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Abstract
In this paper, the problem of approximating a common element in the common fixed
point set of an infinite family of nonexpansive mappings, in the solution set of a
variational inequality involving an inverse-strongly monotone mapping and in the
solution set of an equilibrium problem is investigated based on a general iterative
algorithm. Strong convergence of the iterative algorithm is obtained in the
framework of Hilbert spaces. The results obtained in this paper improve the
corresponding results announced by many authors.
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1 Introduction and preliminaries
LetH be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖
respectively. Let C be a nonempty, closed and convex subset of H and T : C → C be a
mapping. In this paper, we use F(T) to denote the set of fixed points of T . Recall that T is
said to be a κ-contraction iff there exists a constant κ ∈ (, ) such that

‖Tx – Ty‖ ≤ κ‖x – y‖, ∀x, y ∈ C.

T is said to be a nonexpansive mapping iff

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

Let B : C →H be a mapping. Recall that B is said to be an α-inverse-strongly monotone
iff there exits a positive constant α such that

〈Bx – By,x – y〉 ≥ α‖Bx – By‖, ∀x, y ∈ C.

The classical variational inequality is to find u ∈ C such that

〈Bu, v – u〉 ≥ , ∀v ∈ C. (.)

In this paper, we use VI(C,B) to denote the solution set of the variational inequality.
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Let PC be the metric projection from H onto C. It is also known that PC satisfies

〈x – y,PCx – PCy〉 ≥ ‖PCx – PCy‖, ∀x, y ∈H .

Moreover, PCx is characterized by the properties PCx ∈ C and 〈x–PCx,PCx– y〉 ≥  for all
y ∈ C. One can see that the variational inequality is equivalent to a fixed point problem.
The element u ∈ C is a solution of the variational inequality if and only if u is a fixed
point of the mapping PC(I – λB), where λ >  is a constant and I is the identity mapping.
This alternative equivalent formulation has played a significant role in the studies of the
variational inequality and related optimization problems.
Recall that an operator A is strongly positive on H iff there exists a constant γ̄ >  with

the property

〈Ax,x〉 ≥ γ̄ ‖x‖, ∀x ∈H .

Recall that a set-valued mapping S : H → H is said to be monotone if for all x, y ∈ H ,
f ∈ Sx and g ∈ Sy imply 〈x – y, f – g〉 ≥ . A monotone mapping S :H → H is maximal if
the graph of Graph(S) of S is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping S is maximal iff for (x, f ) ∈ H × H , 〈x –
y, f – g〉 ≥  for every (y, g) ∈Graph(S) implies f ∈ Sx. Let B be a monotone map of C into
H and letNCv be the normal cone to C at v ∈ C, i.e., NCv = {w ∈H : 〈v–u,w〉 ≥ ,∀u ∈ C}
and define

Sv =

⎧⎨
⎩Bv +NCv, v ∈ C,

∅, v /∈ C.

Then S is maximalmonotone and  ∈ Sv iff v ∈ VI(C,B); see [] and the references therein.
Let F be a bifunction ofC×C intoR, whereR is the set of real numbers. The equilibrium

problem for F : C ×C →R is to find x ∈ C such that

F(x, y)≥ , ∀y ∈ C. (.)

The set of solutions of the problem (.) is denoted by EP(F). Numerous problems in
physics, optimization and economics reduce to finding a solution of (.). Recently, many
iterative algorithms have been studied to solve the equilibrium problem (.); see, for in-
stance, [–].
For solving the equilibrium problem (.), let us assume that F satisfies the following

conditions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.
In , Takahashi and Takahashi [] proved the following result.
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Theorem TT Let C be a nonempty closed convex subset of H . Let F be a bifunction from
C×C to R satisfying (A)-(A) and let T be a nonexpansive mapping of C into H such that
F(S) ∩ EP(F) �= ∅. Let f be a contraction of H into itself and let {xn} and {un} be sequences
generated by x ∈H and

⎧⎨
⎩F(yn,u) + 

rn 〈u – yn, yn – xn〉 ≥ , ∀u ∈ C,

xn+ = αnf (xn) + ( – αn)Tyn, n≥ ,

where {αn} ⊂ [, ] and {rn} ⊂ (,∞) satisfy limn→∞ αn = ,
∑∞

n= αn = ∞,
∑∞

n= |αn+ –
αn| < ∞,

∑∞
n= |rn+ – rn| < ∞, and lim infn→∞ rn > . Then {xn} and {yn} strongly converge

to some point z, where z = PCF(T)∩ EP(T)f (z).

Recently, Plubtieng and Punpaeng [] further improved the above results by involving
a strongly positive self-adjoint operator. To be more precise, they proved the following
results.

