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Abstract
Recently, Katugampola (Appl. Math. Comput. 218:860-865, 2011) studied a special
case of the Erdélyi-Kober generalized fractional derivative. This special case
generalized the well-known Riemann-Liouville and the Hadamard fractional integrals
into a single form. Katugampola denoted this special case by the operator ρ

0D
α
x . Some

properties and examples for this fractional derivative operator was given. In this
paper, we present some additional properties for this operator defined, this time, in
the complex plane. In particular, we express this fractional derivative operator in
terms of the classical Riemann-Liouville fractional derivative operator. A generalized
Leibniz rule is obtained.
MSC: 26A33; 33C45
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1 Introduction
One of the most frequently encountered operators of fractional derivatives, that is, cal-
culus of integrals and derivatives of an arbitrary real or complex order is provided by the
Riemann-Liouville operator [, ] denoted Dα

z and defined by

Dα
z z

pf (z) :=

⎧⎨
⎩


�(–α)

∫ z
 f (ζ )ζ

p(z – ζ )–α– dζ if Re(α) < ,
dm
dzm D

α–m
z zpf (z) ifm –  ≤ Re(α) <m

()

(m ∈ N) which is valid for Re(p) > –, z �=  on a simply connected region R containing
the origin. Note that f (z) must be analytic inR and specially at the origin.
Many other representations for fractional derivative operator exists. For example, using

a single-loop contour of integration, we can obtain a less restrictive definition for the frac-
tional derivative operatorDα

z which holds forRe(p) > – and α not a negative integer. This
representation has been widely used in many interesting papers [–]. The less restrictive
representation for the fractional derivative operator in the complex plane is the one in-
troduced by Lavoie, Osler and Tremblay [] in  based on Pochhammer’s contour of
integration [–]. This representation is valid when α is not a negative integer and p is
not an integer.
Many interesting applications of Pochhammer’s contour based definition for fractional

derivatives can be found in [–].
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Another interesting and largely studied fractional derivative operator is the Erdélyi-
Kober operator [, ] defined as follows:

Dα
+;ρ;ηf (x) :=

⎧⎨
⎩

ρx–ρ(–α+η)

�(–α)
∫ x


f (t)tρη+ρ–

(xρ–tρ )α+ dt if Re(α) < ,

x–ρη( 
ρxρ–

d
dx )

mxρ(m+η)Dα–m
+;ρ;η–αf (x) ifm –  ≤ Re(α) <m,

()

where η ∈ R and ρ > . This operator has been introduced to solve some integral equa-
tions of particular type. For many interesting applications of fractional calculus operators,
the reader is referred to the book of Kilbas et al. [].
Recently, Katugampola in [] studied a special case of the Erdélyi-Kober generalized

fractional derivative operator which contains as special cases the Riemann-Liouville frac-
tional operator () and the Hadamard fractional operator []. In particular, the author
considered the fractional derivative operator ρ

Dα
x defined by

ρ
D

α
x f (x) :=

⎧⎨
⎩

(ρ+)α+
�(–α)

∫ x


f (t)tρ
(xρ+–tρ+)α+ dt if Re(α) < ,

(x–ρ d
dx )

mρ
Dα–m

x f (x) ifm –  ≤ Re(α) <m
()

(m ∈N) which is valid for ρ ∈R with ρ > –.
It is easy to verify that they are related by the following relation:

ρ
D

α
x f (x) = (ρ + )αx–(ρ+)αDα

+;ρ+;f (x). ()

Now, substituting ρ =  in () gives the standard Riemann-Liouville derivative (). More-
over, considering functions belonging to a particular space of function, namely Xp

c (a,b)
(c ∈R,  ≤ p≤ ∞) (see, []) and taking the limit when ρ → –+ in (), the author in []
obtained, with the help of the L’Hospital’s rule, the following relationship:

lim
ρ→–+

(ρ + )α+

�(–α)

∫ x



f (t)tρ

(xρ+ – tρ+)α+
dt

=


�(–α)

∫ x


lim

ρ→–+
f (t)tρ

(
xρ+ – tρ+

ρ + 

)–α–

dt

=


�(–α)

∫ x



(
log

x
t

)–α– f (t)
t

dt. ()

This last relation is the well-known and extensively studied Hadamard fractional integral
[–].
Applying the generalized fractional derivative operator defined in () to the function

f (x) = xν , ν ∈R in the case Re(α) <  yields the following formula:

ρ
D

α
x x

ν =
(ρ + )α+

�(–α)

∫ x


tρ+ν

(
xρ+ – tρ+

)–α– dt

=
(ρ + )α+

�(–α)

