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Abstract

Let X, Y be Banach modules over a C*-algebra and let ry,...,r, € R be given. Using
fixed-point methods, we prove the stability of the following functional equation in
Banach modules over a unital C*-algebra:

Z rixj = %'}Xj) + Zn:rr‘f(xf) = ﬂf(% Zn:r,-x,-).
=1 i=1

1<i<n,i

(3

As an application, we investigate homomorphisms in unital C*-algebras.
MSC: 39B72;46105; 47H10; 46B03; 47B48

Keywords: fixed point; Hyers-Ulam stability; super-stability; generalized
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1 Introduction and preliminaries

We say a functional equation (¢) is stable if any function g satisfying the equation (¢)
approximately is near to the true solution of (¢). We say that a functional equation is su-
perstable if every approximate solution is an exact solution of it (see [1]). The stability
problem of functional equations was originated from a question of Ulam [2] concerning
the stability of group homomorphisms. Hyers [3] gave a first affirmative partial answer
to the question of Ulam in Banach spaces. Hyers’ theorem was generalized by Aoki [4]
for additive mappings and by T.M. Rassias [5] for linear mappings by considering an un-
bounded Cauchy difference. A generalization of the T.M. Rassias theorem was obtained by
Gévruta [6] by replacing the unbounded Cauchy difference by a general control function
in the spirit of T.M. Rassias’ approach.

The functional equation

Sfx+y) +f(x—y) =2f(x) + 2f ()

is called a quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. A Hyers-Ulam stability problem for
the quadratic functional equation was proved by Skof [7] for mappingsf : X — Y, where X
isanormed space and Y is a Banach space. Cholewa [8] noticed that the theorem of Skof is
still true if the relevant domain X is replaced by an Abelian group. Czerwik [9] proved the
Hyers-Ulam stability of the quadratic functional equation. ].M. Rassias [10, 11] introduced
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and investigated the stability problem of Ulam for the Euler-Lagrange quadratic functional

equation

f(dlxl + dyXy) +f(a2x1 —a1xy) = (ﬂf + ﬂ%)[f(xl) +f(x2)]' (1.1)

Grabiec [12] has generalized these results mentioned above.

The stability problems of several functional equations have been extensively investigated
by a number of authors and there are many interesting results concerning this problem
(see [13—43]).

Let X be a set. A function d : X x X — [0,00] is called a generalized metric on X if d
satisfies the following conditions:

(1) d(x,y)=0if and only if x = y;

(2) d(x,y) =d(y,x) forall x,y € X;

(3) d(x,z) <d(x,y) +d(y,z) for all x, 7,z € X.

We recall a fundamental result in fixed-point theory.

Theorem 1.1 [44, 45] Let (X,d) be a complete generalized metric space and let ] : X — X
be a strictly contractive mapping with Lipschitz constant L < 1. Then, for each given element
x € X, either

d(J"x,]" %) = 00

for all nonnegative integers n or there exists a positive integer ng such that
(1) d("x,J"x) < oo for all n > no;
(2) the sequence {J"x} converges to a fixed point y* of J;
(3) y* is the unique fixed point of ] in the set Y = {y € X | d(J™x,y) < oo};
(4) d(y,y*) < ﬁd(y,]y)for allyey.

In 1996, Isac and T.M. Rassias [46] were the first to provide applications of stability the-
ory of functional equations for the proof of new fixed-point theorems with applications.
By using fixed-point methods, the stability problems of several functional equations have
been extensively investigated by a number of authors (see [47-58]).

Recently, Park and Park [59] introduced and investigated the following additive func-
tional equation of Euler-Lagrange type:

i riL (i rix; — x,-)) + (i ri)L (i rpc,-)
i=1 j=1 i=1 i=1
= (iri) iril'(xiL rl)"wrne(o)oo) (12)
i=1 i=1

whose solution is said to be a generalized additive mapping of Euler-Lagrange type.
In this paper, we introduce the following additive functional equation of Euler-Lagrange
type which is somewhat different from (1.2):

Zf(% Z riXi — %qx,) + er(x,») = nf(% r,rxi), (1.3)
j=1 i

1<i<n,i# i=1 i=1
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where ry,...,r, € R. Every solution of the functional equation (1.3) is said to be a general-
ized Euler-Lagrange type additive mapping.

