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Abstract
With the equivalent relationships between the G-generalized invexities and general
invexities on the hand, we present two characterizations for G-preinvexity; we also
discuss the relationships between different G-generalized invexities such as
G-preinvexity, strict G-preinvexity and semistrict G-preinvexity. Note that our results
are proved by applying the results from general invexities introduced in the literatures.
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1 Introduction
Recently, Antczak [, ] introduced the concept of the G-preinvexity, which included the
preinvexity [] and the r-preinvexity [] as special cases. Relation of this G-preinvexity to
preinvexity and some properties of this class of functions were studied in []. In another
recent paper, Luo and Wu [] introduced a new class of functions, named semistrictly
G-preinvex functions. The relationships between semistrictly G-preinvex functions and
G-preinvex functions were investigated under mild assumptions. Their results improved
and extended the existing ones in the literature. Also, the properties of semistrictly
G-preinvex functions were further considered by Peng in [].
In this note, we are interested in the relationships between three kinds of G-generalized

invexities. For this purpose, we firstly investigate the relation between the G-generalized
invexities and the corresponding general generalized invexities. Then we characterize
theseG-generalized invexities by applying thewell-known results from the preinvexity, the
strict preinvexity and the semistrict preinvexity. Moreover, we point out that our method
is different from the one used by Luo and Wu in []. The rest of this note is organized
as follows. In Section , we give some definitions and some preliminaries; moreover, we
establish the useful Lemma . Section  presents two characterizations for G-preinvex
functions and proves that, under certain conditions, the G-preinvexity is equivalent with
prequasi-invexity when an intermediate-point G-preinvexity is required. In Section , we
obtain relationships between differentG-generalized invexities. Section  gives some con-
clusions.

2 Definitions and preliminaries
In this section, we provide some definitions and some notations. Moreover, we establish
an important lemma.
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Definition  [] Let X ⊂R
n, η :Rn ×R

n →R
n. The set X is said to be invex at u ∈ X with

respect to η if for all x ∈ X such that

u + λη(x,u) ∈ X, ∀λ ∈ [, ].

X is said to be invex set with respect to η if X is invex at each u ∈ X.

Definition  [] Let X be a nonempty invex subset of Rn with respect to η. A function
f : X →R is said to be preinvex at u ∈ X with respect to η if

f
(
u + λη(x,u)

) ≤ λf (x) + ( – λ)f (u), ∀λ ∈ [, ],∀x ∈ X. ()

The function f is said to be preinvex on X with respect to η if f is preinvex at each u ∈ X
with respect to η; f is said to be strictly preinvex on X with respect to η if the inequality
() strictly holds for all x,u ∈ X such that x �= u; f is said to be semistrictly preinvex on X
with respect to η if the inequality () strictly holds for all x,u ∈ X such that f (x) �= f (u).

Definition  [, , ] LetX be a nonempty invex subset ofRn with respect to η. A function
f : X →R is said to be G-preinvex at u on X with respect to η if there exists a continuous
functionG :R →R such thatG : If (X)→R is a strictly increasing function on its domain,
and

f
(
u + λη(x,u)

) ≤ G–(λG(
f (x)

)
+ ( – λ)G

(
f (u)

))
, ∀λ ∈ [, ],∀x ∈ X. ()

The function f is said to beG-preinvex onX with respect to η if f isG-preinvex at each u ∈
X with respect to η; f is said to be strictlyG-preinvex onX with respect to η if the inequality
() strictly holds for all x,u ∈ X such that x �= u; f is said to be semistrictly G-preinvex on
X with respect to η if the inequality () strictly holds for all x,u ∈ X such that f (x) �= f (u).

From Definition , G is a strictly increasing function because G– must exist. Hence, let
G be a strictly increasing function throughout this note. Now we present a useful lemma.