TheoremPP LetH be a realHilbert space, let F be a bifunction fromH×H → R satisfying
(A)-(A) and let T be a nonexpansive mapping on H such that F(T)∩ EP(F) �= ∅. Let f be
a contraction of H into itself with α ∈ (, ) and let A be a strongly positive bounded linear
operator on H with the coefficient γ̄ >  and  < γ < γ̄

α
. Let {xn} be a sequence generated by

x ∈H and

⎧⎨
⎩F(yn,u) + 

rn 〈u – yn, yn – xn〉 ≥ , ∀u ∈ C,

xn+ = αnγ f (xn) + (I – αnA)Tyn, n≥ ,

where {αn} ⊂ [, ] and {rn} ⊂ (,∞) satisfy limn→∞ αn = ,
∑∞

n= αn = ∞,
∑∞

n= |αn+ –
αn| < ∞,

∑∞
n= |rn+ – rn| < ∞, and lim infn→∞ rn > . Then {xn} and {yn} strongly converge

to some point z, where z = PF(T)∩EP(T)(I –A + γ f )(z).

In , Su, Shang and Qin [] considered the variational inequality (.), and the equi-
librium problem (.) based on a composite iterative algorithm and proved the following
theorem.

Theorem SSQ Let C be a nonempty closed convex subset of H . Let F be a bifunction from
C ×C to R satisfying (A)-(A). Let A be α-inverse-strongly monotone and let T be a non-
expansivemapping of C into H such that F(S)∩EP(F)∩VI(C,A) �= ∅. Let f be a contraction
of H into itself and let {xn} and {un} be sequences generated by x ∈H and

⎧⎨
⎩F(yn,u) + 

rn 〈u – yn, yn – xn〉 ≥ , ∀u ∈ C,

xn+ = αnf (xn) + ( – αn)TPC(I – λnA)yn, n ≥ ,

where {λn} ⊂ [a,b],where  < a < b < α, {αn} ⊂ [, ] and {rn} ⊂ (,∞) satisfy limn→∞ αn =
,

∑∞
n= αn = ∞,

∑∞
n= |αn+ – αn| < ∞,

∑∞
n= |rn+ – rn| < ∞,

∑∞
n= |λn+ – λn| < ∞,

and lim infn→∞ rn > . Then {xn} and {yn} strongly converge to some point z, where z =
PCF(T)∩ EP(T)f (z).

http://www.journalofinequalitiesandapplications.com/content/2013/1/19
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The above results only involve a single mapping, we will consider an infinite family of
mappings in this paper. To be more precise, we study the mappingWn defined by

Un,n+ = I,

Un,n = γnTnUn,n+ + ( – γn)I,

Un,n– = γn–Tn–Un,n + ( – γn–)I,

...

Un,k = γkTkUn,k+ + ( – γk)I,

un,k– = γk–Tk–Un,k + ( – γk–)I,

...

Un, = γTUu, + ( – γ)I,

Wn =Un, = γTUn, + ( – γ)I,

(.)

where {γ}, {γ}, . . . are real numbers such that  ≤ γn ≤ , T,T, . . . are an infinite family
of mappings of C into itself.
Considering Wn, we have the following lemmas which are important in proving our

main results.

Lemma . [] Let C be a nonempty closed convex subset of a strictly convex Banach
space E. Let T,T, . . . be nonexpansive mappings of C into itself such that

⋂∞
n= F(Tn) is

nonempty, and let γ,γ, . . . be real numbers such that  < γn ≤ b <  for any n ≥ . Then,
for every x ∈ C and k ∈N , the limit limn→∞ Un,kx exists.

Using Lemma ., one can define the mappingW of C into itself as follows:

Wx = lim
n→∞Wnx = lim

n→∞Un,x, ∀x ∈ C.

Such aW is called theW -mapping generated by T,T, . . . and γ,γ, . . . . Throughout this
paper, we will assume that  < γn ≤ b < , where b is some constant.

Lemma . [] Let C be a nonempty closed convex subset of a strictly convex Banach
space E. Let T,T, . . . be nonexpansive mappings of C into itself such that

⋂∞
n= F(Tn) is

nonempty, and let γ,γ, . . . be real numbers such that  < γn ≤ b <  for any n ≥ . Then
F(W ) =

⋂∞
n= F(Tn).

In this paper, based on a general iterative algorithm, we study the problem of approx-
imating a common element in the common fixed point set of an infinite family of non-
expansive mappings, in the solution set of a variational inequality involving an inverse-
strongly monotone mapping and in the solution set of an equilibrium problem. Strong
convergence of the iterative algorithm is obtained in the framework of Hilbert spaces.
In order to obtain the strong convergence, we need the following tools.

http://www.journalofinequalitiesandapplications.com/content/2013/1/19
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Lemma . In Hilbert spaces, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈H .

Lemma . [] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+ ≤ ( – γn)αn + δn,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
(i)

∑∞
n= γn = ∞;

(ii) lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| <∞.
Then limn→∞ αn = .

Lemma . [] Assume B is a strong positive linear bounded operator on a Hilbert space
H with the coefficient γ̄ >  and  < ρ ≤ ‖B‖–. Then ‖I – ρB‖ ≤  – ργ̄ .

