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Abstract
Let –1≤ B < A≤ 1. The condition on β is determined so that
1 + βzp′(z)/pk(z) ≺ (1 + Az)/(1 + Bz) (–1 < k ≤ 3) implies p(z) ≺ √

1 + z. Similarly, the
condition on β is determined so that 1 + βzp′(z)/pn(z) or p(z) + βzp′(z)/pn(z) ≺ √

1 + z
(n = 0, 1, 2) implies p(z) ≺ (1 + Az)/(1 + Bz) or

√
1 + z. In addition to that, the condition

on β is derived so that p(z) ≺ (1 + Az)/(1 + Bz) when p(z) + βzp′(z)/p(z)≺ √
1 + z.

A few more problems of the similar flavor are also considered.
MSC: 30C80; 30C45
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1 Introduction
Let A be the class of analytic functions defined on the unit disk D := {z ∈ C : |z| < } nor-
malized by the condition f () =  = f ′() – . For two analytic functions f and g , we say
that f is subordinate to g or g is superordinate to f , denoted by f ≺ g , if there is a Schwarz
function w with |w(z)| ≤ |z| such that f (z) = g(w(z)). If g is univalent, then f ≺ g if and
only if f () = g() and f (D)⊆ g(D). For an analytic function ϕ whose range is starlike with
respect to ϕ() =  and is symmetric with respect to the real axis, let S∗(ϕ) denote the
class of Ma-Minda starlike functions consisting of all f ∈ A satisfying zf ′(z)/f (z) ≺ ϕ(z).
For special choices of ϕ, S∗(ϕ) reduces to well-known subclasses of starlike functions. For
example, when – ≤ B < A ≤ , S∗[A,B] := S∗(( + Az)/( + Bz)) is the class of Janowski
starlike functions [] (see []) and S∗[ – α, –] is the class S∗(α) of starlike functions of
order α and S∗ := S∗() is the class of starlike functions. For ϕ(z) :=

√
 + z, the class S∗(ϕ)

reduces to the class SL introduced by Sokół and Stankiewicz [] and studied recently by
Ali et al. [, ]. A function f ∈A is in the class SL if zf ′(z)/f (z) lies in the region bounded
by the right half-plane of the lemniscate of Bernoulli given by |w – | < . Analytically,
SL := {f ∈A : |(zf ′(z)/f (z)) – | < }. For b ≥ / and a ≥ , a more general class S∗[a,b] of
the functions f satisfying |(zf ′(z)/f (z))a – b| < b was considered by Paprocki and Sokół [].
Clearly, S∗[, ] =: SL. For some radius problems related with the lemniscate of Bernoulli,
see [, , , ]. Estimates for the initial coefficients of functions in the class SL are available
in [].
Let p be an analytic function defined on D with p() = . Recently Ali et al. [] deter-

mined conditions for p(z) ≺ √
 + z when  + βzp′(z)/pk(z) with k = , ,  or ( – β)p(z) +

βp(z)+βzp′(z) is subordinated to
√
 + z.Motivated by theworks in [–], in Section  the

condition on β is determined so that p(z) ≺ √
 + z when  + βzp′(z)/pk(z) ≺ ( +Az)/( +

Bz) (– < k ≤ ). Similarly, the condition on β is determined so that p(z) ≺ (+Az)/(+Bz)
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when +βzp′(z)/pn(z) ≺ √
 + z, n = , , . Further, the condition on β is obtained in each

case so that p(z) ≺ √
 + z when p(z) + βzp′(z)/pn(z) ≺ √

 + z, n = , , . At the end of this
section, the problem p(z) + βzp′(z)/p(z) ≺ √

 + z implies p(z) ≺ ( + Az)/( + Bz) is also
considered.
Silverman [] introduced the class Gb by

Gb :=
{
f ∈A :

∣∣∣∣zf
′′(z)/f ′(z)

zf ′(z)/f (z)
– 

∣∣∣∣ < b
}

and proved Gb ⊂ S∗(/( +
√
 + b)),  < b ≤ . Further, this result was improved by

Obradovič and Tuneski [] by showing Gb ⊂ S∗[,b] ⊂ S∗(/( +
√
 + b)),  < b ≤ .

Tuneski [] further obtained the condition for Gb ⊂ S∗[A,B]. Inspired by the work of
Silverman [], Nunokawa et al. [] obtained the sufficient conditions for a function in
the class Gb to be strongly starlike, strongly convex, or starlike in D. By setting p(z) =
zf ′(z)/f (z), the inclusion Gb ⊂ S∗[A,B] can be written as

 +
zp′(z)
p(z)

≺  + bz �⇒ p(z) ≺  +Az
 + Bz

.

