =

∫ 


t dt =



,

∫ 


t( – t)dt =



.

When the above equalities are taken into account, the proof is complete. �

Remark  In inequality (), if we take x = ( – t)A + tB, a =  and b = , we get the in-
equality in (). Our result is more general than ().

In Theorem , we give a lower bound. But now we give both lower and upper bounds
for the product of two operator convex functions.

Theorem  Let f , g : I −→ R be operator convex, nonnegative functions on the interval I .
Then for any self-adjoint operators A and B with spectra in I , we have the inequality

k–∑
i=

[〈
g(Z)x,x

〉 ∫ 



(
 – (kt – i)

)〈
f
(
( – t)A + tB

)
x,x

〉
dt

+
〈
g(T)x,x

〉 ∫ 


(kt – i)

〈
f
(
( – t)A + tB

)
x,x

〉
dt

+
〈
f (Z)x,x

〉 ∫ 



(
 – (kt – i)

)〈
g
(
( – t)A + tB

)
x,x

〉
dt

+
〈
f (T)x,x

〉 ∫ 


(kt – i)

〈
g
(
( – t)A + tB

)
x,x

〉
dt

]

≤
∫ 



〈
f
(
( – t)A + tB

)
x,x

〉〈
g
(
( – t)A + tB

)
x,x

〉
dt

≤ 
k

[〈
f (A)x,x

〉〈
g(A)x,x

〉
+

〈
f (B)x,x

〉〈
g(B)x,x

〉]
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+

k

k–∑
i=

[
f
〈
(Z)x,x

〉〈
g(Z)x,x

〉]

+

k

k–∑
i=

[〈
f (Z)x,x

〉〈
g(T)x,x

〉
+

〈
f (T)x,x

〉〈
g(Z)x,x

〉]
, ()

where Z and T are defined in () and () and k is the number of steps.

Proof Let x ∈ H , ‖x‖ =  and A, B be two self-adjoint operators with spectra in I . Using
the convexity of f , g and the change of variable u = kt, we have () and (). Using the
analogous condition that, if a ≤ b and c ≤ d for a,b, c,d ∈ R, we have ad + bc ≤ ac + bd,
we obtain

( – u)
〈
f
(
( – u)A + u

(k – )A + B
k

)
x,x

〉〈
g(A)x,x

〉

+ u
〈
f
(
( – u)A + u

(k – )A + B
k

)
x,x

〉〈
g
(
(k – )A + B

k

)
x,x

〉

+ ( – u)
〈
g
(
( – u)A + u

(k – )A + B
k

)
x,x

〉〈
f (A)x,x

〉

+ u
〈
g
(
( – u)A + u

(k – )A + B
k

)
x,x

〉〈
f
(
(k – )A + B

k

)
x,x

〉

≤
〈
f
(
( – u)A + u

(k – )A + B
k

)
x,x

〉〈
g
(
( – u)A + u

(k – )A + B
k

)
x,x

〉

+ ( – u)
〈
f (A)x,x

〉〈
g(A)x,x

〉

+ u
〈
f
(
(k – )A + B

k

)
x,x

〉〈
g
(
(k – )A + B

k

)
x,x

〉

+ u( – u)
[〈
f (A)x,x

〉〈
g
(
(k – )A + B

k

)
x,x

〉

+
〈
f
(
(k – )A + B

k

)
x,x

〉〈
g(A)x,x

〉]
. ()

If we continue the same operations as above until the change of variable u = kt – (k – ),
we have some inequalities. And then, if we integrate the multiplication inequalities, we
get k inequalities. These inequalities are defined on [, k ), (


k ,


k ), . . . , (

k–
k , ], respectively.

The sum of the integration parts of these k inequalities yields
∫ 
 〈f ((– t)A+ tB)x,x〉〈g((–

t)A + tB)x,x〉dt. Thus, the proof is complete. �

Remark  Inequality () is a general form of inequality (). When k =  in inequality
(), we get inequality ().

Theorem  Let f , g : I −→R be operator convex, nonnegative functions on the interval I .
Then for any self-adjoint operators A and B with spectra in I , we have the inequality

〈
f
(
A + B


)
x,x

〉∫ 



〈
g
(
tA + ( – t)B

)
x,x

〉
dt

+
〈
g
(
A + B


)
x,x

〉∫ 



〈
f
(
tA + ( – t)B

)
x,x

〉
dt
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≤
〈
f
(
A + B


)
x,x

〉〈
g
(
A + B


)
x,x

〉

+

k

∫ 



〈
f
(
tA + ( – t)B

)
x,x

〉〈
g
(
tA + ( – t)B

)
x,x

〉
dt

+


k

k–∑
i=

[〈
f (Z)x,x

〉〈
g(T)x,x

〉
+

〈
f (Z)x,x

〉〈
g(T)x,x

〉

+
〈
f (T)x,x

〉〈
g(Z)x,x

〉
+

〈
f (T)x,x

〉〈
g(Z)x,x

〉]

+


k

k–∑
i=

[〈
f (Z)x,x

〉〈
g(Z)x,x

〉
+

〈
f (T)x,x

〉〈
g(T)x,x

〉

+
〈
f (T)x,x

〉〈
g(T)x,x

〉
+

〈
f (Z)x,x

〉〈
g(Z)x,x

〉]
, ()

where Z, Z, T and T are defined in () and () and k is the number of steps.

Proof The proof is obvious from the proofs of Theorem  and Theorem . �

Remark  In Theorem , if we take k = , we get (). Theorem  is a generalization of
Theorem . If we take k as the largest number we can take in Theorem , we near the
exact solution.
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