Lemma . [] Let H be a Hilbert space. Let B be a strongly positive linear bounded
self-adjoint operator with the constant γ̄ >  and f be a contraction with the constant κ .
Assume that  < γ < γ̄ /κ . Let T be a nonexpansive mapping with a fixed point xt ∈ H of
the contraction x �→ tγ f (x) + (I – tB)Tx. Then {xt} converges strongly as t →  to a fixed
point x̄ of T , which solves the variational inequality

〈
(A – γ f )x̄, z – x̄

〉 ≤ , ∀z ∈ F(T).

Equivalently, we have PF(T)(I –A + γ f )x̄ = x̄.

Lemma . [, ] Let C be a nonempty closed convex subset of H and let B be a bifunc-
tion of C ×C into R satisfying (A)-(A). Let r >  and x ∈H . Then there exists z ∈ C such
that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Define a mapping Tr :H → C as follows:

Tr(x) =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
.

Then the following hold:
() Tr is single-valued;
() Tr is firmly nonexpansive, i.e., for any x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

() F(Tr) = EP(F);
() EP(F) is closed and convex.

Lemma . [] Let {xn} and {yn} be bounded sequences in a Banach space X and let βn be
a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose xn+ = ( –βn)yn +

http://www.journalofinequalitiesandapplications.com/content/2013/1/19
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βnxn for all integers n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . [, ] Let K be a nonempty closed convex subset of a Hilbert space H , {Ti :
C → C} be a family of infinitely nonexpansive mappings with

⋂∞
i= F(Ti), {γn} be a real

sequence such that  < γn ≤ b <  for each n ≥ . If C is any bounded subset of K , then
limn→∞ supx∈C ‖Wx –Wnx‖ = .

2 Main results
Theorem . Let C be a nonempty closed convex subset of a Hilbert space H . Let F be
a bifunction from C × C to R which satisfies (A)-(A). Let {Tn}∞n= be an infinite family
of nonexpansive mappings of C into C. Let B : C → H be an α-inverse-strongly monotone
mapping. Let A be a strongly positive linear bounded self-adjoint operator on H with the
coefficient γ̄ > . Assume that  < γ < γ̄ /κ and F :=

⋂∞
i= F(Ti) ∩ EP(F) ∩ VI(C,B) �= ∅. Let

f : C → H be a κ-contraction. Let {xn} be a sequence generated in the following iterative
process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈H ,

F(yn, z) + 
rn 〈z – yn, yn – xn〉 ≥ , ∀z ∈ C,

xn+ = αnxn + ( – αn)βnγ f (yn) + ( – αn)(I – βnA)WnPC(I – snB)yn, n≥ ,

where Wn is generated in (.), {αn}, {βn} are real number sequences in (, ), {rn} and {sn}
are positive real number sequences. Assume that the following restrictions are satisfied:
(a)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(b) limn→∞ βn = ,

∑∞
n= βn = ∞;

(c) limn→∞ |rn+ – rn| = , limn→∞ |sn+ – sn| = ;
(d) lim infn→∞ rn > , {sn} ⊂ [s, s′] for some s, s′ with  < s < s′ < α.

Then {xn} converges strongly to q ∈ F , where q = PF (γ f + (I – A))(q), which solves the fol-
lowing variational inequality:

〈
γ f (q) –Aq,p – q

〉 ≤ , ∀p ∈ F .

Proof We divide the proof into five steps.
Step . Show that the sequence {xn} is bounded.
Notice that I – snB is nonexpansive. Indeed, we see from the restriction (d) that

∥∥(I – snB)x – (I – snB)y
∥∥

=
∥∥(x – y) – sn(Bx – By)

∥∥

= ‖x – y‖ – sn〈x – y,Bx – By〉 + sn‖Bx – By‖

≤ ‖x – y‖ – sn(α – sn)‖Bx – By‖

≤ ‖x – y‖,

http://www.journalofinequalitiesandapplications.com/content/2013/1/19
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which implies the mapping I – snB is nonexpansive. Fix p ∈ F . Since zn = Trnxn, we have

‖yn – p‖ = ‖Trnxn – Trnp‖ ≤ ‖xn – p‖.

Put

ζn = βnγ f (yn) + (I – βnA)Wnρn,

where

ρn = PC(I – snB)yn.

It follows that

‖ρn – p‖ ≤ ‖yn – p‖ ≤ ‖xn – p‖.

Since βn →  as n → ∞, we may assume, with no loss of generality, that βn < ‖A‖– for
all n. It follows that

‖ζn – p‖ =
∥∥βn

(
γ f (yn) –Ap

)
+ (I – βnA)(Wnρn – p)

∥∥
≤ βn

∥∥γ f (yn) –Ap
∥∥ + ‖I – βnA‖‖Wnρn – p‖

≤ βn
[
γ
∥∥f (yn) – f (p)

∥∥ +
∥∥γ f (p) –Ap

∥∥]
+ ( – βnγ̄ )‖ρn – p‖

≤ βn
[
γ
∥∥f (yn) – f (p)

∥∥ +
∥∥γ f (p) –Ap

∥∥]
+ ( – βnγ̄ )‖xn – p‖

≤ [
 – (γ̄ – γ κ)βn

]‖xn – p‖ + βn
∥∥γ f (p) –Ap

∥∥,
which yields

‖xn+ – p‖ =
∥∥αn(xn – p) + ( – αn)(ζn – p)

∥∥
≤ αn‖xn – p‖ + ( – αn)‖ζn – p‖
≤ αn‖xn – p‖ + ( – αn)

[
 – (γ̄ – γα)βn

]‖xn – p‖
+ ( – αn)βn

∥∥γ f (p) –Ap
∥∥.

