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1 Introduction
We shall write w for the set of all real sequences x = (xk) = (xk)∞k=. Let c, c, c, c, l∞, m
and m denote the sets of all convergent, null, statistically convergent, statistically null,
bounded, bounded statistically convergent and bounded statistically null sequences, re-
spectively. The difference sequence spaces l∞(�), c(�) and c(�) were first defined by
Kızmaz in []. The idea of difference sequences is generalized by Et and Çolak [] as

Z
(
�n) = {

x = (xk) ∈ w :
(
�nxk

) ∈ Z
}

(n ∈N)

for Z = l∞, c, c, where�nxk = �n–xk –�n–xk+ and�xk = xk for all k ∈N, the difference
operator is equivalent to the following binomial representation:

�nxk =
n∑

v=

(–)v
(
n
v

)
xk+v.

Et and Başarır [] generalized these spaces to E(�n), where E = l∞(p), c(p), c(p) are
Maddox’s sequence spaces. Tripathy and Esi [], who studied the spaces l∞(�m), c(�m)
and c(�m), gave a new type of generalization of the difference sequence spaces, where
�mx = (�mxk) = (xk – xk+m). Tripathy et al. [] generalized this notion as follows:

Z
(
�n

m
)
=

{
x = (xk) ∈ w :

(
�n

mxk
) ∈ Z

}
(n,m ∈ N),

where �n
mx = (�n

mxk) = (�n–
m xk –�n–

m xk+m) and �
mxk = xk for all k ∈ N, which is equiva-

lent to the following binomial representation:

�n
mxk =

n∑
v=

(–)v
(
n
v

)
xk+mv.
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The difference sequence spaces have been studied by several authors, [, –].
The concept of -normed spaces has been initially introduced by Gähler in the s

[], as an interesting non-linear generalization of a normed linear space, which has been
subsequently studied by many authors [–]. Since then, a lot of activities have been
started to study summability, sequence spaces and related topics on -normed spaces [–
]. Recently, some difference sequence spaces have been introduced in -normed spaces
by several authors [, , ].
Dutta [] introduced the sequence spaces c(‖·, ·‖,�n

(m),p), c(‖·, ·‖,�n
(m),p), l∞(‖·, ·‖,

�n
(m),p), m(‖·, ·‖,�n

(m),p) and m(‖·, ·‖,�n
(m),p), where m,n ∈ N and �n

(m)x = (�n
(m)xk) =

(�n–
(m)xk – �n–

(m)xk–m), and �
(m)xk = xk for all k ∈ N, which is equivalent to the following

binomial representation:

�n
(m)xk =

n∑
v=

(–)v
(
n
v

)
xk–mv. (.)

In [], Başar and Altay introduced the generalized difference matrix B(r, s) = (bnk(r, s))
which is a generalization of �

()-difference operator as follows:

bnk(r, s) =

⎧⎪⎪⎨
⎪⎪⎩
r (k = n),

s (k = n – ),

 ( ≤ k < n – ) or (k > n)

for all k,n ∈ N, r, s ∈ R – {}. Recently, Başarır and Kayıkçı [] have defined the general-
ized difference matrix Bn of order n, which reduced the difference operator �n

() in case
r = , s = – and the binomial representation of this operator is

Bnxk =
n∑

v=

(
n
v

)
rn–vsvxk–v, (.)

where r, s ∈R – {} and n ∈N.
Thus, for any sequence space Z, the space Z(Bn) is more general and more comprehen-

sive than the corresponding consequences of the space Z(�n
()). For details, one may refer

to [, , –].
The idea of statistical convergence was given by Zygmund [] in . The concept of

statistical convergence was introduced by Fast [] and Schoenberg [], independently
for the real sequences. Later on, it was further investigated from sequence point of view
and linked with the summability theory by Fridy [] and generalized to the concept of
-normed space by Gürdal and Pehlivan []. The idea is based on the notion of natural
density of subsets of N, the set of positive integers, which is defined as follows: the natural
density of a subset E of N is denoted by

δ(E) = lim
n→∞


n

∣∣{k ∈ E : k ≤ n}∣∣,
where the vertical bar denotes the cardinality of the enclosed set.
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2 Definitions and preliminaries
A sequence space E is said to be solid (or normal) if (xk) ∈ E implies (αkxk) ∈ E for all
sequences of scalars (αk) with |αk| ≤  for all k ∈N.
A linear topological spaceX over the real field R is said to be a paranormed space if there

is a sub-additive function g : X → R such that g(θ ) = , g(x) = g(–x), g(x + y) ≤ g(x) + g(y)
and scalar multiplication is continuous, i.e. |λn – λ| →  and g(xn – x) →  imply that
g(λnxn – λx) →  for all λ’s in R and all x’s in X, where θ is the zero vector in the linear
space X.
The following inequality will be used throughout the paper:
Let p = (pk) be a positive sequence of real numbers with infk pk = h, supk pk = H and