Lemma  Let f : X → R. Suppose G : If (X) → R is a strictly increasing function on its
domain. Then

(i) f is G-preinvex on X with respect to η if and only if G(f ) is preinvex on X with
respect to η;

(ii) f is strictly G-preinvex on X with respect to η if and only if G(f ) is strictly preinvex
on X with respect to η;

(iii) f is semistrictly G-preinvex on X with respect to η if and only if G(f ) is semistrictly
preinvex on X with respect to η.

Proof (i) By the monotonicity of G, we know that the inequality () is equivalent to

G
(
f
(
u + λη(x,u)

)) ≤ λG
(
f (x)

)
+ ( – λ)G

(
f (u)

)
, ∀λ ∈ [, ],∀x ∈ X.

Therefore, by Definitions  and , f isG-preinvex on X with respect to η if and only ifG(f )
is preinvex on X with respect to η.
Similar to part (i), we can prove part (ii) and (iii). �
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3 Semicontinuity and G-preinvexity
In this section, two conditions that determine the G-preinvexity of a function via an
intermediate-point G-preinvexity check under conditions of upper and lower semi-
continuity, respectively, are presented; moreover, equivalent relationship between G-
preinvexity and prequasi-invexity is proved under the intermediate-point G-preinvexity
assumption. Here, we need the following Condition C, which was introduced by Mohan
and Neogy in []. The function η :Rn ×R

n →R
n satisfies Condition C if

η
(
y, y + λη(x, y)

)
= –λη(x, y), ()

η
(
x, y + λη(x, y)

)
= ( – λ)η(x, y) ()

hold for any x, y ∈ X and for any λ ∈ [, ].
The upper and lower semicontinuity of a real function f is defined as follows.

Definition  [] Let X be a nonempty subset of Rn. A function f : X → R is said to be
upper semicontinuous at x̄ ∈ X if, for every ε > , there exists a δ >  such that for all x ∈ X,
if ‖x – x̄‖ < δ, then

f (x) < f (x̄) + ε.

If –f is upper semicontinuous at x̄ ∈ X, then f is said to be lower semicontinuous at x̄ ∈ X.

We also need the following Lemma , which is Lemma . in [].

Lemma  Let X be a nonempty, open and invex set inRn with respect to η :Rn ×R
n →R

n,
where η satisfies Condition C. Assume that f : X →R satisfies

f
(
y + η(x, y)

) ≤ f (x), ∀x, y ∈ X.

Moreover, there exists an α ∈ (, ) such that for every x, y ∈ X the inequality

f
(
y + αη(x, y)

) ≤ αf (x) + ( – α)f (y) ()

holds. Then the set A := {λ ∈ [, ]|f (y + λη(x, y))≤ λf (x) + ( – λ)f (y),∀x, y ∈ X} is dense in
[, ].

Under semicontinuity conditions, Yang proved from Lemma  that judging a function
to be preinvex or not can be reduced to checking intermediate-point preinvexity for the
function; see the following Lemmas  and , which are taken from Theorems . and .
in [], respectively.

Lemma  Let X be a nonempty open invex set in R
n with respect to η : Rn × R

n → R
n,

where η satisfies ConditionC.Assume that the function f : X →R is upper semicontinuous
on X and satisfies

f
(
y + η(x, y)

) ≤ f (x), ∀x, y ∈ X.

http://www.journalofinequalitiesandapplications.com/content/2013/1/169
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Then f is a preinvex function on X if and only if there exists an α ∈ (, ) such that

f
(
y + αη(x, y)

) ≤ αf (x) + ( – α)f (y), ∀x, y ∈ X.

Lemma  Let X be a nonempty invex set in R
n with respect to η : Rn × R

n → R
n, where

η satisfies Condition C. Assume that the function f : X → R is lower semicontinuous on X
and satisfies

f
(
y + η(x, y)

) ≤ f (x), ∀x, y ∈ X.

Then f is a preinvex function on X if and only if for any x, y ∈ X, there exists an α ∈ (, )
such that

f
(
y + αη(x, y)

) ≤ αf (x) + ( – α)f (y).

With Lemmas - on hand, we can prove the following Theorems -, respectively.