This in turn implies that

‖xn – p‖ ≤ max

{
‖x – p‖, ‖γ f (p) –Ap‖

γ̄ – γ κ

}
.

This completes the proof that the sequence {xn} is bounded. This completes the proof of
Step .
Step . Show that limn→∞ ‖xn+ – xn‖ = .
In view of yn = Trnxn and yn+ = Trn+xn+, we see that

F(yn, z) +

rn

〈z – yn, yn – xn〉 ≥ , ∀z ∈ C, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/19
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and

F(yn+, z) +


rn+
〈z – yn+, yn+ – xn+〉 ≥ , ∀z ∈ C. (.)

Putting z = yn+ in (.) and z = yn in (.), we find that

F(yn, yn+) +

rn

〈yn+ – yn, yn – xn〉 ≥ 

and

F(yn+, yn) +


rn+
〈yn – yn+, yn+ – xn+〉 ≥ .

It follows from (A) that

〈
yn+ – yn,

yn – xn
rn

–
yn+ – xn+

rn+

〉
≥ .

That is,

〈
yn+ – yn, yn – yn+ + yn+ – xn –

rn
rn+

(yn+ – xn+)
〉
≥ .

Without loss of generality, let us assume that there exists a real number m such that rn >
m >  for all n. It follows that

‖yn+ – yn‖ ≤ ‖yn+ – yn‖
(

‖xn+ – xn‖ +
∣∣∣∣ – rn

rn+

∣∣∣∣‖yn+ – xn+‖
)
.

It follows that

‖yn+ – yn‖ ≤ ‖xn+ – xn‖ +
∣∣∣∣ – rn

rn+

∣∣∣∣‖yn+ – xn+‖

≤ ‖xn+ – xn‖ + M

m
|rn+ – rn|, (.)

whereM is some real constant such thatM ≥ supn≥{‖yn – xn‖}.
On the other hand, we have

‖ρn+ – ρn‖ =
∥∥PC(I – sn+B)yn+ – PC(I – snB)yn

∥∥
≤ ∥∥(I – sn+B)yn+ – (I – snB)yn

∥∥
=

∥∥(I – sn+B)yn+ – (I – sn+B)yn + (sn – sn+)Byn
∥∥

≤ ‖yn+ – yn‖ + |sn – sn+|M, (.)

whereM ≥ supn≥{‖Byn‖}. Substituting (.) into (.) yields

‖ρn+ – ρn‖ ≤ ‖xn+ – xn‖ +M
(|rn+ – rn| + |sn – sn+|

)
, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/19
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whereM =max{M,M}. Notice that

‖ζn – ζn+‖ =
∥∥(I – βn+A)(Wn+ρn+ –Wnρn) – (βn+ – βn)AWnρn

+ γ
[
βn+

(
f (yn+) – f (zn)

)
+ f (yn)(βn+ – βn)

]∥∥
≤ ( – βn+γ̄ )

(‖ρn+ – ρn‖ + ‖Wn+ρn –Wnρn‖
)

+ |βn+ – βn|‖AWnρn‖ + γ
(
βn+κ‖yn+ – yn‖ + |βn+ – βn|

∥∥f (yn)∥∥)
. (.)

Since Ti and Un,i are nonexpansive, we see from (.) that

‖Wn+ρn –Wnρn‖ = ‖γTUn+,ρn – γTUn,ρn‖
≤ γ‖Un+,ρn –Un,ρn‖
= γ‖γTUu+,ρn – γTUn,ρn‖
≤ γγ‖Uu+,ρn –Un,ρn‖
≤ · · ·
≤ γγ · · ·γn‖Un+,n+ρn –Un,n+ρn‖

≤ M

n∏
i=

γi, (.)

whereM is a constant such thatM ≥ supn≥{‖Un+,n+ρn –Un,n+ρn‖}. Substituting (.),
(.) and (.) into (.) yields

‖ζn – ζn+‖ ≤ ‖xn+ – xn‖ +M

( n∏
i=

γi + |rn+ – rn| + |sn – sn+| + |βn – βn+|
)
,

whereM is a constant such that

M =max

{
M + γ̄

M

m
,M, sup

n≥

{‖AWnρn‖ + γ
∥∥f (yn)∥∥}}

.

It follows from the restrictions (b) and (c) that

lim sup
n→∞

(‖ζn – ζn+‖ – ‖xn+ – xn‖
) ≤ .

By virtue of Lemma ., we obtain that

lim
n→∞‖ζn – xn‖ = . (.)

On the other hand, we have

‖xn+ – xn‖ = ( – αn)‖xn – ζn‖.

This implies from (.) that

lim
n→∞‖xn+ – xn‖ = . (.)

