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Abstract
Let f be a volume-preserving diffeomorphism of a closed C∞ Riemannian
manifoldM. In this paper, we show that the following are equivalent:
(a) f belongs to the C1-interior of the set of volume-preserving diffeomorphisms

with orbital shadowing,
(b) f is Anosov.
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1 Introduction
A fundamental problem in differentiable dynamical systems is to understand how a robust
dynamic property on the underlyingmanifold would influence the behavior of the tangent
map on the tangent bundle. For instance, in [], Mañé proved that any C structurally sta-
ble diffeomorphism is an Axiom A diffeomorphism. And in [], Palis extended this result
to �-stable diffeomorphisms. LetM be a closed C∞ Riemannian manifold endowed with
a volume form ω. Let μ denote the Lebesgue measure associated to ω, and let d denote
the metric induced onM by the Riemannian structure. Denote by Diffμ(M) the set of dif-
feomorphisms which preserves the Lebesgue measure μ endowed with the C-topology.
We know that every volume preserving diffeomorphism satisfying AxiomA is Anosov (for
more details, see []).
For δ > , a sequence of points {xi}bi=a (–∞ ≤ a < b ≤ ∞) inM is called a δ-pseudo-orbit

of f if d(f (xi),xi+) < δ for all a ≤ i ≤ b – . Let � ⊂ M be a closed f -invariant set. We say
that f has the shadowing property on � (or � is shadowable) if for every ε > , there is
δ >  such that for any δ-pseudo-orbit {xi}bi=a ⊂ � of f (–∞ ≤ a < b ≤ ∞), there is a point
y ∈M such that d(f i(y),xi) < ε for all a ≤ i≤ b–. It is easy to see that f has the shadowing
property on� if and only if f n has the shadowing property on� for n ∈ Z\{}. The notion
of pseudo-orbits often appears in several methods of the modern theory of dynamical
systems. Moreover, the shadowing property plays an important role in the investigation
of stability theory. In fact, Pilyugin [] and Robinson [] showed that if a diffeomorphism f
is structurally stable, then f has the shadowing property. Moreover, Sakai [] proved that
if there is a C-neighborhood U (f ) of f such that for any g ∈ U (f ), g has the shadowing
property, then f is structurally stable. For each x ∈M, letOf (x) be the orbit of f through x;
that is,

Of (x) =
{
f n(x) : n ∈ Z

}
.
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We say that f has the orbital shadowing property on � (or � is orbitally shadowable) if for
any ε > , there exists δ >  such that for any δ-pseudo-orbit ξ = {xi}i∈Z ⊂ �, we can find
a point y ∈M such that

Of (y) ⊂ Bε(ξ ) and ξ ⊂ Bε

(
Of (y)

)
,

where Bε(A) denotes the ε-neighborhood of a set A⊂M. f is said to have the weak shad-
owing property on � (or � is weakly shadowable) if for any ε > , there exists δ >  such
that for any δ-pseudo-orbit ξ = {xi}i∈Z ⊂ �, there is a point y ∈M such that ξ ⊂ Bε(Of (y)).
Note that if f has the shadowing property, then f has the orbital shadowing property, but
the converse is not true (see []). It is easy to see that f has the orbital shadowing property
on � if and only if f n has the orbital shadowing property on � for n ∈ Z \ {}.
We say that � is hyperbolic if the tangent bundle T�M has a Df -invariant splitting Es ⊕

Eu and there exist constants C >  and  < λ <  such that

∥∥Dxf n|Esx
∥∥ ≤ Cλn and

∥∥Dxf –n|Eux
∥∥ ≤ Cλ–n

for all x ∈ � and n≥ .
We denote by Fμ(M) the set of diffeomorphisms f ∈ Diffμ(M) which have a C-

neighborhood U (f ) ⊂ Diffμ(M) such that for any g ∈ U (f ), every periodic point of g is
hyperbolic.
Very recently, Arbieto and Catalan [] proved that every volume preserving diffeomor-

phism in Fμ(M) is Anosov. To prove this, they used Mañé’s results in [, Proposition II.]
and showed that P(f ) is hyperbolic if f ∈Fμ(M). Thus, we have the following theorem.

Theorem . [, Theorem .] Every diffeomorphism in Fμ(M) is Anosov.

Let intOSμ(M) denote the C-interior of the set of volume preserving diffeomorphisms
in Diffμ(M) satisfying the orbital shadowing property. In [], the authors proved that the
C-interior of the set of diffeomorphisms having the orbital shadowing property coincides
with the set of structurally stable diffeomorphisms. Note that if a diffeomorphism satisfies
structurally stable then it is not Anosov in general. But the converse is true. Finally, we
prove the following theorem.

Theorem . The set AN μ(M) of Anosov diffeomorphisms in Diffμ(M) coincides with
the C-interior of the set of diffeomorphisms in Diffμ(M) with orbital shadowing; that is,
AN μ(M) = intOSμ(M).

2 Proof of Theorem 1.2
Remark . Let f ∈Diffμ(M). FromMoser’s theorem (see []), we can find a smooth con-
servative change of coordinates ϕx :U(x)→ TxM such that ϕx(x) = , whereU(x) is a small
neighborhood of x ∈M.

Recall that f has the orbital shadowing property on � (� is orbitally shadowable) if for
any ε > , there is δ >  such that for any δ-pseudo orbit ξ = {xi}i∈Z ⊂ � of f , there is ∈ M
such that

Of (y) ⊂ Bε(ξ ) and ξ ⊂ Bε

(
Of (y)

)
.
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Notice that in this definition, only δ-pseudo orbits of f are contained in �, but the shad-
owing point y ∈ M is not necessarily contained in �. To prove our result, we use Franks’
lemma which is proved in [, Proposition .].