D =max{, H–}. Then for all ak ,bk ∈C for all k ∈N, we have

|ak + bk|pk ≤ D
{|ak|pk + |bk|pk

}

and |λ|pk ≤ max{|λ|h, |λ|H} for λ ∈C.
A -norm on a vector spaceX of d dimension, where d ≥ , is a function ‖·, ·‖ : X×X →

R, which satisfies the following conditions:
() ‖x,x‖ =  if and only if x, x are linearly dependent,
() ‖x,x‖ = ‖x,x‖,
() ‖αx,x‖ = |α|‖x,x‖ for any α ∈R,
() ‖x + x′,x‖ ≤ ‖x,x‖ + ‖x′,x‖.
The pair (X,‖·, ·‖) is then called a -normed space. For example, standard and Euclidean

-norms on R
 are respectively given by

‖x,x‖S =
∣∣∣∣∣〈x,x〉 〈x,x〉
〈x,x〉 〈x,x〉

∣∣∣∣∣



and

‖x,x‖E = abs

(∣∣∣∣∣x x
x x

∣∣∣∣∣
)
, xi = (xi,xi) ∈ R

 (i = , ), (.)

where 〈·, ·〉 stands for the inner product on X [].
Now we will give the following known example for -normed spaces.

Example . Consider the space Z for l∞, c and c. Let us define:

‖x, y‖ = sup
i∈N

sup
j∈N

|xiyj – xjyi|,

where x = (x,x, . . .) and y = (y, y, . . .) ∈ Z. Then ‖·, ·‖ is a -norm on Z.

A sequence (xk) in a -normed space (X,‖·, ·‖) is said to be convergent to some L ∈ X in
the -norm if

lim
k→∞

‖xk – L, z‖ =  for every z ∈ X [].
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Asequence (xk) in a -normed space (X,‖·, ·‖) is said to beCauchy sequencewith respect
to the -norm if

lim
k,l→∞

‖xk – xl, z‖ =  for every z ∈ X [].

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be complete
with respect to the -norm. Any complete -normed space is said to be a -Banach space
[].
Let recall that a sequence (xk) is said to be statistically convergent to L if for every ε > 

the set {k ∈ N : ‖xk – L, z‖ ≥ ε} has natural density zero for each nonzero z in X, in other
words (xk) statistically converges to L in -normed space (X,‖·, ·‖) if

lim
k→∞


k
∣∣{k ∈ N : ‖xk – L, z‖ ≥ ε

}∣∣ = ,

for each nonzero z in X. For L = , we say this is statistically null [].
Firstly, we give the following lemma, which we need to establish our main results.

Lemma . [] Every closed linear subspace F of an arbitrary linear normed space E,
different from E, is a nowhere dense set in E.

Throughout the paper w(X), c(X), c(X), c(X), c(X), l∞(X),m(X) andm(X) denote the
spaces of all, convergent, null, statistically convergent, statistically null, bounded, bounded
statistically convergent and bounded statistically null X valued sequence spaces, where
(X,‖·, ·‖) is a real -normed space. By θ = (θ , θ , θ , . . .), we mean the zero element of X.

3 Main results
In this section, we define the generalized difference matrix Bn

(m) and introduce differ-
ence sequence spaces c(Bn

(m),p,‖·, ·‖), c(Bn
(m),p,‖·, ·‖), m(Bn

(m),p,‖·, ·‖), m(Bn
(m),p,‖·, ·‖),

c(Bn
(m),p,‖·, ·‖), c(Bn

(m),p,‖·, ·‖), l∞(Bn
(m),p,‖·, ·‖), W (Bn

(m),p,‖·, ·‖), which are defined on
a real linear -normed space. We investigate some topological properties of the spaces
c(Bn

(m),p,‖·, ·‖), c(Bn
(m),p,‖·, ·‖), m(Bn

(m),p,‖·, ·‖) and m(Bn
(m),p,‖·, ·‖) including linear-

ity, existence of paranorm and solidity. Further, we show that the sequence spaces
m(Bn