Theorem  Let X be a nonempty invex set in R
n with respect to η :Rn ×R

n → R
n, where

η satisfies Condition C. Assume that f : X →R satisfies

f
(
y + η(x, y)

) ≤ f (x), ∀x, y ∈ X.

Suppose the function G is increasing on If (X).Moreover, there exists an α ∈ (, ) such that
for every x, y ∈ X the inequality

G
(
f
(
y + αη(x, y)

)) ≤ αG
(
f (x)

)
+ ( – α)G

(
f (y)

)
()

holds. Then the set A := {λ ∈ [, ]|G(f (y + λη(x, y))) ≤ λG(f (x)) + ( – λ)G(f (y)),∀x, y ∈ X}
is dense in [, ].

Proof From the assumption of this theorem, we have

G
(
f
(
y + η(x, y)

)) ≤ G
(
f (x)

)
, ∀x, y ∈ X.

Hence, we can deduce the result from Lemma . �

Theorem  Let X be a nonempty open invex set in R
n with respect to η : Rn × R

n → R
n,

where η satisfies Condition C. Assume that a function f : X → R is upper semicontinuous
on X and satisfies

f
(
y + η(x, y)

) ≤ f (x), ∀x, y ∈ X.

Moreover, the function G is both continuous and increasing on If (X). Then f is G-preinvex
on X if and only if there exists an α ∈ (, ) such that

G
(
f
(
y + αη(x, y)

)) ≤ αG
(
f (x)

)
+ ( – α)G

(
f (y)

)
, ∀x, y ∈ X.

http://www.journalofinequalitiesandapplications.com/content/2013/1/169
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Proof By assumption, we know that the function G(f ) is upper semicontinuous on X and
it satisfies

G
(
f
(
y + η(x, y)

)) ≤ G
(
f (x)

)
, ∀x, y ∈ X.

Replacing f by G(f ) in Lemma  and combining Lemma (i), we obtain the desired result.
�

If f is continuous on X, then the above Theorem  is Theorem  in []. However, our
proof is simpler than the proof of Theorem  in [], since we apply the result pertaining
to the preinvexity as defined in Definition .

Theorem  Let X be a nonempty invex set in R
n with respect to η :Rn ×R

n →R
n, where

η satisfies Condition C. Assume that the function f : X → R is lower semicontinuous on X
and satisfies

f
(
y + η(x, y)

) ≤ f (x), ∀x, y ∈ X.

Moreover, the function G is both continuous and increasing on If (X). Then f is G-preinvex
on X if and only if for any x, y ∈ X, there exists an α ∈ (, ) such that

G
(
f
(
y + αη(x, y)

)) ≤ αG
(
f (x)

)
+ ( – α)G

(
f (y)

)
.

Proof By the assumption of the theorem, it is easy to check that

G
(
f
(
y + η(x, y)

)) ≤ G
(
f (x)

)
, ∀x, y ∈ X.

Moreover, G(f ) is lower semicontinuous on X. Now, with Lemma (i) and Lemma , we
derive the desired result. �

The above Theorems  and  illustrate that, to justify G-preinvexity of a function, it is
sufficient to check intermediate-point G-preinvexity for the function. Our development
extends the results of general preinvexity to the G-preinvexity. Note that Theorems -
generalize Lemmas - from the preinvex case to the G-preinvex situation, respectively.
On the relationship between the preinvexity and prequasi-invexity, where the prequasi-

invexity concept is presented in Definition , Yang et al. obtained an interesting result (see
Lemma ).

Definition  Let X be a nonempty invex subset of Rn with respect to η. A function f :
X →R is said to be prequasi-invex on X if

f
(
y + λη(x, y)

) ≤ max
{
f (x), f (y)

}
, ∀λ ∈ [, ],∀x, y ∈ X.

Remark  If the function G is strictly increasing on If (X), then f is prequasi-invex on X
if and only if Gf (f ) is prequasi-invex on X.