Recently Ali et al. [], obtained the condition on the constants A,B,D,E ∈ [–, ] and
β so that p(z) ≺ ( + Az)/( + Bz) when  + βzp′(z)/pn(z) ≺ ( + Dz)/( + Ez), n = , . In
Section , alternate and easy proofs of results [, Lemmas ., .] are discussed. Further,
this section is concluded with the condition on A,B,D,E ∈ [–, ] and β such that  +
βzp′(z)/p(z) ≺ ( +Dz)/( + Ez) implies p(z) ≺ ( +Az)/( + Bz).
The following results are required in order to prove our main results.

Lemma . [, Corollary .h, p.] Let q be univalent in D, and let ϕ be analytic in a
domain D containing q(D). Let zq′(z)ϕ(q(z)) be starlike. If p is analytic in D, p() = q()
and satisfies

zp′(z)ϕ
(
p(z)

) ≺ zq′(z)ϕ
(
q(z)

)
,

then p ≺ q and q is the best dominant.

The following is a more general form of the above lemma.

Lemma . [, Corollary .i, p.] Let q be univalent in D, and let ϕ and ν be analytic
in a domain D containing q(D) with ϕ(w) =  when w ∈ q(D). Set

Q(z) := zq′(z)ϕ
(
q(z)

)
, h(z) := ν

(
q(z)

)
+Q(z).

Suppose that
() h is convex or Q(z) is starlike univalent in D and
() Re( zh

′(z)
Q(z) ) >  for z ∈D.

If

ν
(
p(z)

)
+ zp′(z)ϕ

(
p(z)

) ≺ ν
(
q(z)

)
+ zq′(z)ϕ

(
q(z)

)
, (.)

then p ≺ q and q is the best dominant.
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Lemma . [, Corollary .a, p.] Let q be analytic inD, let φ be analytic in a domain
D containing q(D) and suppose
() Reφ[q(z)] >  and either
() q is convex, or
() Q(z) = zq′(z) · φ[q(z)] is starlike.

If p is analytic in D, with p() = q(), p(D) ⊂D and

p(z) + zp′(z)φ
[
p(z)

] ≺ q(z),

then p(z) ≺ q(z).

2 Results associated with the lemniscate of Bernoulli
In the first result, condition on β is obtained so that the subordination

 + β
zp′(z)
pk(z)

≺  +Az
 + Bz

(– < B < A≤ )

implies p(z) ≺ √
 + z.

Lemma. Let |β| ≥ (k+)/(A–B)+ |Bβ|, – < k ≤ . Let p be an analytic function defined
on D with p() =  satisfying

 + β
zp′(z)
pk(z)

≺  +Az
 + Bz

(– < B < A≤ ),

then p(z) ≺ √
 + z.

Proof Let q(z) =
√
 + z. A computation shows that the function

Q(z) := β
zq′(z)
qk(z)

=
βz

( + z)(k+)/
(– < k ≤ )

is starlike in the unit disk D. Consider the subordination

 + β
zp′(z)
pk(z)

≺  + β
zq′(z)
qk(z)

.

Thus in view of Lemma ., it follows that p(z) ≺ q(z). In order to prove our result, we need
to prove

 +Az
 + Bz

≺  +
βzq′(z)
qk(z)

=  +
βz

( + z)(k+)/
:= h(z).

Let w = �(z) = +Az
+Bz . Then �–(w) = w–

A–Bw . The subordination �(z) ≺ h(z) is equivalent to
z ≺ �–(h(z)). Thus in order to prove the result, we need only to show |�–(h(eit))| ≥ .
For z = eit , –π ≤ t ≤ π , we have

∣∣�–(h(eit))∣∣ ≥ |β|
(A – B)( cos(t/))(k+)/ + |Bβ| =: g(t).

http://www.journalofinequalitiesandapplications.com/content/2013/1/176


Kumar et al. Journal of Inequalities and Applications 2013, 2013:176 Page 4 of 13
http://www.journalofinequalitiesandapplications.com/content/2013/1/176

A calculation shows that g(t) attains its minimum at t = . Further, the value of g(t) at π

or –π comes out to be /|B| which is naturally greater than the value at the extreme point
t =  because if g() ≥ g(π ), then (A – B)|β| ≤  which is absurd. Thus

g() =
|β|

(k+)/(A – B) + |Bβ| ≥ 

for |β| ≥ (k+)/(A – B) + |Bβ|. Hence �(z)≺ h(z), and the proof is complete now. �

Next result depicts the condition on β such that  + βzp′(z) ≺ √
 + z implies p(z) ≺

( +Az)/( + Bz) (–≤ B < A ≤ ). On subsequent lemmas, similar results are obtained by
considering the expressions  + βzp′(z)/p(z) and  + βzp′(z)/p(z).