(m),p,‖·, ·‖) and m(Bn
(m),p,‖·, ·‖) are complete paranormed spaces when the base

space is a -Banach space. Moreover, we give some inclusion relations.
By the notation xk

stat→ , we will mean that xk is statistically convergent to zero, through-
out the paper. Let m, n be non-negative integers and p = (pk) be a sequence of strictly
positive real numbers. Then we define new sequence spaces as follows:

c
(
Bn
(m),p,‖·, ·‖

)
=

{
x = (xk) ∈ w(X) :

∥∥Bn
(m)xk – L, z

∥∥pk stat→ ,

for every nonzero z ∈ X and some L ∈ X
}
,

c
(
Bn
(m),p,‖·, ·‖

)
=

{
x = (xk) ∈ w(X) :

∥∥Bn
(m)xk , z

∥∥pk stat→ , for every nonzero z ∈ X
}
,

l∞
(
Bn
(m),p,‖·, ·‖

)
=

{
x = (xk) ∈ w(X) : sup

k≥

(∥∥Bn
(m)xk , z

∥∥pk ) <∞,

for every nonzero z ∈ X
}
,

http://www.journalofinequalitiesandapplications.com/content/2013/1/177
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c
(
Bn
(m),p,‖·, ·‖

)
=

{
x = (xk) : lim

k→∞
∥∥Bn

(m)xk – L, z
∥∥pk = ,

for every nonzero z ∈ X and some L ∈ X
}
,

c
(
Bn
(m),p,‖·, ·‖

)
=

{
x = (xk) : lim

k→∞
∥∥Bn

(m)xk , z
∥∥pk = , for every nonzero z ∈ X

}
,

W
(
Bn
(m),p,‖·, ·‖

)
=

{
x = (xk) ∈ w(X) : lim

j→∞

j

j∑
k=

∥∥Bn
(m)xk – L, z

∥∥pk = ,

for every nonzero z ∈ X and some L ∈ X

}
,

m
(
Bn
(m),p,‖·, ·‖

)
= c

(
Bn
(m),p,‖·, ·‖

) ∩ l∞
(
Bn
(m),p,‖·, ·‖

)
and

m
(
Bn
(m),p,‖·, ·‖

)
= c

(
Bn
(m),p,‖·, ·‖

) ∩ l∞
(
Bn
(m),p,‖·, ·‖

)
,

whereBn
(m)x = Bn

(m)xk = rBn–
(m)xk+sB

n–
(m)xk–m andB

(m)xk = xk for all k ∈N, which is equivalent
to the binomial representation as follows:

Bn
(m)xk =

n∑
v=

(
n
v

)
rn–vsvxk–mv.

In this representation, we obtain the matrix Bn
() defined in [] for n >  and in [] for

n = .
() If we take n =  then the above sequence spaces are reduced to c(p,‖·, ·‖),

c(p,‖·, ·‖), l∞(p,‖·, ·‖), c(p,‖·, ·‖), c(p,‖·, ·‖),W (p,‖·, ·‖),m(p,‖·, ·‖) and
m(p,‖·, ·‖), respectively.

() If we take r = , s = –, then the sequence spaces c(Bn
(m),p,‖·, ·‖), c(Bn

(m),p,‖·, ·‖),
l∞(Bn

(m),p,‖·, ·‖),W (Bn
(m),p,‖·, ·‖),m(Bn

(m),p,‖·, ·‖),m(Bn
(m),p,‖·, ·‖) are reduced to

c(�n
(m),p,‖·, ·‖), c(�n

(m),p,‖·, ·‖), l∞(�n
(m),p,‖·, ·‖),W (�n

(m),p,‖·, ·‖),
m(�n

(m),p,‖·, ·‖) and m(�n
(m),p,‖·, ·‖), respectively, which are studied in [].

() By taking pk =  for all k ∈N, then these sequence spaces are denoted by
c(Bn

(m),‖·, ·‖), c(Bn
(m),‖·, ·‖), l∞(Bn

(m),‖·, ·‖), c(Bn
(m),‖·, ·‖), c(Bn

(m),‖·, ·‖),
W (Bn

(m),‖·, ·‖),m(Bn
(m),‖·, ·‖) and m(Bn

(m),‖·, ·‖), respectively.
() If we replace the base space X , which is a real linear -normed space by C, complete

normed linear space, and take m =  and take r = , s = –, then the above sequence
spaces are denoted by c(�n

(),p), c(�
n
(),p), l∞(�n

(),p), c(�
n
(),p), c(�

n
(),p),

W (�n
(),p), m(�n

(),p) and m(�n
(),p), respectively.