Lemma  [] Let X be a nonempty invex set inR
n with respect to η :Rn ×R

n →R
n,where

η satisfies Condition C. Then a function f : X → R is preinvex on X if and only if it is a

http://www.journalofinequalitiesandapplications.com/content/2013/1/169


Liu et al. Journal of Inequalities and Applications 2013, 2013:169 Page 6 of 10
http://www.journalofinequalitiesandapplications.com/content/2013/1/169

prequasi-invex function on X and there exists an α ∈ (, ) such that

f
(
y + αη(x, y)

) ≤ αf (x) + ( – α)f (y), ∀x, y ∈ X.

Next, we extend the result obtained by Yang et al. to the G-preinvex situation in the fol-
lowing theorem, which reveals that, under an intermediate-point G-preinvexity assump-
tion, the G-preinvexity is equivalent with prequasi-invexity.

Theorem  Let X be a nonempty invex set in R
n with respect to η : Rn × R

n → R
n and

f : X → R, where η satisfies Condition C. Suppose that G is a strictly increasing function
on If (X). Then f is a G-preinvex function on X if and only if it is a prequasi-invex function
on X and there exists an α ∈ (, ) such that

G
(
f
(
y + αη(x, y)

)) ≤ αG
(
f (x)

)
+ ( – α)G

(
f (y)

)
, ∀x, y ∈ X.

Proof By Remark , one obtains that f is a prequasi-invex function on X if and only ifG(f )
is a prequasi-invex function on X. Thus, we have the desired result from Lemma (i) and
Lemma . �

4 Relationships among G-generalized preinvexities
In this section, we discuss the relationships between G-invexities under Condition C. To
this end, we will use the following results proved in the literatures.

Theorem  [, Theorem .] Let X be nonempty invex set in R
n with respect to η :Rn ×

R
n →R

n,where η satisfiesConditionC. Suppose function f : X →R is semistrictly preinvex
on X with respect to η. If there exists a λ ∈ (, ) such that

f
(
y + λη(x, y)

) ≤ λf (x) + ( – λ)f (y), ∀x, y ∈ X,

then f is a preinvex function on X with respect to the same η.

Theorem  [, Theorem .] Let X be nonempty invex set in R
n with respect to η :Rn ×

R
n → R

n, where η satisfies Condition C. Suppose that f : X → R is a preinvex function on
X with respect to η. For each pair x, y ∈ X, x �= y, if there exists a λ ∈ (, ) such that

f
(
y + λη(x, y)

)
< λf (x) + ( – λ)f (y), ∀x, y ∈ X,

then f is a strictly preinvex function on X with respect to the same η.

Theorem  [, Theorem .] Let X be a nonempty invex set in R
n with respect to η :Rn ×

R
n → R

n, where η satisfies Condition C. Assume that f : X → R is a preinvex function on
X with respect to η. If there exists a λ ∈ (, ) such that for every x, y ∈ X, f (x) �= f (y), the
inequalities

f
(
y + λη(x, y)

)
< λf (x) + ( – λ)f (y),

f
(
y + ( – α)η(x, y)

)
< αf (y) + ( – α)f (x)

hold, then f is a semistrictly preinvex function on X with respect to the same η.

http://www.journalofinequalitiesandapplications.com/content/2013/1/169
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Theorem  Let X be a nonempty invex set in R
n with respect to η :Rn ×R

n →R
n, where

η satisfies Condition C. Suppose that f : X → R is a semistrictly G-preinvex function on X
with respect to η. If there exists a λ ∈ (, ) such that

G
(
f
(
y + λη(x, y)

)) ≤ λG
(
f (x)

)
+ ( – λ)G

(
f (y)

)
, ∀x, y ∈ X, ()

then f is a G-preinvex function on X with respect to the same η.

Proof Since f is a semistrictly G-preinvex function on X with respect to η. Then, by
Lemma (iii), G(f ) is a semistrictly preinvex function on X with respect to η. Replacing
f by G(f ) in Theorem , we deduce that G(f ) is a preinvex function on X with respect
to η. Again, from Lemma (i), f is a G-preinvex function on X with respect to the same η.