Using fixed-point methods, we investigate the Hyers-Ulam stability of the functional
equation (1.3) in Banach modules over a C*-algebra. These results are applied to inves-
tigate C*-algebra homomorphisms in unital C*-algebras. Also, ones can get the super-
stability results after all theorems by putting the product of powers of norms as the control
functions (see for more details [60, 61]).

Throughout this paper, assume that A is a unital C*-algebra with the norm || - |4 and
the unit e, B is a unital C*-algebra with the norm | - ||3, and X, Y are left Banach modules
over a unital C*-algebra A with the norms || - ||x and || - ||y, respectively. Let L/(A) be the
group of unitary elements in A and let ry,...,r, € R.

2 Hyers-Ulam stability of the functional equation (1.3) in Banach modules over
a C*-algebra

.....

D”:rl,...,rnf(xly s )

Zf( Z riux; — — r,ux]) Zr,uf(xl) nf<;lil:r,uxl)

1<i<n,i%j

and

Ml”l ..... rnf(xl’ :xn

Zf( > - W,x,> + Y prf () - nf (% > Wixi>
i=1 i=1

j=1 1<i<n,i#j
forall x;,...,x, € X.

Lemma 2.1 Let X and Y be linear spaces and letry,...,r, be real numbers with ZZ=1 e 70
and r; # 0, rj # 0 for some 1 < i < j < n. Assume that a mapping L : X — Y satisfies the
functional equation (1.3) for all x,,...,x, € X. Then the mapping L is additive. Moreover,
L(ryx) = riLl(x) forallx € X and 1 < k < n.

Proof One can find a complete proof at [62]. O

Lemma 2.2 Let X and Y be linear spaces and let r1,...,r, be real numbers with r; # 0,
1; # 0 for some 1 <i<j < n. Assume that a mapping L : X — Y with L(0) = 0 satisfies the
functional equation (1.3) for all x;,...,x, € X. Then the mapping L is additive. Moreover,
L(ryx) = riLl(x) forallx €e X and 1 < k <n.

Proof One can find a complete proof at [62]. d

We investigate the Hyers-Ulam stability of a generalized Euler-Lagrange type additive
mapping in Banach modules over a unital C*-algebra. Throughout this paper, let r4,...,7,
be real numbers such that r; #0, r; #0 for fixed 1 <i<j <n.
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Theorem 2.3 Let f : X — Y be a mapping satisfying f(0) = 0 for which there is a function
@ : X" — [0,00) such that

||De,,1 ,,,,, ,,f(xl,...,x,,)”Y <1, ...,%) (2.1)
forall x,...,x, € X. Let

vi(%,y) = ¢(0,...,0, x ,0,...,0, y ,0,...,0)

ith jth
forallx,y e X and 1 <i<j<n.Ifthere exists 0 < C <1 such that
©(2x1,...,2x,) <2Cp(x1,...,%,)

forall xy,...,x, € X, then there exists a unique generalized Euler-Lagrange type additive
mapping L : X — Y such that

1 2x 2x x X
-1l = =g o5 2) v20 (55

2x x 2x x
+ @i P 0)+2¢; P 0] +¢;(0, P +2¢;\ 0, T (2:2)
i i ] ]

for all x € X. Moreover, L(ryx) = riL(x) forallx € X and 1 < k < n.

Proof Foreach1 <k <nwithk #i,j,letx; = 0 in (2.1). Then we get the following inequal-

ity:
M r’x’”’x’) f(”“’;”’“")—zf(—”x‘;”"") s rf @) + 1 ()

<(0,...,0, % ,0,...,0, x; ,0,...,0) (2.3)
~— ——
ith jth

for all x;, x; € X. Letting x; = 0 in (2.3), we get

(3)-A(5) s

for all x; € X. Similarly, letting x; = 0 in (2.3), we get

() () ]

for all x; € X. It follows from (2.3), (2.4) and (2.5) that

H/ <—rixi2+ r,»x,) of (r,»xi - rjx/) o (rlxl ¥ r,x,)
o(5) o (3) o (5) (5)

< @ij(%i, x7) + 3%, 0) + ;(0, x7) (2.6)

= QD,']'(O,?C]') (24)
Y

= (pij(xi’ 0) (25)

Y
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for all x;, x; € X. Replacing x; and x; by 2r—j‘ and 2r_1y in (2.6), we get