Lemma . Let (A–B)β ≥ √
(+ |B|) + (–B) and – ≤ B < A≤ . Let p be an analytic

function defined on D with p() =  satisfying

 + βzp′(z) ≺ √
 + z,

then p(z) ≺ +Az
+Bz .

Proof Define the function q :D→C by

q(z) =
 +Az
 + Bz

(– ≤ B < A≤ )

with q() = . A computation shows that

Q(z) = βzq′(z) =
β(A – B)z
( + Bz)

and

zQ′(z)
Q(z)

=
 – Bz
 + Bz

.

Let z = reit , r ∈ (, ), –π ≤ t ≤ π . Then

Re

(
 – Bz
 + Bz

)
= Re

(
 – Breit

 + Breit

)

=
 – Br

| + Breit| .

Since –Br >  (|B| ≤ ,  < r < ) and soRe(zQ′(z)/Q(z)) > , this shows thatQ is starlike
in D. It follows from Lemma . that the subordination

 + βzp′(z) ≺  + βzq′(z)

implies p(z) ≺ q(z). Now we need to prove the following in order to prove the lemma:

√
 + z ≺  + βzq′(z) =  + β

(A – B)z
( + Bz)

=: h(z).
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Let w = �(z) =
√
 + z. Then �–(w) = w – . The subordination �(z) ≺ h(z) is equivalent

to the subordination z ≺ �–(h(z)). Now in order to prove the result, it is enough to show
|�–(h(eit))| ≥ , z = eit , –π ≤ t ≤ π . Now

∣∣�–(h(eit))∣∣ =
∣∣∣∣
(
 + β

(A – B)eit

( + Beit)

)

– 
∣∣∣∣ ≥  implies that

∣∣∣∣ + β
(A – B)eit

( + Beit)

∣∣∣∣ ≥ √
.

Further,

∣∣∣∣ + β
(A – B)eit

( + Beit)

∣∣∣∣ = | + (B + β(A – B))eit + Beit|
| + Beit + Beit|

≥ Re(B + β(A – B) + Beit + e–it)
 + |B| + B

=
B + β(A – B) + ( + B) cos t

( + |B|)

≥ B + β(A – B) – ( + B)
( + |B|) ≥ √



for (A–B)β ≥ √
( + |B|) + ( –B). Therefore �(z) ≺ h(z) and this completes the proof.

�

Lemma . Let (A – B)β ≥ (
√
 – )( + |A|)( + |B|) and – ≤ B < A ≤ . Let p be an

analytic function defined on D with p() =  satisfying

 + β
zp′(z)
p(z)

≺ √
 + z,

then p(z) ≺ +Az
+Bz .

Proof Let the function q :D→C be defined by

q(z) =
 +Az
 + Bz

(– ≤ B < A≤ ).

A computation shows that

Q(z) :=
βzq′(z)
q(z)

=
β(A – B)z

( +Az)( + Bz)

and

zQ′(z)
Q(z)

=
 –ABz

( +Az)( + Bz)
.

Let z = reit , r ∈ (, ), –π ≤ t ≤ π . Then

Re

(
 –ABz

( +Az)( + Bz)

)
= Re

(
 –ABreit

( +Areit)( + Breit)

)

=
( –ABr)( + (A + B)r cos t +ABr)

| +Areit|| + Breit| .

http://www.journalofinequalitiesandapplications.com/content/2013/1/176
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Since  +ABr + (A+B)r cos t ≥ ( –Ar)( –Br) >  for A+B ≥  and, similarly,  +ABr +
(A+B)r cos t ≥ (+Ar)(+Br) >  forA+B ≤ , it follows thatQ is starlike inD. Lemma .
suggests that the subordination

 + β
zp′(z)
p(z)

≺  + β
zq′(z)
q(z)

implies p(z) ≺ q(z). Now we have to prove

√
 + z ≺  + β

zq′(z)
q(z)

=  +
β(A – B)z

( +Az)( + Bz)
=: h(z).