�

Recall that Theorem  was also presented in []. But our method of proof is different
from []. Note that we establish the result by applying the above Theorem , which is an
existed result for semistrictly preinvex function.

Theorem  Let X be a nonempty invex set in R
n with respect to η :Rn ×R

n →R
n, where

η satisfies Condition C. Suppose that f : X →R is a G-preinvex function on X with respect
to η. For each pair x, y ∈ X, x �= y, if there exists a λ ∈ (, ) such that

G
(
f
(
y + λη(x, y)

))
< λG

(
f (x)

)
+ ( – λ)G

(
f (y)

)
,

then f is a strictly G-preinvex function on X with respect to the same η.

Proof Note that f is G-preinvex on X with respect to η. By Lemma (i), G(f ) is preinvex
on X with respect to η. Now, we deduce from Theorem  that G(f ) is strictly preinvex on
X with respect to η. Therefore, one obtains from Lemma (ii) that f is strictly G-preinvex
on X with respect to the same η. �

Lemma  Let X be a nonempty invex set in R
n with respect to η :Rn ×R

n →R
n, where η

satisfies Condition C. Suppose function f : X → R is G-preinvex on X with respect to η. If
there exists an α ∈ (, ) such that for every x, y ∈ X, f (x) �= f (y),

G
(
f
(
y + αη(x, y)

))
< αG

(
f (x)

)
+ ( – α)G

(
f (y)

)
. ()

Then for every x, y ∈ X, f (x) �= f (y)

G
(
f
(
y + ( – α)η(x, y)

))
< αG

(
f (y)

)
+ ( – α)G

(
f (x)

)
. ()

Proof (i) If α = 
 , the inequality () is the inequality ().

(ii) If α < 
 , then α <  – α < . Denote by u = , u = α and β = –α

–α
, then  – α =

βu + ( – β)u.

http://www.journalofinequalitiesandapplications.com/content/2013/1/169
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From Condition C, we have

y + uη(x, y) + βη
(
y + uη(x, y), y + uη(x, y)

)
= y + uη(x, y) + βη

(
y + uη(x, y), y + uη(x, y) – (u – u)η(x, y)

)

= y + uη(x, y) + βη

(
y + uη(x, y), y + uη(x, y) +

u – u
u

η
(
y, y + uη(x, y)

))

= y + uη(x, y) – β
u – u
u

η
(
y, y + uη(x, y)

)

= y +
(
u + β(u – u)

)
η(x, y) = y + ( – α)η(x, y).

Note that the identity () in Condition C is used in the second, third and fourth equalities.
Hence, from () and the G-preinvexity of f , we obtain

G
(
f
(
y + ( – α)η(x, y)

))
=G

(
f
(
y + uη(x, y) + βη

(
y + uη(x, y), y + uη(x, y)

)))
≤ βG

(
f
(
y + uη(x, y)

))
+ ( – β)G

(
f
(
y + uη(x, y)

))
< β

(
uG

(
f (x)

)
+ ( – u)G

(
f (y)

))
+ ( – β)

(
uG

(
f (x)

)
+ ( – u)G

(
f (y)

))
= ( – α)G

(
f (x)

)
+ αG

(
f (y)

)
.

(iii) If α > 
 , then  <  – α < α. Denote by u = α, u =  and β = –α

α
, then  – α =

βu + ( – β)u. Similar to (ii), we can prove that the inequality () still holds. �

Theorem  Let X be a nonempty invex set inR
n with respect to η :Rn ×R

n →R
n, where

η satisfies Condition C. Assume that f : X →R is a G-preinvex function on X with respect
to η. If there exists a λ ∈ (, ) such that for every x, y ∈ X, f (x) �= f (y), the inequality

G
(
f
(
y + λη(x, y)

))
< λG

(
f (x)

)
+ ( – λ)G

(
f (y)

)
()

holds, then f is a semistrictly G-preinvex function on X with respect to the same η.