Lemma . Let f ∈ Diffμ(M), and U be a C-neighborhood of f in Diffμ(M). Then there
exist a C-neighborhood U ⊂ U of f and ε >  such that if g ∈ U, any finite f -invariant
set E = {x, . . . ,xm}, any neighborhood U of E, and any volume-preserving linear maps
Lj : TxjM → Tg(xj)M with ‖Lj – Dxjg‖ ≤ ε for all j = , . . . ,m, there is a conservative dif-
feomorphism g ∈ U coinciding with f on E and out of U , and Dxjg = Lj for all j = , . . . ,m.

We introduce the notion of normally hyperbolic which was founded in []. Let V ⊂ M
be an invariant submanifold of f ∈Diffμ(M). We say that V is normally hyperbolic if there
is a splitting TVM = TV ⊕Ns ⊕Nu such that
• the splitting depends continuously on x ∈ V ,
• Dxf (Nσ

x ) =Nσ
f (x) (σ = s,u) for all x ∈ V ,

• there are constants C >  and  < λ <  such that for every unit vector x ∈ TxV ,
vs ∈Ns

x and vu ∈Nu
x (x ∈ V ), we have

∥∥Dxf n
(
vs

)∥∥ ≤ Cλn∥∥Dxf n(v)
∥∥ and

∥∥Dxf n
(
vu

)∥∥ ≥ C–λ–∥∥Dxf n(v)
∥∥

for all n≥ .

Proposition . If f ∈ intOSμ(M), then every periodic point of f is hyperbolic.

Proof Take f ∈ intOSμ(M), and U (f ) is a C-neighborhood of f ∈ Diffμ(M). Let ε > 
and V(f ) ⊂ U(f ) be the number and C-neighborhood of f corresponding to U (f ) given
by Lemma .. To derive a contradiction, we assume that there exists a nonhyperbolic
periodic point p ∈ P(g) for some g ∈ V(f ). To simplify the notation in the proof, we may
assume that g(p) = p. Then there is at least one eigenvalue λ of Dpg such that |λ| = .
By making use of Lemma ., we linearize g at p using Moser’s theorem; that is, by

choosing α >  sufficiently small, we construct g C-nearby g such that

g(x) =

⎧⎨
⎩

ϕ–
p ◦Dpg ◦ ϕp(x) if x ∈ Bα(p),

g(x) if x /∈ Bα(p).

Then g(p) = g(p) = p.
First, we may assume that λ ∈Rwith λ = . Let v be the associated non-zero eigenvector

such that ‖v‖ = α/. Then we can get a small arc

Iv = {tv : – ≤ t ≤ } ⊂ ϕp
(
Bα(p)

)
.

Take ε = α/. Let  < δ < ε be a number of the orbital shadowing property of g corre-
sponding to ε. Then by our construction of g,

ϕ–
p (Iv) ⊂ Bα(p).
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Then it is clear that ϕ–
p (Iv) is normally hyperbolic for g. Put Jp = ϕ–

p (Iv). Given a con-
stant δ > , we construct a δ-pseudo orbit ξ = {xi}i∈Z ⊂ Jp as follows. For fixed k ∈ Z,
choose distinct points x = p,x,x, . . . ,xk in Jp such that
(a) d(xi,xi+) < δ for i = , , . . . ,k – ,
(b) d(x–i–,x–i) < δ for i = , . . . ,k – ,
(c) x = x and d(x–k ,xk) > ε.

Now, we define ξ = {xi}i∈Z by xki+j = xj for i ∈ Z and j = –k – ,–k – , . . . , –, , , . . . ,k – .
Since g has the orbital shadowing property, g|Jp must have the orbital shadowing prop-
erty. Thus, we can find a point y ∈M such that ξ ⊂ Bε(Og (y)), andOg (y) ⊂ Bε(ξ ). For any
v ∈ Iv, ϕ–

p (v) ∈ Jp ⊂ Bα(p) and

g
(
ϕ–
p (v)

)
= ϕ–

p ◦Dpg ◦ ϕp
(
ϕ–
p (v)

)
.

Then g(ϕ–
p (v)) = ϕ–

p (v). Thus, gl(Jp) = Jp for some l > . Now, we show that if Jp is
normally hyperbolic for g, then the shadowing points belong to Jp. Assume that there
is a shadowing point y ∈ M \ Jp. Then by the hyperbolicity, there are l,k ∈ Z such that
d(gl(y),xk) > ε, where xk ∈ ξ = {xi}i∈Z. This is a contradiction since g|Jp has the orbital
shadowing property. Thus, if Jp is normally hyperbolic for g, then the shadowing point
belongs to Jp. Since g|Jp has the orbital shadowing property, from the above facts, we
have y ∈ Jp. But gl(Jp) = Jp and so gl|Jp is the identity map. Then gl|Jp does not have the
orbital shadowing property. Thus, g|Jp also does not have the orbital shadowing property.
Finally, if λ ∈ C, then to avoid the notational complexity, we may assume that g(p) = p.

As in the first case, by Lemma ., there are α >  and g ∈ V(f ) such that g(p) = g(p) = p
and

g(x) =

⎧⎨
⎩

ϕ–
p ◦Dpg ◦ ϕp(x) if x ∈ Bα(p),

g(x) if x /∈ Bα(p).

With a C-small modification of the map Dpg , we may suppose that there is l >  (the
minimum number) such that Dpgl(v) = v for any v ∈ ϕp(Bα(p)) ⊂ TpM. Then we can go on
with the previous argument in order to reach the same contradiction. Thus, every periodic
point of f ∈ intOSμ(M) is hyperbolic. �

End of the proof of Theorem . Let f ∈ intOSμ(M). By Proposition ., we see that f ∈
Fμ(M). Thus, by Theorem ., f is Anosov. �
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