Let w = �(z) =
√
 + z. Then �–(w) = w – . The subordination �(z) ≺ h(z) is equivalent

to the subordination z ≺ �–(h(z)). Now in order to prove the result, it is enough to show
|�–(h(eit))| ≥ , –π ≤ t ≤ π . Now

∣∣�–(h(eit))∣∣ =
∣∣∣∣
(
 +

β(A – B)eit

( +Aeit)( + Beit)

)

– 
∣∣∣∣ ≥  implies that

∣∣∣∣ + β(A – B)eit

( +Aeit)( + Beit)

∣∣∣∣ ≥ √
.

Further,

∣∣∣∣ + β(A – B)eit

( +Aeit)( + Beit)

∣∣∣∣ ≥ Re

(
 +

β(A – B)eit

( +Aeit)( + Beit)

)

≥  +
(A – B)β

( + |A|)( + |B|) ≥ √


for (A – B)β ≥ (
√
 – )( + |A|)( + |B|). Therefore �(z) ≺ h(z) and this completes the

proof. �

Lemma . Let (A – B)β ≥ (
√
 – )( + |A|) + ( – A) and – ≤ B < A ≤ . Let p be an

analytic function defined on D with p() =  satisfying

 + β
zp′(z)
p(z)

≺ √
 + z,

then p(z) ≺ +Az
+Bz .

Proof Let the function q :D→C be defined by

q(z) =
 +Az
 + Bz

(– ≤ B < A≤ )

with q() = . Then

Q(z) =
βzq′(z)
q(z)

=
β(A – B)z
( +Az)

http://www.journalofinequalitiesandapplications.com/content/2013/1/176
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and

zQ′(z)
Q(z)

=
 –Az
 +Az

.

Let z = reit , –π ≤ t ≤ π ,  < r < . Then

Re

(
 –Az
 +Az

)
=

 –Ar

| +Areit| .

Since  – Ar >  (|A| ≤ ,  < r < ). Hence Re(zQ′(z))/Q(z) > , this shows that Q is
starlike in D. An application of Lemma . reveals that the subordination

 + β
zp′(z)
p(z)

≺  + β
zq′(z)
q(z)

implies p(z) ≺ q(z). Now our result is established if we prove

√
 + z ≺  + β

zq′(z)
q(z)

=  + β
(A – B)z
( +Az)

=: h(z).

The rest of the proof is similar to that of Lemma ., and therefore it is skipped here. �

In the next result, the condition on β is obtained so that p(z) + βzp′(z) ≺ √
 + z implies

p(z) ≺ √
 + z. On subsequent lemmas, similar results are discussed by considering the

expressions p(z) + βzp′(z)/p(z) and p(z) + βzp′(z)/p(z).

Lemma . Let p be an analytic function defined on D with p() =  satisfying p(z) +
βzp′(z) ≺ √

 + z, β > . Then p(z) ≺ √
 + z.

Proof Define the function q :D →C by q(z) =
√
 + z with q() = . Since q(D) = {w : |w –

| < } is the right half of the lemniscate of Bernoulli, q(D) is a convex set, and hence q is a
convex function. Let us define φ(w) = β , then

Reφ
[
q(z)

]
= β > .

Consider the function Q defined by

Q(z) := zq′(z)φ
(
q(z)

)
= β

z

√
 + z

.

Further,

Re

(
zQ′(z)
Q(z)

)
=  –Re

(
z

( + z)

)

≥ 

> .

Thus the functionQ is starlike, and the result now follows by an application of Lemma ..
�
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Lemma . Let p be an analytic function defined on D with p() =  satisfying

p(z) + β
zp′(z)
p(z)

≺ √
 + z, β > .

Then p(z) ≺ √
 + z.

Proof As before, let q be given by q(z) =
√
 + z with q() = . Then q is a convex function.

Let us define φ(w) = β/w. Since q(D) = {w : |w – | < } is the right half of the lemniscate
of Bernoulli, so

Reφ
[
q(z)

]
=

β

|√ + z| Re(
√
 + z) > .

Consider the function Q defined by

Q(z) := β
zq′(z)
q(z)

= β
z

( + z)
.

Further,

Re

(
zQ′(z)
Q(z)

)
=  –Re

(
z

 + z

)
≥ 


> .

Thus the functionQ is starlike, and the result now follows by an application of Lemma ..
�

Lemma . Let p be an analytic function defined on D with p() =  satisfying

p(z) + β
zp′(z)
p(z)

≺ √
 + z, β > .

Then p(z) ≺ √
 + z.