∫ 



xν–α(ρ+)u
ν

ρ+ ( – u)–α–

ρ + 
du

=
(ρ + )αxν–α(ρ+)

�(–α)
B
(

ν

ρ + 
+ ,–α

)
=
(ρ + )α�( ν

ρ+ + )
�( ν

ρ+ +  – α)
xν–α(ρ+). ()
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The last relation is valid for ν
ρ+ > –. Note that we used the following change of variables

u = tρ+
xρ+ in () and that B(x, y) holds for the familiar Beta function [, p., Eq. .]. Re-

placing ρ by  in () gives the classical fractional integral formula for the function xν , that
is,

Dα
x x

ν =
�( + ν)

�( + ν – α)
xν–α ()

withRe(α) <  and ν > –. In this paper, we consider the fractional derivative operator ρ
Dα

z

defined in the complex plane. In Section , we obtain two representations for this frac-
tional derivative operator in terms of the classical Riemann-Liouville fractional operator.
The second representation is obtained by making use of a new transformation formula
for the fractional derivative recently published by Tremblay et al. []. Some special cases
are computed. Finally, in Section , we derive a generalized Leibniz rule for the fractional
derivative operator ρ

Dα
z . Some applications of this Leibniz rule are also obtained.

2 Representations of the generalized fractional derivative operator in terms of
the classical Riemann-Liouville fractional derivative operator

The purpose of this section is to develop two representations of the generalized frac-
tional derivative operator ρ

Dα
z in terms of the commonRiemann-Liouville fractional oper-

ator (). These representations are found by making use of a new transformation formula
for fractional derivatives published recently by the authors []. Some examples of possible
new relationships are also given.
Note that for the remainder of this paper, (λ)n will denote the Pochhammer’s symbol

defined by

(λ)n :=
�(λ + n)

�(λ)
; (λ) = . ()

Moreover, we adopt the following notation to denote the generalized hypergeometric
function

pFq

⎡
⎢⎣
a, a, . . . , ap;

z
b, b, . . . , bq;

⎤
⎥⎦ =

∞∑
k=

(a)k(a)k · · · (ap)kzk
(b)k(b)k · · · (bq)kk! . ()

The first representation for the fractional derivative operator ρ
Dα

z is contained in the
next theorem.

Theorem 
(i) LetR be a simply connected region containing the origin.
(ii) Let f (z) be analytic inR. Then, for α and ρ ∈C with Re(ρ) > –, the following

relation holds true

ρ
D

α
z f (z) =

(ρ + )α+

�(–α)
z–(ρ+)(α+)

∞∑
n=

(α + )n
n!

z–n(ρ+)

× �
(
(ρ + )n + ρ + 

)
D–(ρ+)n–ρ–

z f (w – z)
∣∣∣∣
w=z

. ()
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Proof Consider the integral representation of the operator ρ
Dα

z in the complex plane with
Re(α) < :

ρ
D

α
z f (z) =

(ρ + )α+

�(–α)

∫ z



f (t)tρ

(zρ+ – tρ+)α+
dt. ()

Making the following change of variables t = z – ξ (dt = –dξ ), we have

ρ
D

α
z f (z) = –

(ρ + )α+

�(–α)

∫ 

z

f (z – ξ )(z – ξ )ρ

(zρ+ – (z – ξ )ρ+)α+
dξ

=
(ρ + )α+

�(–α)
z–(ρ+)(α+)

∫ z



f (z – ξ )(z – ξ )ρ

( – ( z–ξ

z )ρ+)α+
dξ

=
(ρ + )α+�( + ρ)

�(–α)
z–(ρ+)(α+)

×D–ρ–
z

(
 –

(
w – z
w

)ρ+)–α–

f (w – z)
∣∣∣
w=z

. ()

Note that wemust havew → z in the right side of () after the evaluation of the fractional
derivative. So, the point w must be near the point z. Using this fact, we can expand the
expression ( – (w–zw )ρ+)–α– in power series. We thus have

ρ
D

α
z f (z) =

(ρ + )α+

�(–α)
z–(ρ+)(α+)

∫ z



∞∑
n=

(α + )n
n!

(
z – ξ

z

)(ρ+)n

f (z – ξ )(z – ξ )ρ dξ

=
(ρ + )α+

�(–α)
z–(ρ+)(α+)

∞∑
n=

(α + )n
n!

z–n(ρ+)
∫ z


f (z – ξ )(z – ξ )(ρ+)n+ρ dξ . ()

Rewriting the integral in () in terms of the Riemann-Liouville fractional derivative op-
erator yields the desired result. �

Corollary  Substituting ρ =  in Theorem , we obtain

Dα
z f (z) =

z–(α+)

�(–α)

∞∑
n=

(α + )nz–nD–n–
z f (w – z)

∣∣∣∣
w=z

. ()

Example  Let f (z) = (– z)–γ in Theorem .We obtain for the l.h.s. of () by making use
of the power series expansion of ( – z)–γ

ρ
D

α
z ( – z)–γ =

∞∑
k=

(γ )k
k!