() If we take r = , s = –, pk =  for all k ∈N, then these sequence spaces are denoted
by c(�n

(m),‖·, ·‖), c(�n
(m),‖·, ·‖), l∞(�n

(m),‖·, ·‖), c(�n
(m),‖·, ·‖), c(�n

(m),‖·, ·‖),
W (�n

(m),‖·, ·‖),m(�n
(m),‖·, ·‖) and m(�n

(m),p,‖·, ·‖), respectively.
() If we replace the base space X , which is a real linear -normed space by C, we obtain

the spaces c(Bn
(m),p), c(B

n
(m),p), l∞(Bn

(m),p), c(B
n
(m),p), c(B

n
(m),p),W (Bn

(m),p),
m(Bn

(m),p) and m(Bn
(m),p), respectively.

() Moreover, if we take X =C, n =  and pk =  for all k ∈ N, we get the spaces c, c, l∞,
c, c,W , m andm, respectively.

http://www.journalofinequalitiesandapplications.com/content/2013/1/177
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Theorem. Let p = (pk) be a sequence of strictly positive real numbers.Then the sequence
spaces Z(Bn

(m),p,‖·, ·‖) are linear spaces where Z = c, c, l∞,W ,m,m.

Proof The proof of the theorem can be obtained by similar techniques in []. �

Theorem . For any two sequences p = (pk) and t = (tk) of positive real numbers and for
any two -norms ‖·, ·‖ and ‖·, ·‖ on X we have Z(Bn

(m),p,‖·, ·‖) ∩ Z(Bn
(m),p,‖·, ·‖) �= ∅,

where Z = c, c,m,m.

Proof The proof follows from the fact that the zero element belongs to each of the se-
quence spaces involved in the intersection. �

Theorem . Let (X,‖·, ·‖) be a -Banach space. Then the spaces m(Bn
(m),p,‖·, ·‖),

m(Bn
(m),p,‖·, ·‖) are complete paranormed sequence spaces, paranormed by

g(x) = sup
k∈N,z∈X

(∥∥Bn
(m)xk , z

∥∥ pk
M

)
, (.)

where M =max{,H} and H = supk pk , h = infk pk .

Proof Wewill prove the theorem for the sequence spacem(Bn
(m),p,‖·, ·‖). It can be proved

for the spacem(Bn
(m),p,‖·, ·‖) similarly.

Clearly g(–x) = g(x) and g(θ ) = . From the following inequality, we have

g(x + y) = sup
k∈N,z∈X

(∥∥Bn
(m)(xk + yk), z

∥∥ pk
M

)

≤ sup
k∈N,z∈X

(∥∥Bn
(m)xk , z

∥∥ pk
M

)
+ sup

k∈N,z∈X

(∥∥Bn
(m)yk , z

∥∥ pk
M

)
.

This implies that g(x + y) ≤ g(x) + g(y).
To prove the continuity of scalar multiplication, assume that (xn) be any sequence of the

points inm(Bn
(m),p,‖·, ·‖) such that g(xn–x) →  and (λn) be any sequence of scalars such

that λn → λ. Since the inequality

g
(
xn

) ≤ g(x) + g
(
xn – x

)

holds by subadditivity of g , (g(xn)) is bounded. Thus, we have

g
(
λnxn – λx

)
= sup

k∈N,z∈X

(∥∥Bn
(m)λnxnk – λxk , z

∥∥ pk
M

)

≤ (
max

{|λn – λ|h, |λn – λ|H}) 
M sup

k∈N,z∈X

(∥∥Bn
(m)xk , z

∥∥ pk
M

)

+
(
max

{|λ|h, |λ|H}) 
M sup

k∈N,z∈X

(∥∥Bn
(m)

(
xnk – x

)
, z

∥∥ pk
M

)

=
(
max

{|λn – λ|h, |λn – λ|H}) 
M g

(
xn

)
+

(
max

{|λ|h, |λ|H}) 
M g

(
xn – x

)
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which tends to zero as n → ∞. Hence, g is a paranorm on the sequence spacem(Bn
(m),p,