Proof Let q be given by q(z) =
√
 + z with q() = . Then q is a convex function. Let us

define φ(w) = β/w and

Reφ
[
q(z)

]
= Re

(
β

 + z

)
>

β


> .

Consider the function Q defined by

Q(z) := β
zq′(z)
q(z)

= β
z

( + z) 
.

Further,

Re

(
zQ′(z)
Q(z)

)
=  –



Re

(
z

 + z

)
≥ 


> .

Thus the functionQ is starlike, and the result now follows by an application of Lemma ..
�
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In the next result, the condition on β is obtained such that p(z) + βzp′(z)/p(z) ≺ √
 + z

implies that p(z) ≺ ( +Az)/( + Bz).

Lemma . Let – ≤ B < A≤ , (A – B)β ≥ √
( + |A|)( + |B|) + |A| –  and


β

≥ max

{
,

A – B
( + |A|)( + |B|) –

 – |B|
 + |B|

}
.

Let p be an analytic function defined on D with p() =  satisfying

p(z) + β
zp′(z)
p(z)

≺ √
 + z.

Then p(z) ≺ +Az
+Bz .

Proof Define the function q :D → C by q(z) = ( +Az)/( + Bz), – ≤ B < A ≤ . Consider
the subordination

p(z) + β
zp′(z)
p(z)

≺ q(z) + β
zq′(z)
q(z)

.

Thus, in view of Lemma ., the above subordination can be written as (.) by defining
the functions ν and ϕ as ν(w) := w and ϕ(w) := β/w (β = ). Clearly, the functions ν and ϕ

are analytic in C and ϕ(w) = . Let the functions Q(z) and h(z) be defined by

Q(z) := zq′(z)ϕ
(
q(z)

)
= β

zq′(z)
q(z)

and

h(z) := ν
(
q(z)

)
+Q(z) = q(z) + β

zq′(z)
q(z)

.

A computation shows that Q(z) is starlike univalent in D. Further,

zh′(z)
Q(z)

=

β
+  +

zq′′(z)
q′(z)

–
zq′(z)
q(z)

.

Let z = eit , –π ≤ t ≤ π . Then

Re

(
eith′(eit)
Q(eit)

)
=


β
+Re

(
 – Beit

 + Beit
–

(A – B)eit

( +Aeit)( + Beit)

)

≥ 
β
+
 – |B|
 + |B| –

A – B
( + |A|)( + |B|) > .

Thus by Lemma ., it follows that p(z) ≺ q(z). In order to prove our result, we need to
prove that

�(z) :=
√
 + z ≺ q(z) + β

zq′(z)
q(z)

=
 +Az
 + Bz

+
β(A – B)z

( +Az)( + Bz)
:= h(z).

http://www.journalofinequalitiesandapplications.com/content/2013/1/176
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The subordination �(z) ≺ h(z) is equivalent to the subordination z ≺ �–(h(z)). Now in
order to prove the result, it is enough to show |�–(h(eit))| ≥ , –π ≤ t ≤ π . Now

∣∣�–(h(eit))∣∣ =
∣∣∣∣
(
 +Aeit

 + Beit
+

β(A – B)eit

( +Aeit)( + Beit)

)

– 
∣∣∣∣ ≥ 

implies

∣∣∣∣ +Aeit

 + Beit
+

β(A – B)eit

( +Aeit)( + Beit)

∣∣∣∣ ≥ √
.

Further,

∣∣∣∣ +Aeit

 + Beit
+

β(A – B)eit

( +Aeit)( + Beit)

∣∣∣∣ ≥ Re

(
 +Aeit

 + Beit
+

β(A – B)eit

( +Aeit)( + Beit)

)

≥  – |A|
 + |B| +

(A – B)β
( + |A|)( + |B|) ≥ √



for (A – B)β ≥ √
( + |A|)( + |B|) + |A| – . This completes the proof. �

3 Sufficient condition for Janowski starlikeness
The following first two results (Lemmas ., .) are essentially due to Ali et al. [, Lem-
mas ., .]. However, an alternate proof of the same result, which is much easier than
that given by Ali et al. [], is presented below.

Lemma . Assume that – ≤ B < A≤ , – ≤ E <D ≤  and β(A – B)≥ (D – E)( + B) +
|B(D–E) –Eβ(A–B)|. Let p be an analytic function defined on D with p() =  satisfying

 + βzp′(z) ≺  +Dz
 + Ez

, β = .

Then p(z) ≺ +Az
+Bz .