If (= +9) +flx=9) = 2f (x + ) +f (@) + £ ) = f (=) —f (D),

2x 2 2x 2
§<pi}-<7,%> +<pi,'<7,0> +<p,-j<0,%) (2.7)
i J i ]

for all x,y € X. Putting y = x in (2.7), we get

|2 (o) - 2 (=) - 2f (2%) |, < qoi,(zx 2x> + w,(zf 0) + 9y (o, 2:‘) (2.8)
]

0
rp 1 i

for all x € X. Replacing x and y by 7 and -3 in (2.7), respectively, we get

I+l <512 ) +or( £.0) (0= 29)
i j i

J

for all x € X. It follows from (2.8) and (2.9) that

H %f (2x) - f(x)

1
, = Zl/f(x) (2.10)

for all x € X, where

2x 2x x X
V(x) = (Pij(_: —) + 2%‘(—,——)
rp 1 ri ry
2x x 2x x
+@i| —0 ) +2¢5( =0 ) +¢;{ 0, — | +2¢;| 0,—— ).
ri ¥ ry ry
Consider the set W := {g: X — Y} and introduce the generalized metric on W:
d(g,h) = inf{C eR,: ||g(x) - h(x)HY <C¢¥(x),Vx e X}.

It is easy to show that (W, d) is complete.
Now, we consider the linear mapping J : VW — W such that

1
Jg(x) := Eg(Zx) (2.11)
for all x € X. By Theorem 3.1 of [44], d(Jg,Jh) < Cd(g, h) for all g, € V. Hence, d(f,
J) <1
By Theorem 1.1, there exists a mapping L : X — Y such that
(1) L is a fixed point of ], i.e.,
L(2x) = 2L(x) (2.12)

for all x € X. The mapping L is a unique fixed point of / in the set

Z:{geW:d(f,g)<oo}.
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This implies that L is a unique mapping satisfying (2.12) such that there exists C € (0, 00)
satisfying

IL®) £ @), < Cv ()

for allx € X.
(2) d(J"f,L) — 0 as n — oo. This implies the equality

27[
tim £ nx) = L(x)
forallx € X.
(3) d(f,L) < ﬁd(f,]f), which implies the inequality d(f,L) < ﬁ. This implies that

the inequality (2.2) holds.
Since ¢(2x1,...,2x,) < 2C@(x1,...,x,), it follows that

1
||De,r1 ..... r,,L(xI: e rxn) || Y = klirgo ? ||De,r1 ..... mf(zkxlv ey 2kxn) || Y

.1 k k
Sklgrolo y(,o(z Klyerer2 x,,)

< lim Cfo(xy,...,%,) =0
k— o0

for all xy,...,%, € X. Therefore, the mapping L : X — Y satisfies the equation (1.3) and
L(0) = 0. Hence, by Lemma 2.2, L is a generalized Euler-Lagrange type additive mapping
and L(ryx) = riL(x) for all x € X and 1 < k < n. This completes the proof. a

Theorem 2.4 Letf: X — Y be a mapping satisfying f(0) = 0 _for which there is a function
@ : X" — [0, 00) satisfying

”DW1 ,,,,, ,nf(xl,...,x,,)” <@xy,..., %) (2.13)
forallx,,...,x, € X and u € U(A). If there exists 0 < C <1 such that
©(2x1,...,2x,) <2Cp(x1,...,%,)

for all x1,...,%, € X, then there exists a unique A-linear generalized Euler-Lagrange type
additive mapping L : X — Y satisfying (2.2) for all x € X. Moreover, L(rix) = riL(x) for all
xeXandl<k<n.

Proof By Theorem 2.3, there exists a unique generalized Euler-Lagrange type additive
mapping L : X — Y satisfying (2.2), and moreover L(rix) = riL(x) for all x € X and
1 < k < n. By the assumption, for each u € U(A), we get

|Du i L(0,-.,0, x ,0,...,0)]
ith

. 1
= lim —

Jim HDMW,J(O,...,0,&, 0,...,0)],

ith
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< lim igo(o 0,2"%,0,...,0)
_k_)oozk LR ’ ) PR
ith

