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Abstract
In this paper, we introduce an iterative method for finding a common element of the
set of fixed points of nonexpansive mappings, the set of solutions of a finite family of
variational inclusions with set-valued maximal monotone mappings and inverse
strongly monotone mappings, and the set of solutions of an equilibrium problem in
Hilbert spaces. Furthermore, using our new iterative scheme, under suitable
conditions, we prove some strong convergence theorems for approximating these
common elements. The results presented in the paper improve and extend many
recent important results.
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1 Introduction
LetH be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let C be a nonempty closed convex subset of H , and let F be a bifunction of
C×C intoRwhich is the set of real numbers. The equilibrium problem for F : C×C →R

is to find x ∈ C such that

F(x, y) ≥ , ∀y ∈ C. (.)

The set of solutions of (.) is denoted by EP(F). Recently, Combettes and Hirstoaga []
introduced an iterative scheme of finding the best approximation to the initial data when
EP(F) was nonempty and proved a strong convergence theorem. Let A : C →H be a non-
linear mapping. The classical variational inequality which is denoted by VI(A,C) is to find
x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

The variational inequality has been extensively studied in literature; see, for example, [, ]
and the references therein. Recall that themappingT ofC into itself is called nonexpansive
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if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

A mapping f : C → C is called contractive if there exists a constant β ∈ (, ) such that

‖fx – fy‖ ≤ β‖x – y‖, ∀x, y ∈ C.

We denote by Fix(T) the set of fixed points of T .
Somemethods have been proposed to solve the equilibrium problem and the fixed point

problem of nonexpansive mappings; see, for instance, [, –] and the references therein.
Recently, Plubtieng and Punpaeng [] introduced the following iterative scheme. Let x ∈
H , and let {xn} and {un} be sequences generated by

⎧⎨
⎩
F(un, y) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈H ,

xn+ = αnγ f (xn) + (I – αnA)Tun, ∀n ∈N.

They proved that if the sequences {αn} and {rn} of parameters satisfied appropriate con-
ditions, then the sequences {xn} and {un} both converged strongly to the unique solution
of the variational inequality

〈
(A – γ f )z, z – x

〉 ≥ , ∀x ∈ Fix(T)∩ EP(F),

which was the optimality condition for the minimization problem

min
x∈Fix(T)∩EP(F)



〈Ax,x〉 – h(x),

where h is a potential function for γ f .
Let A : H → H be a single-valued nonlinear mapping, and let M : H → H be a set-

valued mapping. We consider the following variational inclusion, which is to find a point
u ∈ H such that

θ ∈ A(u) +M(u), (.)

where θ is the zero vector inH . The set of solutions of problem (.) is denoted by I(A,M).
Let Ai :H → H , i = , , . . . ,N , be single-valued nonlinear mappings, and letMi :H → H ,
i = , , . . . ,N , be set-valued mappings. If A≡ , then problem (.) becomes the inclusion
problem introduced by Rockafellar []. IfM = ∂δC , where C is a nonempty closed convex
subset of H and δC :H → [,∞] is the indicator function of C, that is,

δC(x) =

⎧⎨
⎩
, x ∈ C,

+∞, x /∈ C,
(.)

then variational inclusion problem (.) is equivalent to variational inequality prob-
lem (.). It is known that (.) provides a convenient framework for the unified study
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of optimal solutions in many optimization-related areas including mathematical pro-
gramming, complementarity, variational inequalities, optimal control, mathematical eco-
nomics, equilibria, and game theory. Also, various types of variational inclusions problems
have been extended and generalized (see [] and the references therein).We introduce the
following finite family of variational inclusions, which are to find a point u ∈H such that

θ ∈ Ai(u) +Mi(u), i = , , . . . ,N , (.)

where θ is the zero vector in H . The set of solutions of problem (.) is denoted by⋂N
i= I(Ai,Mi). The formulation (.) extends this formalism to a finite family of variational

inclusions covering, in particular, various forms of feasibility problems (see, e.g., []).
In , Plubtemg and Sripard [] introduced the following iterative scheme for finding

a common element of the set of solutions to problem (.) with a multi-valued maximal
monotone mapping and an inverse-strongly monotone mapping, the set solutions of an
equilibrium problem, and the set of fixed points of a nonexpansive mapping in a Hilbert
space. Starting with an arbitrary x ∈ H , define sequences {xn}, {yn}, and {un} by