‖·, ·‖).
To prove that m(Bn

(m),p,‖·, ·‖) is complete, assume that (xi) is a Cauchy sequence in
m(Bn

(m),p,‖·, ·‖). Then for a given ε ( < ε < ), there exists a positive integer N such that
g(xi – xj) < ε, for all i, j ≥ N. This implies that

sup
k∈N,z∈X

(∥∥Bn
(m)x

i
k – Bn

(m)x
j
k , z

∥∥ pk
M

)
< ε,

for all i, j ≥ N. It follows that for every nonzero z ∈ X,

∥∥Bn
(m)x

i
k – Bn

(m)x
j
k , z

∥∥ < ε,

for each k ≥  and for all i, j ≥ N. Hence (Bn
(m)x

i
k) is a Cauchy sequence in X for all

k ∈ N. Since X is a -Banach space, (Bn
(m)x

i
k) is convergent in X for all k ∈ N, so we write

(Bn
(m)x

i
k)→ (Bn

(m)xk) as i → ∞. Now we have for all i, j ≥ N,

sup
k∈N,z∈X

(∥∥Bn
(m)

(
xik – xjk

)
, z

∥∥ pk
M

)
< ε

⇒ lim
j→∞

{
sup

k∈N,z∈X

(∥∥Bn
(m)

(
xik – xjk

)
, z

∥∥ pk
M

)}
< ε

⇒ sup
k∈N,z∈X

(∥∥Bn
(m)

(
xik – xk

)
, z

∥∥ pk
M

)
< ε,

for all i ≥ N. It follows that (xi – x) ∈ m(Bn
(m),p,‖·, ·‖). Since (xi) ∈ m(Bn

(m),p,‖·, ·‖) and
m(Bn

(m),p,‖·, ·‖) is a linear space, so we have x = xi – (xi – x) ∈m(Bn
(m),p,‖·, ·‖). This com-

pletes the proof. �

Theorem .
() If Z ⊂ Z, then Z(Bn

(m),p,‖·, ·‖) ⊂ Z(Bn
(m),p,‖·, ·‖) and the inclusion is strict, where

Z,Z = c, c, l∞.
() If n < n, then Z(Bn

(m),p,‖·, ·‖) ⊂ Z(Bn
(m),p,‖·, ·‖) and the inclusion is strict, where

Z = c, c, l∞.

Proof The parts of proof Z(Bn
(m),p,‖·, ·‖) ⊂ Z(Bn

(m),p,‖·, ·‖) and Z(Bn
(m),p,‖·, ·‖) ⊂

Z(Bn
(m),p,‖·, ·‖) are easy. To show the inclusions are strict, choose Z = c, Z = c,

x = (xk) = (k,k) and consider the -norm as defined in (.), let pk =  for all k ∈ N,
m = , n = , r = , s = –, then x ∈ c(B

(),‖·, ·‖) but x /∈ c(B
(),‖·, ·‖). If we choose Z = c,

x = (xk) = (k,k) and pk =  for all k ∈ N, m = , n = , r = , s = –, then x ∈ c(B
(),‖·, ·‖)

but x /∈ c(B
(),‖·, ·‖). These complete the proofs of parts () and () of the theorem, respec-

tively. �

Theorem .
() c(Bn

(m),‖·, ·‖)⊂ c(Bn
(m),‖·, ·‖) and the inclusion is strict.

() c(‖·, ·‖)⊂ c(Bn
(m),‖·, ·‖) and the inclusion is strict.

() c(Bn
(m),‖·, ·‖) and l∞(Bn

(m),‖·, ·‖) overlap but neither one contains the other.
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Proof
() It is clear that c(Bn

(m),‖·, ·‖) ⊂ c(Bn
(m),‖·, ·‖). To show that the inclusion is strict,

choose the sequence x = (xk) such that,

Bn
(m)xk =

⎧⎨
⎩(,

√
k), k = n,

(, ), k �= n,
(.)

where n ∈ N – {}, and consider the -norm as defined in (.). Then we obtain
Bn
(m)xk ∈ c(‖·, ·‖), but Bn

(m)xk /∈ c(‖·, ·‖). That is, xk ∈ c(Bn
(m),p,‖·, ·‖), but

xk /∈ c(Bn
(m),p,‖·, ·‖).