Proof Define the function q :D→C by

q(z) =
 +Az
 + Bz

, – ≤ B < A≤ .

Then q is convex in D with q() = . Further computation shows that

Q(z) = βzq′(z) =
β(A – B)z
( + Bz)

and Q is starlike in D. It follows from Lemma . that the subordination

 + βzp′(z) ≺  + βzq′(z)

implies p(z) ≺ q(z). In view of the above result, it is sufficient to prove

 +Dz
 + Ez

≺  + βzq′(z) =  + β
(A – B)z
( + Bz)

= h(z).
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Let w = �(z) = +Dz
+Ez . Then �–(w) = w–

D–Ew and

�–(h(z)) = β(A – B)z
D( + Bz) – E( + Bz) – βE(A – B)z

=
β(A – B)z

(D – E)( + Bz) + (B(D – E) – βE(A – B))z
.

Let z = eit , π ≤ t ≤ π . Thus

∣∣�–(h(eit))∣∣ ≥ |β|(A – B)
(D – E)( + B) + |(B(D – E) – βE(A – B))| ≥ 

for |β|(A – B) ≥ (D – E)( + B) + |(B(D – E) – Eβ(A – B))|. Hence q(D) ⊂ h(D), that is,
q(z) ≺ h(z), this completes the proof. �

It should be noted that Ali et al. [] made the assumption AB >  in order to prove the
result [, Lemma .], whereas in the following lemma this condition has been dropped.

Lemma . Assume that – ≤ B < A ≤ , – ≤ E < D ≤  and β(A – B) ≥ (D – E)( +
|AB|)+ |(A+B)(D–E)–Eβ(A–B)|. Let p be an analytic function defined onDwith p() = 
satisfying

 + β
zp′(z)
p(z)

≺  +Dz
 + Ez

, β = .

Then p(z) ≺ +Az
+Bz .

Proof As above, define the function q :D→C by

q(z) =
 +Az
 + Bz

, – ≤ B < A≤ .

Then q is convex in D with q() = . A computation shows that

Q(z) =
βzq′(z)
q(z)

=
β(A – B)z

( +Az)( + Bz)

and Q is starlike in D. It follows from Lemma . that the subordination

 + β
zp′(z)
p(z)

≺  + β
zq′(z)
q(z)

implies p(z) ≺ q(z). Now we need to prove

 +Dz
 + Ez

≺  + β
zq′(z)
q(z)

=  + β
(A – B)z
( + Bz)

= h(z).

Let w = �(z) = +Dz
+Ez . Then �–(w) = w–

D–Ew and

�–(h(z)) = β(A – B)z
(D – E)( +Az)( + Bz) – βE(A – B)z

=
β(A – B)z

(D – E)( +ABz) + ((A + B)(D – E) – βE(A – B))z
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/176
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Let z = eit , π ≤ t ≤ π . Thus

∣∣�–(h(eit))∣∣ ≥ |β|(A – B)
(D – E)( + |AB|) + |(A + B)(D – E) – βE(A – B)| ≥ 

for |β|(A – B) ≥ (D – E)( + |AB|) + |(A + B)(D – E) – Eβ(A – B)|. Hence q(D) ⊂ h(D), that
is, q(z) ≺ h(z), this completes the proof. �

Lemma. Assume that – ≤ B < A≤ , – ≤ E <D ≤  and |β|(A–B) ≥ (D–E)(+A)+
|A(D–E) –Eβ(A–B)|. Let p be an analytic function defined on D with p() =  satisfying

 + β
zp′(z)
p(z)

≺  +Dz
 + Ez

.

Then p(z) ≺ +Az
+Bz .

Proof Define the function q :D→C by

q(z) =
 +Az
 + Bz

, – ≤ B < A≤ .

Then q is convex in D with q() = . A computation shows that

Q(z) =
βzq′(z)
q(z)

=
β(A – B)z
( +Az)

and

zQ′(z)
Q(z)

=
 –Az
 +Az

.

As before, a computation shows Q is starlike in D. It follows from Lemma . that the
subordination

 + β
zp′(z)
p(z)

≺  + β
zq′(z)
q(z)

implies p(z) ≺ q(z). To prove result, it is enough to show that

 +Dz
 + Ez

≺  + β
zq′(z)
q(z)

=  + β
(A – B)z
( +Az)

= h(z).

The remaining part of the proof is similar to that of Lemma ., and therefore it is skipped
here. �

Remark . When β = , Lemma . reduces to [, Lemma .] due to Ali et al.
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