ρ
D

α
z z

k = (ρ + )αz–α(ρ+)
∞∑
k=

(γ )k
k!

�( k
ρ+ + )

�( k
ρ+ +  – α)

zk . ()

For the fractional derivative operator involved in the r.h.s. of (), we have

D–(ρ+)n–ρ–
z

(
 – (w – z)

)–γ ∣∣
w=z

=D–(ρ+)n–ρ–
z ( –w)–γ

(
 –

(
z

w – 

))–γ ∣∣∣
w=z
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= ( – z)–γD–(ρ+)n–ρ–
z

∞∑
k=

(γ )k
k!

zk

(w – )k

∣∣∣∣
w=z

= ( – z)–γ

∞∑
k=

(γ )k
k!(z – )k

D–(ρ+)n–ρ–
z zk

= ( – z)–γ z(ρ+)n+ρ+
∞∑
k=

(γ )k�( + k)
�( + k + (ρ + )n + ρ)k!

(
z

z – 

)k

=
( – z)–γ z(ρ+)n+ρ+

�( + (ρ + )n + ρ) 
F

⎡
⎢⎣

γ , ;
z

z–
 + (ρ + )n + ρ;

⎤
⎥⎦ . ()

Combining () and () in (), we obtain after some simple calculations

∞∑
k=

(γ )k�( k
ρ+ + )

�( k
ρ+ +  – α)

zk

k!

=
( – z)–γ

�(–α)

∞∑
n=

(ρ + )(α + )n
n!((ρ + )n + ρ + ) 

F

⎡
⎢⎣

γ , ;
z

z–
 + (ρ + )n + ρ;

⎤
⎥⎦ , ()

where F
[
a, b;

z
c;

]
denotes the Gauss hypergeometric function [].

Moreover, setting ρ =  in () gives the following relationship involving the Gauss hy-
pergeometric function:

F

⎡
⎢⎣

γ , ;
z

 – α;

⎤
⎥⎦ =

�( – α)( – z)–γ

�(–α)

∞∑
n=

(α + )n
(n + )! 

F

⎡
⎢⎣

γ , ;
z

z–
 + n;

⎤
⎥⎦ . ()

Recently, Tremblay et al. [] discovered a new transformation formula for the fractional
derivatives. Many interesting applications of this formula has also been given. Especially,
they proved the next result.

Theorem  Let f (z) be an analytic function in the simply connected region R containing
the origin. For Re(μ) > –, we have

Dα
z z

μf (z) =
�( +μ)
�(–α)

D–μ–
z (z)–α–f (w – z)

∣∣∣
w=z

. ()

Note that we must have w→ z in the right side of () after the evaluation of the fractional
derivative since the point w must be near the point z.

With the help of this new result, we can easily obtain the next theorem.

Theorem 
(i) LetR be a simply connected region containing the origin.

http://www.journalofinequalitiesandapplications.com/content/2013/1/167
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(ii) Let f (z) be analytic inR. Then, for α and ρ ∈C with Re(ρ) > –, the following
relation holds true

ρ
D

α
z f (z) =

(ρ + )α+

�(–α)
z–(ρ+)(α+)

∞∑
n=

(α + )n
n!

z–n(ρ+)D–
z z(ρ+)n+ρ f (z). ()

Proof Applying Theorem  to Theorem , the result follows easily. �

Corollary  Substituting ρ =  in the Theorem , we obtain

Dα
z f (z) =

z–(α+)

�(–α)

∞∑
n=

(α + )n
n!

z–nD–
z znf (z). ()

Example  Putting f (z) = ez in Theorem  gives for the l.h.s. of ()

ρ
D

α
z e

z =
∞∑
k=

ρ
Dα

z zk

k!
= (ρ + )αz–α(ρ+)

∞∑
k=

�( k
ρ+ + )

�( k
ρ+ +  – α)

zk

k!
. ()

Now, for the r.h.s. of (), the computation of the fractional derivative operator applied to
the exponential function yields

D–
z z(ρ+)n+ρez =

∞∑
k=

D–
z z(ρ+)n+ρ+k

k!
= z(ρ+)n+ρ+

∞∑
k=

zk

( + (ρ + )n + ρ + k)k!
()

Replacing () and () in (), we arrive, after some simplifications, to the next formula:

∞∑
k=

�( k
ρ+ + )zk

�( k
ρ+ +  – α)k!