Proof By Lemma (iii), it is sufficient to prove that G(f ) is semistrictly preinvex on X with
respect to η. From Lemma  and the assumption of Theorem , we know that the as-
sumption of Theorem  holds. Using Theorem  and Lemma (iii), we can deduce the
result. �

Theorem  Let X be a nonempty invex set in R
n with respect to η : X ×X → R

n, where η

satisfies Condition C; suppose the function f : X →R is lower semicontinuous and satisfies

f
(
y + η(x, y)

) ≤ f (x)

for any x, y ∈ X. Moreover, the function G is both continuous and increasing on If (X). If
there exists an α ∈ (, ) such that for every x, y ∈ X, f (x) �= f (y), the inequality

G
(
f
(
y + αη(x, y)

))
< αG

(
f (x)

)
+ ( – α)G

(
f (y)

)
()

holds, then f is both G-preinvex and semistrictly G-preinvex on X .

http://www.journalofinequalitiesandapplications.com/content/2013/1/169
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Proof Firstly, we shall prove that f is a G-preinvex function on X. Recalling Theorem ,
we need to show that there exists a λ ∈ (, ) such that for every x, y ∈ X the inequality ()
holds. Assume, by a contradiction, there exist x, y ∈ X such that

G
(
f
(
y + λη(x, y)

))
> λG

(
f (x)

)
+ ( – λ)G

(
f (y)

)
, ∀λ ∈ (, ). ()

Since G is both continuous and increasing, then G(f ) is lower semicontinuous and sat-
isfies

G
(
f
(
y + η(x, y)

)) ≤ G
(
f (x)

)
.

We need to consider the following cases.
Case (i) f (x) �= f (y). According to (), we must have

G
(
f
(
y + αη(x, y)

))
< αG

(
f (x)

)
+ ( – α)G

(
f (y)

)
,

which contradicts to ().
Case (ii) f (x) = f (y). Since α ∈ (, ), then α – α =  – (α – ) ∈ (, ). Let λ = α – α

and λ = α in (), respectively. Then we have

G
(
f
(
y +

(
α – α)η(x, y))) >G

(
f (x)

)
, ()

G
(
f
(
y + αη(x, y)

))
>G

(
f (x)

)
. ()

From (), we obtain G(f (y + αη(x, y))) �= G(f (x)). Therefore, according to (), we obtain
from Condition C the following inequality:

G
(
f
(
y +

(
α – α)η(x, y)))

=G
(
f
(
y + αη(x, y) + αη

(
x, y + αη(x, y)

)))
< ( – α)G

(
f
(
y + αη(x, y)

))
+ αG

(
f (x)

)
< ( – α)

(
( – α)G

(
f (y)

)
+ αG

(
f (x)

))
+ αG

(
f (x)

)
=

[
( – α)( – α) + ( – α)α + α

]
G

(
f (x)

)
=G

(
f (x)

)
,

which contradicts to (). Therefore, from Theorem , f is a G-preinvex function on X
with respect to η.
Further, from the above Theorem , f is also a semistrictly G-preinvex function on X

with respect to η. �

5 Conclusions
In this note, our purpose is to investigate the G-generalized invexities introduced by re-
searchers in the past few years. To apply the existed results from the general invexities
to deal with the G-generalized ones, we have established the useful Lemma , which dis-
closes the relationships between G-generalized invexities and the general invexities. With
this important lemma on hand, we have extended the acknowledged results pertaining to
the general invexities to the corresponding G-generalized invexities. More exactly, some
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characterizations for G-preinvex functions have been deduced; when an intermediate-
point G-preinvexity is satisfied, two equivalent relationships between G-preinvexity and
prequasi-invexity have been established (see Theorems  and ). Using the existed results
(Theorems ,  and ) relating to the general invexities, we deduce the similar results for
G-generalized invexities; see Theorems ,  and . Note that Theorems ,  and  are
also presented in []. However, our method is different from the one used by Luo and
Wu in []. Here, we prove the results by applying the well-known results of the general
invexities presented in the literatures.
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