This completes the proof of Step .

http://www.journalofinequalitiesandapplications.com/content/2013/1/19
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Step . Show that limn→∞ ‖yn –Wyn‖ = .
Notice that ζn = βnγ f (zn) + (I – βnA)Wnρn. It follows that

‖ζn –Wnρn‖ = βn
∥∥γ f (yn) –AWnρn

∥∥.
This implies from the restriction (b) that

lim
n→∞‖ζn –Wnρn‖ = . (.)

For any p ∈ F , we find that

‖yn – p‖ = ‖Trnxn – Trnp‖

≤ 〈Trnxn – Trnp,xn – p〉
= 〈yn – p,xn – p〉
= /

(‖yn – p‖ + ‖xn – p‖ – ‖xn – yn‖
)
.

That is,

‖yn – p‖ ≤ ‖xn – p‖ – ‖xn – yn‖.

This in turn implies that

‖xn+ – p‖

=
∥∥αn(xn – p) + ( – αn)(ζn – p)

∥∥

≤ αn‖xn – p‖ + ( – αn)‖ζn – p‖

= αn‖xn – p‖ + ( – αn)
∥∥βn

(
γ f (yn) –Ap

)
+ (I – βnA)(Wnρn – p)

∥∥

≤ αn‖xn – p‖ + ( – αn)
(
βn

∥∥γ f (yn) –Ap
∥∥ + ( – βnγ̄ )‖ρn – p‖)

≤ αn‖xn – p‖ + ( – αn)βn
∥∥γ f (yn) –Ap

∥∥ + ( – αn)( – βnγ̄ )‖ρn – p‖

+ ( – αn)βn
∥∥γ f (yn) –Ap

∥∥‖ρn – p‖
≤ αn‖xn – p‖ + ( – αn)βn

∥∥γ f (yn) –Ap
∥∥ + ( – αn)( – βnγ̄ )‖yn – p‖

+ ( – αn)βn
∥∥γ f (yn) –Ap

∥∥‖ρn – p‖
≤ αn‖xn – p‖ + ( – αn)βn

∥∥γ f (yn) –Ap
∥∥ + ( – αn)‖xn – p‖

– ( – αn)( – βnγ̄ )‖xn – yn‖ + ( – αn)βn
∥∥γ f (yn) –Ap

∥∥‖ρn – p‖,

from which it follows that

( – αn)( – βnγ̄ )‖xn – yn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + βn
∥∥γ f (yn) –Ap

∥∥

+ βn
∥∥γ f (yn) –Ap

∥∥‖ρn – p‖
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≤ (‖xn – p‖ – ‖xn+ – p‖)‖xn – xn+‖ + βn
∥∥γ f (yn) –Ap

∥∥

+ βn
∥∥γ f (yn) –Ap

∥∥‖ρn – p‖.

It follows from the restriction (b) and (.) that

lim
n→∞‖yn – xn‖ = . (.)

Notice that

‖ρn – p‖ =
∥∥PC(I – snB)yn – PC(I – snB)p

∥∥

≤ ∥∥(yn – p) – sn(Byn – Bp)
∥∥

= ‖yn – p‖ – sn〈yn – p,Byn – Bp〉 + sn‖Byn – Bp‖

≤ ‖xn – p‖ – snα‖Byn – Bp‖ + sn‖Byn – Bp‖

≤ ‖xn – p‖ – sn(α – sn)‖Byn – Bp‖. (.)

On the other hand, we have

‖xn+ – p‖

=
∥∥αn(xn – p) + ( – αn)(ζn – p)

∥∥

≤ αn‖xn – p‖ + ( – αn)‖ζn – p‖

= αn‖xn – p‖ + ( – αn)
∥∥βn

(
γ f (yn) –Ap

)
+ (I – βnA)(Wnρn – p)

∥∥

≤ αn‖xn – p‖ + ( – αn)
(
βn

∥∥γ f (yn) –Ap
∥∥ + ‖I – βnA‖‖Wnρn – p‖)

≤ αn‖xn – p‖ + ( – αn)
(
βn

∥∥γ f (yn) –Ap
∥∥ + ( – βnγ̄ )‖ρn – p‖)

≤ αn‖xn – p‖ + ( – αn)βn
∥∥γ f (yn) –Ap

∥∥ + ( – αn)‖ρn – p‖

+ ( – αn)βn
∥∥γ f (yn) –Ap

∥∥‖ρn – p‖. (.)

Substituting (.) into (.), we find that

‖xn+ – p‖ ≤ ‖xn – p‖ + βn
∥∥γ f (yn) –Ap

∥∥ + βn
∥∥γ f (yn) –Ap

∥∥‖ρn – p‖
– ( – αn)sn(α – sn)‖Byn – Bp‖.