=
(ρ + )
�(–α)

∞∑
n=

(α + )n
n!

∞∑
k=

zk

( + (ρ + )n + ρ + k)k!
. ()

Note that by making use of Theorem , we also have that

∞∑
k=

�( k
ρ+ + )zk

�( k
ρ+ +  – α)k!

=
(ρ + )
�(–α)

z–(ρ+)
∞∑
n=

(α + )n
n!

z–n(ρ+)

× �
(
(ρ + )n + ρ + 

)
ezD–(ρ+)n–ρ–

z e–z

=
(ρ + )ez

�(–α)

∞∑
n=

(α + )n
( + (ρ + )n + ρ)n!

∞∑
k=

()k(–z)k

( + (ρ + )n + ρ)kk!
.

3 A Leibniz rule for the fractional derivative operator ρ
0D

α
z

This section is devoted to obtain a generalized Leibniz-type rule for the fractional deriva-
tive operator ρ

Dα
z . Two special cases are also computed. This is done by using the first

representation () and the generalized Leibniz rule for fractional derivatives obtained by
Osler [] and given in the next theorem.

Theorem 
(i) LetR be a simply connected region containing the origin.

http://www.journalofinequalitiesandapplications.com/content/2013/1/167
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(ii) Let f (z) and g(z) be analytic inR. Then, for  < a ≤ , α ∈C with α not a negative
integer, γ ∈ C, the following Leibniz rule holds true

Dα
z f (z)g(z) = a

∞∑
n=–∞

(
α

γ + an

)
Dα–γ–an

z f (z)Dγ+an
z g(z). ()

We are now able to establish the generalized Leibniz rule for the operator ρ
Dα

z .

Theorem 
(i) LetR be a simply connected region containing the origin.
(ii) Let f (z) and g(z) be analytic inR. Then, for  < a ≤ , α ∈C with α not a negative

integer, γ ∈ C, Re(ρ) > – and for all k ∈N, (– – ρ – (ρ + )k) not a negative
integer, the following Leibniz rule

ρ
D

α
z f (z)g(z) = a

(ρ + )α+

�(–α)
z–(ρ+)(α+)

×
∞∑
k=

(α + )k�( + ρ + (ρ + )k)
k!z(ρ+)k

∞∑
n=–∞

(
– – ρ – (ρ + )k

γ + an

)

×D––ρ–(ρ+)k–γ–an
z f (w – z)

∣∣∣∣
w=z

Dγ+an
z g(w – z)

∣∣∣∣
w=z

()

holds true.

Proof We know fromTheorem  that the fractional derivative operator ρ
Dα

z applied to the
product of the functions f (z)g(z) can be written in the following form:

ρ
D

α
z f (z)g(z) =

(ρ + )α+

�(–α)
z–(ρ+)(α+)

∞∑
n=

(α + )n
n!

z–n(ρ+)

× �
(
(ρ + )n + ρ + 

)
D–(ρ+)n–ρ–

z f (w – z)g(w – z)
∣∣∣∣
w=z

, ()

where w → z in the right side of () after the evaluation of the fractional derivative since
the point w must be near the point z. Applying Theorem  to the r.h.s. of () gives the
desired result. �

We end this paper by computing two special cases of Theorem . Note that calculations
have been donewith the help of standard formulas for fractional derivative operator acting
on common functions (see [, ]).

Example  Setting f (z) =  and g(z) = ez in Theorem  gives after some simple calcula-
tions:

∞∑
j=

�( j
ρ+ + )zj

�( j
ρ+ +  – α)j!

= a
(ρ + )ez

�(–α)

∞∑
k=

(α + )k�( + ρ + (ρ + )k)
k!

×
∞∑

n=–∞

(––ρ–(ρ+)k
γ+an

)

F

[ ;
–z

–γ–an;

]

�( + ρ + (ρ + )k + γ + an)�( – γ – an)
. ()
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Example  If we put f (z) = ( – z)–μ and g(z) = ( – z)–ν in Theorem , we obtain, after
simplifications, the following relation:

∞∑
j=

(μ + ν)j�( j
ρ+ + )zj

�( j
ρ+ +  – α)j!

= a
(ρ + )( – z)–μ–ν

�(–α)

∞∑
k=

(α + )k�( + ρ + (ρ + )k)
k!

∞∑
n=–∞

(
– – ρ – (ρ + )k

γ + an

)

×
F

[
μ, ;

z
z–

+ρ+(ρ+)k+γ+an;

]
F

[
ν, ;

z
z–

–γ–an;

]

�( + ρ + (ρ + )k + γ + an)�( – γ – an)
. ()
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