() It is easy to see that c(‖·, ·‖) ⊂ c(Bn
(m),‖·, ·‖). To show that the inclusion is strict, let

us take x = (xk) = (k,k) and consider the -norm as defined in (.),m = , n = ,
r = , s = –, then x ∈ c(B

(),‖·, ·‖) but x /∈ c(‖·, ·‖).
() Since the sequence x = θ belongs to each of the sequence spaces, the overlapping

part of the proof is obvious. For the other part of the proof, consider the sequence
defined by (.) and the -norm as defined in (.). Then x ∈ c(Bn

(m),‖·, ·‖), but
x /∈ l∞(Bn

(m),‖·, ·‖). Conversely if we choose (Bn
(m)xk) = (, , , , . . .) where k = (k,k)

for all k = , , then Bn
(m)xk ∈ l∞(‖·, ·‖) but Bn

(m)xk /∈ c(‖·, ·‖). That is,
x ∈ l∞(Bn

(m),‖·, ·‖) but x /∈ c(Bn
(m),‖·, ·‖). �

Theorem . The space Z(Bn
(m),p,‖·, ·‖) is not solid in general, where Z = c, c,m,m.

Proof To show that the space is not solid in general, consider the following examples.
�

Example . Let m = , n = , r = , s = – and consider the -normed space as defined
in Example .. Let pk =  for all k ∈ N. Consider the sequence (xk), where xk = (xik) is
defined by (xik) = (k,k,k, . . .) for each fixed k ∈ N. Then xk ∈ Z(B

(),p,‖·, ·‖) for Z = c,m.
Let αk = (–)k , then (αkxk) /∈ Z(B

(),p,‖·, ·‖) for Z = c,m. Thus Z(B
(),p,‖·, ·‖) for Z = c,m

is not solid in general.

Example . Let m = , n = , r = , s = – and consider the -normed space as de-
fined in Example .. Let pk =  for all odd k and pk =  for all even k. Consider the se-
quence (xk), where xk = (xik) is defined by (xik) = (, , , . . .) for each fixed k ∈N. Then xk ∈
Z(B

(),p,‖·, ·‖) for Z = c,m. Let αk = (–)k , then (αkxk) /∈ Z(B
(),p,‖·, ·‖) for Z = c,m.

Thus Z(B
(),p,‖·, ·‖) for Z = c,m is not solid in general.

Theorem . The spaces m(Bn
(m),p,‖·, ·‖) and m(Bn

(m),p,‖·, ·‖) are nowhere dense subsets
of l∞(Bn

(m),p,‖·, ·‖).

Proof From Theorem ., it follows that m(Bn
(m),p,‖·, ·‖) and m(Bn

(m),p,‖·, ·‖) are closed
subspaces of l∞(Bn

(m),p,‖·, ·‖). Since the inclusion relations

m
(
Bn
(m),p,‖·, ·‖

) ⊂ l∞
(
Bn
(m),p,‖·, ·‖

)
, m

(
Bn
(m),p,‖·, ·‖

) ⊂ l∞
(
Bn
(m),p,‖·, ·‖

)
are strict, the spaces m(Bn

(m),p,‖·, ·‖) and m(Bn
(m),p,‖·, ·‖) are nowhere dense subsets of

l∞(Bn
(m),p,‖·, ·‖) by Lemma .. �
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Theorem . Let p = (pk) be a sequence of non-negative bounded real numbers such that
infk pk > . Then

W
(
Bn
(m),p,‖·, ·‖

) ∩ l∞
(
Bn
(m),p,‖·, ·‖

) ⊂m
(
Bn
(m),p,‖·, ·‖

)
.

Proof Let (xk) ∈W (Bn
(m),p,‖·, ·‖)∩ l∞(Bn

(m),p,‖·, ·‖). Then for a given ε > , we have


j

j∑
k=

∥∥Bn
(m)xk – L, z

∥∥pk ≥ 
j

j∑
k=

‖Bn(m)xk–L,z‖pk≥ε

∥∥Bn
(m)xk – L, z

∥∥pk

≥ ε

j
∣∣{k ≤ j :

∥∥Bn
(m)xk – L, z

∥∥pk ≥ ε
}∣∣.

If we take the limit for j → ∞, it follows that (xk) ∈ c(Bn
(m),p,‖·, ·‖) from the inequality

above. Since (xk) ∈ l∞(Bn
(m),p,‖·, ·‖), we have the result. �
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Başarır et al. Journal of Inequalities and Applications 2013, 2013:177 Page 10 of 10
http://www.journalofinequalitiesandapplications.com/content/2013/1/177

18. Mursaleen, M, Noman, AK: On some new difference sequence spaces of non-absolute type. Math. Comput. Model.
52(3-4), 603-617 (2010)
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39. Başarır, M, Kara, EE: On compact operators and some Euler Bm difference sequence spaces. J. Math. Anal. Appl. 379(2),

499-511 (2011)
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