This in turn implies that

( – αn)sn(α – sn)‖Byn – Bp‖

≤ ‖xn – p‖ + βn
∥∥γ f (yn) –Ap

∥∥ – ‖xn+ – p‖

+ βn
∥∥γ f (yn) –Ap

∥∥‖ρn – p‖
≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + βn

∥∥γ f (yn) –Ap
∥∥

+ βn
∥∥γ f (yn) –Ap

∥∥‖ρn – p‖.

http://www.journalofinequalitiesandapplications.com/content/2013/1/19


Lv Journal of Inequalities and Applications 2013, 2013:19 Page 12 of 18
http://www.journalofinequalitiesandapplications.com/content/2013/1/19

It follows from the restrictions (a), (b) and (d) that

lim
n→∞‖Byn – Bp‖ = . (.)

On the other hand, we have

‖ρn – p‖ =
∥∥PC(I – snB)yn – PC(I – snB)p

∥∥

≤ 〈
(I – snB)yn – (I – snB)p,ρn – p

〉
=



(∥∥(I – snB)yn – (I – snB)p

∥∥ + ‖ρn – p‖

–
∥∥(I – snB)yn – (I – snB)p – (ρn – p)

∥∥)
≤ 


(‖yn – p‖ + ‖ρn – p‖ – ∥∥(yn – ρn) – sn(Byn – Bp)

∥∥)
=



(‖xn – p‖ + ‖ρn – p‖ – ‖yn – ρn‖ – sn‖Byn – Bp‖

+ sn‖yn – ρn‖Byn – Bp‖),
which yields

‖ρn – p‖ ≤ ‖xn – p‖ – ‖yn – ρn‖ + sn‖yn – ρn‖‖Byn – Bp‖. (.)

Substituting (.) into (.) yields

‖xn+ – p‖ ≤ ‖xn – p‖ + βn
∥∥γ f (yn) –Ap

∥∥ – ( – αn)‖yn – ρn‖

+ sn‖yn – ρn‖‖Byn – Bp‖ + βn
∥∥γ f (yn) –Ap

∥∥‖ρn – p‖.

It follows that

( – αn)‖yn – ρn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + βn
∥∥γ f (yn) –Ap

∥∥

+ sn‖yn – ρn‖‖Byn – Bp‖ + βn
∥∥γ f (yn) –Ap

∥∥‖ρn – p‖
≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + βn

∥∥γ f (yn) –Ap
∥∥

+ sn‖yn – ρn‖‖Byn – Bp‖ + βn
∥∥γ f (yn) –Ap

∥∥‖ρn – p‖.

In view of the restrictions (a), (b) and (d), we find from (.) that

lim
n→∞‖yn – ρn‖ = . (.)

Notice that

‖yn –Wnyn‖ ≤ ‖Wnyn –Wnρn‖ + ‖Wnρn – ζn‖ + ‖ζn – xn‖ + ‖xn – yn‖
≤ ‖yn – ρn‖ + ‖Wnρn – ζn‖ + ‖ζn – xn‖ + ‖xn – yn‖.
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In the light of (.), (.), (.) and (.), we find that limn→∞ ‖yn –Wnyn‖ = . On the
other hand, we have

‖Wyn – yn‖ ≤ ‖Wyn –Wnyn‖ + ‖Wnyn – yn‖.

It follows from Lemma . that

lim
n→∞‖yn –Wyn‖ = . (.)

This completes the proof of Step .
Step . Show that lim supn→∞〈γ f (q) –Aq,xn – q〉 ≤ , where q = PF (γ f + (I –A))(q).
To see this, we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈
γ f (q) –Aq,xn – q

〉
= lim

i→∞
〈
γ f (q) –Aq,xni – q

〉
. (.)

Correspondingly, there exists a subsequence {yni} of {yn}. Since {yni} is bounded, there
exists a subsequence {ynij } of {yni}which converges weakly tow.Without loss of generality,
we can assume that yni ⇀ w. Since yn = Trnxn, we have

F(yn, z) +

rn

〈z – yn, yn – xn〉 ≥ , ∀z ∈ C.

It follows from (A) that

〈
z – yn,

yn – xn
rn

〉
≥ F(z, yn).

It follows that
〈
z – yni ,

yni – xni
rni

〉
≥ F(z, yni ).

In view of the restriction (c), we obtain from (.) that

lim
n→∞

yn – xn
rn

= .

Since yni ⇀ w, we have from (A) that F(z,w) ≤  for all z ∈ C. For t with  < t ≤  and
z ∈ C, let zt = tz + ( – t)w. Since z ∈ C and w ∈ C, we have zt ∈ C and hence F(zt ,w) ≤ .
So, from (A) and (A), we have

 = F(zt , zt)≤ tF(zt , z) + ( – t)F(zt ,w) ≤ tF(zt , z).

That is, F(zt , z) ≥ . It follows from (A) that F(w, z) ≥  for all z ∈ C and hencew ∈ EP(F).
On the other hand, we see that w ∈ F(W ) =

⋂∞
i= F(Ti). If w �=Ww, then we have the fol-

lowing. Since Hilbert spaces are Opial’s spaces, we find from (.) that

lim inf
i→∞ ‖yni –w‖ < lim inf

i→∞ ‖yni –Ww‖
= lim inf

i→∞ ‖yni –Wyni +Wyni –Ww‖
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≤ lim inf
i→∞ ‖Wyni –Ww‖

≤ lim inf
i→∞ ‖yni –w‖,

which derives a contradiction. Thus, we have w ∈ F(W ). Next, let us first show that w ∈
VI(C,B). Put

Sξ =

⎧⎨
⎩Bξ +NCξ , ξ ∈ C,

∅, ξ∈C.