< lim C*¢(0,...,0, x ,0,...,0)=0
= Jim Cp(0,...,0, % ,0,...,0)

ith
for all x € X. So, we have
riuL(x) = L(r;ux)
for all u € U(A) and x € X. Since L(ryx) = r;L(x) for allx € X and r; # 0,
L(ux) = uL(x)
for all u € U(A) and x € X. By the same reasoning as in the proofs of [63] and [64],
L(ax + by) = L(ax) + L(by) = aL(x) + bL(y)

for all a,b € A (a,b #0) and %,y € X. Since L(0x) = 0 = 0L(x) for all x € X, the unique
generalized Euler-Lagrange type additive mapping L : X — Y is an A-linear mapping. This
completes the proof. d

Theorem 2.5 Let f: X — Y be a mapping satisfying f(0) = O _for which there is a function
@ : X" — [0,00) such that

”De,rl ..... rnf(xl:nwxn)HY =< (p(xli'”ixn) (214')

forall x1,...,x, € X. If there exists 0 < C < 1 such that

C
(p(xl’ .. ')2;'1) < E(/)(le, .. '12xn)

forall x,...,x, € X, then there exists a unique generalized Euler-Lagrange type additive
mapping L : X — Y such that

C 2x 2x x X
Hf(x) —L(x) ||Y = 4_acC {@z‘;’(r—i: 71) + 2§0ij<7i,—r—j>

2x X 2x X
+oi( =0 ) +205( =0 ) + 05 0, ) +205( 0, (2.15)
i i ] ]

Sor all x € X, where @y is defined in the statement of Theorem 2.3. Moreover, L(rix) = riL(x)
forallxe X and1 <k <n.

Proof 1t follows from (2.10) that

H/(x) —f(;—“) < %w(%‘) =S
Y

— 4
for all x € X, where v is defined in the proof of Theorem 2.3. The rest of the proofis similar
to the proof of Theorem 2.3. g
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Theorem 2.6 Let f : X — Y be a mapping with f(0) = O for which there is a function
@ : X" — [0, 00) satisfying

||Du,r1 ..... rnf(xlynwxn)” = (p(x1:~~-rxn) (216)

forall x,...,x, € X and u € U(A). If there exists 0 < C <1 such that

(p(xlwu)zn) =< <p(2x1,...,2x,,)

C
2
forall x,,...,%, € X, then there exists a unique A-linear generalized Euler-Lagrange type
additive mapping L : X — Y satisfying (2.15) for all x € X. Moreover, L(rix) = riL(x) for all
xeXandalll <k<n.

Proof The proof is similar to the proof of Theorem 2.4. g

Remark 2.7 InTheorems 2.5 and 2.6, one can assume that ) ;_, rx # 0 instead of f(0) = 0.

3 Homomorphisms in unital C*-algebras
In this section, we investigate C*-algebra homomorphisms in unital C*-algebras. We use

the following lemma in the proof of the next theorem.

Lemma 3.1 [64] Let f : A — B be an additive mapping such that f(ux) = uf(x) for all
xeAand peS' ={e”;0 <0 <2mn,}. Then the mappingf : A — B is C-linear.

Note that a C-linear mapping H : A — B is called a homomorphism in C*-algebras if H
satisfies H(xy) = H(x)H(y) and H(x*) = H(x)* for all x,y € A.

Theorem 3.2 Let f : A — B be a mapping with f(0) = 0 for which there is a function ¢ :
A" — [0, 00) satisfying

”Du,rl ..... rnf(xl:'urxn)”B =< (p(xlw-':xn): (31)
k, x k., \* k k
IF (25u*) = f(25u)7|| ; < 0(2 u2 u), (3.2)
k k k k
Hf(2 ux) —f(2 u)f(x) ”B < (p(2 UXy ...y 2 ux) (3.3)
n times

Sorall x,%1,...,%, €A, uc U(A), ke Nand u €S, If there exists 0 < C < 1 such that
©2x1,...,2%,) <2C@(x1,...,%,)

forall x1,...,%, € A, then the mapping f : A — B is a C*-algebra homomorphism.

Proof Since |J| > 3, letting u =1and x4 =0 for all 1 < k < n (k #4,j) in (3.1), we get

f <7_rixi2+ i > +f <L€i ; i) ) +rif () + rif (%)) = 2f (L ; rjxj)
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for all x;,x; € A. By the same reasoning as in the proof of Lemma 2.1, the mapping f is
additive and f(rix) = rif (x) for all x € A and k = i,j. So, by letting x; = x and x; = 0 for
all 1 <k <mn, k #i,in (3.1), we get f(ux) = uf(x) for all x € A and p € St. Therefore, by
Lemma 3.1, the mapping f is C-linear. Hence, it follows from (3.2) and (3.3) that

)~ = Jim e r@4) (24

< lim 1 ¢(2 o 2%u ) < lim Cro(u,...,u)
k— o0 2k \—r—-’ k—o00 \ﬁr—-’
7 times n times
= O,

| ) = £ Gaf ()| = lim k|lf( ux) —f (2“w)f @] 5

1 .
< lim —(p(2 Uux, . 2kux) < lim Ck<p(ux, ooy UX)
koo QKT k—00 —_—
n times n times

=0

for all x € A and u € U(A). So, we have f(u*) = f(u)* and f(ux) = f(u)f(x) for all x € A
and u € U(A). Since f is C-linear and each x € A is a finite linear combination of unitary
elements (see [65]), i.e., x = Y ;-; Axug, where Ax € C and u; € U(A) forall1 <k < n, we

have
- (ZM> =Y R () = D A e
k=1 k=1 k=1
(Zxkf uk) (ZMW) =f",
k=
Sfly) =f (ZMWJ) D M wey)
k=1

Zxkﬂuk Y o) =f (Z Akuk%y) =f@f )
k=1

for all x,y € A. Therefore, the mapping f : A — B is a C*-algebra homomorphism. This
completes the proof. O

The following theorem is an alternative result of Theorem 3.2.

Theorem 3.3 Let f : A — B be a mapping with f(0) = 0 for which there is a function ¢ :
A" — [0, 00) satisfying

;Lr'l ..... r,f(xlx vxn)”B S(p(xlx"-’xn))

Mzk) B <1k) (2: m;) (3.4)
h(5) -Gy,

<2k, Z’:) 3.5)

n tlmes

\*]
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forall x,%,,...,%, €A, uc U(A), ke Nand u € S. If there exists 0 < C < 1 such that

C
ox1,...,2,) < Ew(le,..ﬂxn)

forall x1,...,%, € A, then the mapping f : A — B is a C*-algebra homomorphism.
Remark 3.4 In Theorems 3.2 and 3.3, one can assume that ) ;_, rx # 0 instead of f(0) = 0.

Theorem 3.5 Let f : A — B be a mapping with f(0) = 0 for which there is a function ¢ :
A" — [0, 00) satisfying (3.2), (3.3) and

”Dp_,rl ..... rnf(xl’---rxn)”B = </’(x1’-~,xn) (36)

forall xy,...,x, € A and p € S'. Assume that limy_, », zikf(zke) is invertible. If there exists
0 < C <1 such that

©2x1,...,2%,) <2C(x1,...,%,)

forall xy,...,x, € A, then the mapping f : A — B is a C*-algebra homomorphism.

Proof Consider the C*-algebras A and B as left Banach modules over the unital

C*-algebra C. By Theorem 2.4, there exists a unique C-linear generalized Euler-Lagrange
type additive mapping H : A — B defined by

N S
H = lim o2 f (2%)
for all x € A. By (3.2) and (3.3), we get

1 *
[H () - HG' = Jim @) -2’

1
gkll)ngo §¢(2ku,...,2ku)

7 times

=0,
)~ @ @] = Jim () —f (2 )]

< lim i,((p(Zkux, .. .,Zkux)

k— o0 2 —

n times

=0

for all u € U(A) and x € A. So, we have H(u*) = H(u)* and H(ux) = H(u)f (x) for all u €
U(A) and x € A. Therefore, by the additivity of H, we have

k—00

H(ux) = klirglo %H(Zkux) = H(u) lim %f(2kx) = H(u)H (x)
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forall u € U(A) and allx € A. Since H is C-linear and each x € A is a finite linear combina-

tion of unitary elements, i.e., x = Y ;. Axtx, where Ay € C and u; € U(A) forall1 <k <n,
it follows from (3.7) that