Since B is monotone, we see that S is maximal monotone. Let (ξ , ξ ′) ∈ Graph(S). Since
ξ ′ – Bξ ∈NCξ and ρn ∈ C, we have

〈
ξ – ρn, ξ ′ – Bξ

〉 ≥ .

On the other hand, we have from ρn = PC(I – snB)yn that

〈
ξ – ρn,ρn – (I – snB)yn

〉 ≥ .

That is,

〈
ξ – ρn,

ρn – yn
sn

+ Byn
〉
≥ .

It follows from the above that

〈
ξ – ρni , ξ

′〉 ≥ 〈ξ – ρni ,Bξ 〉

≥
〈
ξ – ρni ,Bξ –

ρni – yni
sni

– Byni

〉

= 〈ξ – ρni ,Bξ – Bρni〉 + 〈ξ – ρni ,Bρni – Byni〉

–
〈
ξ – ρni ,

ρni – yni
sni

〉

≥ 〈ξ – ρni ,Bρni – Byni〉 –
〈
ξ – ρni ,

ρni – yni
sni

〉
,

which implies from (.) that 〈ξ – w, ξ ′〉 ≥ . We have w ∈ S– and hence w ∈ VI(C,B).
This completes the proof w ∈ F . On the other hand, we find from (.) that

lim sup
n→∞

〈
γ f (q) –Aq,xn – q

〉
= lim

n→∞
〈
γ f (q) –Aq,xni – q

〉
=

〈
γ f (q) –Aq,w – q

〉 ≤ . (.)

This completes the proof of Step .
Step . Show limn→∞ ‖xn – q‖ = .
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It follows from Lemma . that

‖ζn – q‖ =
∥∥(I – βnA)(Wnρn – q) + βn

(
γ f (yn) –Aq

)∥∥

≤ ∥∥(I – βnA)(Wnρn – q)
∥∥ + βn

〈
γ f (zn) –Aq, ζn – q

〉
≤ ( – βnγ̄ )‖ρn – q‖ + βn

〈
γ f (yn) –Aq, ζn – q

〉
≤ ( – βnγ̄ )‖yn – q‖ + βnγ

〈
f (yn) – f (q), ζn – q

〉
+ βn

〈
γ f (q) –Aq, ζn – q

〉
≤ ( – βnγ̄ )‖xn – q‖ + βnγ κ‖yn – q‖‖ζn – q‖

+ βn
〈
γ f (q) –Aq, ζn – q

〉
≤ ( – βnγ̄ )‖xn – q‖ + βnγ κ

(‖yn – q‖ + ‖ζn – q‖)
+ βn

〈
γ f (q) –Aq, ζn – q

〉
≤ ( – βnγ̄ )‖xn – q‖ + βnγ κ

(‖xn – q‖ + ‖ζn – q‖)
+ βn

〈
γ f (q) –Aq, ζn – q

〉
,

which implies that

‖ζn – q‖ ≤ ( – βnγ̄ ) + βnγ κ

 – βnγα
‖xn – q‖ + βn

 – βnγ κ

〈
γ f (q) –Aq, ζn – q

〉

=
( – βnγ̄ + βnκγ )

 – βnγ κ
‖xn – q‖ + β

n γ̄


 – βnγ κ
‖xn – q‖

+
βn

 – βnγ κ

〈
γ f (q) –Aq, ζn – q

〉

≤
(
 –

βn(γ̄ – κγ )
 – βnγ κ

)
‖xn – q‖

+
βn(γ̄ – κγ )
 – βnγ κ

(


γ̄ – κγ

〈
γ f (q) –Aq, ζn – q

〉
+

βnγ̄


(γ̄ – κγ )
M

)
, (.)

whereM is a constant such thatM ≥ supn≥{‖xn – q‖}. On the other hand, we have

‖xn+ – p‖ ≤ αn‖xn – p‖ + ( – αn)‖ζn – p‖. (.)

Substituting (.) into (.) yields

‖xn+ – p‖ ≤
[
 – ( – αn)

βn(γ̄ – κγ )
 – βnγ κ

]
‖xn – q‖

+ ( – αn)
βn(γ̄ – κγ )
 – βnγα

×
(


γ̄ – κγ

〈
γ f (q) –Aq, ζn – q

〉
+

βnγ̄


(γ̄ – κγ )
M

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/19


Lv Journal of Inequalities and Applications 2013, 2013:19 Page 16 of 18
http://www.journalofinequalitiesandapplications.com/content/2013/1/19

Let λn = ( – αn) βn(γ̄–κγ )
–βnκγ

and

θn =


γ̄ – κγ

〈
γ f (q) –Aq, ζn – q

〉
+

βnγ̄


(γ̄ – κγ )
M.

This implies that

‖xn+ – q‖ ≤ ( – λn)‖xn – q‖ + λntn. (.)

In view of the restriction (b), we find from (.) and (.) that

lim
n→∞λn = ,

∞∑
n=

λn = ∞ and lim sup
n→∞

θn ≤ .

We can easily draw the desired conclusion with the aid of Lemma .. This completes the
proof of Step . The proof is completed. �

From Theorem ., we have the following results.

Corollary . Let C be a nonempty closed convex subset of a Hilbert space H . Let {Tn}∞n=
be an infinite family of nonexpansive mappings of C into C. Let B : C → H be an α-inverse-
strongly monotone mapping. Let A be a strongly positive linear bounded self-adjoint opera-
tor onH with the coefficient γ̄ > .Assume that  < γ < γ̄ /κ and F :=

⋂∞
i= F(Ti)∩VI(C,B) �=

∅. Let f : C →H be a κ-contraction. Let {xn} be a sequence generated in the following iter-
ative process:

⎧⎨
⎩x ∈H ,

xn+ = αnxn + ( – αn)βnγ f (yn) + ( – αn)(I – βnA)WnPC(I – snB)PCxn, n≥ ,

where Wn is generated in (.), {αn}, {βn} are real number sequences in (, ), {rn} and {sn}
are positive real number sequences. Assume that the following restrictions are satisfied:
(a)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(b) limn→∞ βn = ,

∑∞
n= βn = ∞;

(c) limn→∞ |sn+ – sn| = ;
(d) {sn} ⊂ [s, s′] for some s, s′ with  < s < s′ < α.

Then {xn} converges strongly to q ∈ F , where q = PF (γ f + (I – A))(q), which solves the fol-
lowing variational inequality:

〈
γ f (q) –Aq,p – q

〉 ≤ , ∀p ∈ F .

Proof Putting F(x, y) =  and rn = , we can immediately draw the desired conclusion from
Theorem .. �

Corollary . Let C be a nonempty closed convex subset of a Hilbert space H . Let F be a bi-
function from C×C toR,which satisfies (A)-(A). Let B : C → H be an α-inverse-strongly
monotone mapping. Let A be a strongly positive linear bounded self-adjoint operator on H
with the coefficient γ̄ > . Assume that  < γ < γ̄ /κ and F := EP(F) ∩ VI(C,B) �= ∅. Let
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f : C → H be a κ-contraction. Let {xn} be a sequence generated in the following iterative
process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈H ,

F(yn, z) + 
rn 〈z – yn, yn – xn〉 ≥ , ∀z ∈ C,

xn+ = αnxn + ( – αn)βnγu + ( – αn)(I – βnA)PC(I – snB)yn, n≥ ,

where u is a fixed element in C, {αn}, {βn} are real number sequences in (, ), {rn} and {sn}
are positive real number sequences. Assume that the following restrictions are satisfied:
(a)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(b) limn→∞ βn = ,

∑∞
n= βn = ∞;

(c) limn→∞ |rn+ – rn| = , limn→∞ |sn+ – sn| = ;
(d) lim infn→∞ rn > , {sn} ⊂ [s, s′] for some s, s′ with  < s < s′ < α.

Then, {xn} converges strongly to q ∈ F , where q = PF (γu+ (q–Aq)), which solves the follow-
ing variational inequality:

〈γu –Aq,p – q〉 ≤ , ∀p ∈ F .

Proof Putting Ti = I , where I is the identity mapping and f (x) = u, for all x ∈ C, we can
immediately draw the desired conclusion from Theorem .. �

Corollary . Let C be a nonempty closed convex subset of a Hilbert space H . Let F be
a bifunction from C × C to R which satisfies (A)-(A). Let {Tn}∞n= be an infinite family
of nonexpansive mappings of C into C. Let B : C → H be an α-inverse-strongly mono-
tone mapping. Assume that F :=

⋂∞
i= F(Ti) ∩ EP(F) ∩ VI(C,B) �= ∅. Let f : C → H be a

κ-contraction. Let {xn} be a sequence generated in the following iterative process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈H ,

F(yn, z) + 
rn 〈z – yn, yn – xn〉 ≥ , ∀z ∈ C,

xn+ = αnxn + ( – αn)βnf (yn) + ( – αn)( – βn)WnPC(I – snB)yn, n ≥ ,

where Wn is generated in (.), {αn}, {βn} are real number sequences in (, ), {rn} and {sn}
are positive real number sequences. Assume that the following restrictions are satisfied:
(a)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(b) limn→∞ βn = ,

∑∞
n= βn = ∞;

(c) limn→∞ |rn+ – rn| = , limn→∞ |sn+ – sn| = ;
(d) lim infn→∞ rn > , {sn} ⊂ [s, s′] for some s, s′ with  < s < s′ < α.

Then {xn} converges strongly to q ∈ F , where q = PFf (q), which solves the following varia-
tional inequality:

〈
f (q) – q,p – q

〉 ≤ , ∀p ∈ F .

Proof Putting A = I , where I is the identity mapping and γ = , we can immediately draw
the desired conclusion from Theorem .. �
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