H(xy) = (Z Akuky) =Y H(wy)

k=1

- ZAkH(uk)H()/) = H(Z Akuk)H(V)

k=1
= H(x)H(y),
(Z Akuk) = ZX () = Z oH (ui)*
k=1
= (Z )\kH(uk)) (Z )»kbtk>
k=1
= H(x)*

for all x,y € A. Since H(e) = limy_, o zikf (2%e) is invertible and

H(e)H(y) = H(ey) = H(e)f ()

for all y € A, it follows that H(y) = f(y) for all y € A. Therefore, the mapping f: A — Bisa
*-algebra homomorphism. This completes the proof. O
The following theorem is an alternative result of Theorem 3.5

Theorem 3.6 Let f: A — B be a mapping with f(0) = 0 for which there is a function ¢ :
A" — [0, 00) satisfying (3.4), (3.5) and

”D;L,rl ,,,,, rnf(xl:"'rxn)”B < (p(xlr“'!xn)

forall xy,...,x, € A and u € S'. Assume that limy_, o Zkf(zik) is invertible. If there exists
0 < C <1 such that

Q

ox,...,2,) < 5(p(2x1,...,2xn)

forall xy,...,x, € A, then the mapping f : A — B is a C*-algebra homomorphism.

Remark 3.7 In Theorem 3.6, one can assume that Y ;_; ¢ # 0 instead of f(0) = 0.

Theorem 3.8 Let f : A — B be a mapping with f(0) = 0 for which there is a function ¢ :
A" — [0, 00) satisfying (3.2), (3.3) and

“Du,rl ,,,,, rnf(xlwuyxn)“B < (p(xly"wxn) (38)


http://www.journalofinequalitiesandapplications.com/content/2013/1/185

Park et al. Journal of Inequalities and Applications 2013, 2013:185 Page 12 of 15
http://www.journalofinequalitiesandapplications.com/content/2013/1/185

forall xy,...,x, € A and p = i,1. Assume that limy_, Zikf(2ke) is invertible and for each
fixed x € A the mapping t — f(tx) is continuous in t € R. If there exists 0 < C < 1 such that

©(2x1,...,2x,) <2Cp(x1,...,%,)
forall xi,...,%, € A, then the mapping f : A — B is a C*-algebra homomorphism.

Proof Put u =1in (3.8). By the same reasoning as in the proof of Theorem 2.3, there exists
a unique generalized Euler-Lagrange type additive mapping H : A — B defined by

f(2%%)

2k

H(x) = lim

k—00

for all x € A. By the same reasoning as in the proof of [58], the generalized Euler-Lagrange
type additive mapping H : A — B is R-linear. By the same method as in the proof of The-
orem 2.4, we have

”Du,rl ..... rnH(O)'H’O; X 10,-”10)”)/

1
= lim EHDWW,J(O,...,O, 2'2,0,...,0) [,
jth

1 x
§klirgo§go(0,...,0, 2x,0,...,0) =0
jth

for all x € A and so
rjH (x) = H(rjpx)

forall x € A. Since H(rx) = r;H(x) for all x € X and 7; #0,
H(px) = uH (x)

for allx € A and u =i, 1. For each A € C, we have A = s + it, where s, € R. Thus, it follows
that
H(\x) = H(sx + itx) = sH(x) + tH(ix)
=sH(x) + itH (x) = (s + it)H (x)

= AH(x)
forall A € C and x € A and so
H(¢x +ny) = H(x) + H(ny) = {H(x) + nH(y)
forall {,n € Cand x,y € A. Hence, the generalized Euler-Lagrange type additive mapping

H :A — Bis C-linear.

The rest of the proof is the same as in the proof of Theorem 3.5. This completes the
proof. d
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The following theorem is an alternative result of Theorem 3.8.

Theorem 3.9 Let f: A — B be a mapping with f(0) = 0 for which there is a function ¢ :
A" — [0, 00) satisfying (3.4), (3.5) and

||D,L,,1,m,,,f(x1, ey Xp) ||B <@xy,..., %),

forall x,x1,...,x, € A and j = i,1. Assume that limy_, o 2kf(2£k) is invertible and for each
fixed x € A the mapping t — f(tx) is continuous in t € R. If there exists 0 < C <1 such that

C
ox1,...,2,) < 5(p(2x1,...,2xn)
forall x1,...,%, € A, then the mapping f : A — B is a C*-algebra homomorphism.
Proof We omit the proof because it is very similar to last theorem. O

Remark 3.10 In Theorem 3.9, one can assume that ) ;_; rx # 0 instead of f(0) = 0.
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