⎧⎪⎪⎨
⎪⎪⎩
F(un, y) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈H ,

yn = JM,λ(un – λAun), ∀n > ,

xn+ = αnγ f (xn) + (I – αnB)Snyn,

(.)

for all n ∈ N , where λ ∈ (, α], {αn} ⊂ [, ], and {rn} ⊂ (,∞); B is a strongly positive
bounded linear operator on H and {Sn} is a sequence of nonexpansive mappings on H .
They proved that under certain appropriate conditions imposed on {αn} and {rn}, the
sequences {xn}, {yn}, and {un} generated by (.) converge strongly to z ∈ ⋂∞

i= Fix(Si) ∩
I(A,M)∩ EP(F), where z = P⋂∞

i= Fix(Si)∩I(A,M)∩EP(F)f (z).
In , Tian [] introduced the following general iterative scheme for finding an el-

ement of the set of solutions to the fixed point of a nonexpansive mapping in a Hilbert
space: Define the sequence {xn} by

xn+ = αnγ f (xn) + (I –μαnB)Txn, n≥ , (.)

where B is a k-Lipschitzian and η-strongly monotone operator. Then he proved that if
the sequence {αn} satisfies appropriate conditions, the sequence {xn} generated by (.)
converges strongly to the unique solution x∗ ∈ C of the variational inequality

〈
(γ f –μB)x∗,x – x∗〉 ≤ , ∀x ∈ C,

where C = Fix(T).
In , Deng et al. [] considered the following hybrid approximation scheme for find-

ing common solutions of mixed equilibrium problems, a finite family of variational inclu-
sions, and fixed point problems in Hilbert spaces. Starting with an arbitrary x ∈H , define
sequences {xn}, {yn}, and {un} by

⎧⎪⎪⎨
⎪⎪⎩
F(un, y) + F(un, y) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈H ,

yn = JMN ,λN ,n (I – λN ,nAN ) · · · JM,λ,n (I – λ,nA)un,

xn+ = εnγ f (xn) + βnxn + (( – βn)I – εnB)Snyn,

http://www.journalofinequalitiesandapplications.com/content/2013/1/165
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for all n ∈ N , where λi,n ∈ (, αi], i ∈ {, , . . . ,N}, {εn} ⊂ [, ], and {rn} ⊂ (,∞), B is a
strongly positive bounded linear operator on H , and {Sn} is a sequence of nonexpansive
mappings on H . Under suitable conditions and from this iterative scheme, they proved
that {xn}, {yn}, and {un} converge strongly to z, where z = P�(I – B + γ f )(z) is a unique
solution of the variational inequality

〈
(B – γ f )z, z – x

〉 ≤ , x ∈ �,

where � := (
⋂∞

n= Fix(Sn))∩MEP(F,F)∩ (
⋂N

i= I(Ai,Mi)) �= ∅.
Motivated and inspired by Aoyama et al. [], Plubieng and Punpaeng [], Plubtemg

and Sripard [], Peng et al. [], Tian [], and Deng et al. [], we introduce an iter-
ative scheme for finding a common element of the set of solutions of a finite family of
variational inclusion problems (.) with multi-valued maximal monotone mappings and
inverse-strongly monotone mappings, the set of solutions of an equilibrium problem, and
the set of fixed points of nonexpansive mappings in a Hilbert space. Starting with an arbi-
trary x ∈H , define sequences {xn}, {yn}, and {un} by

⎧⎪⎪⎨
⎪⎪⎩
F(un, y) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈H ,

yn = JMN ,λN ,n (I – λN ,nAN ) · · · JM,λ,n (I – λ,nA)un,

xn+ = εnγ f (xn) + (I –μεnB)Snyn,

for all n ∈ N , where λi,n ∈ (, αi], i ∈ {, , . . . ,N}, {εn} ⊂ [, ], and {rn} ⊂ (,∞), f is
an L-Lipschitz mapping on H , B is a k-Lipschitzian and η-strongly monotone operator
on H with coefficients k >  and η > , and {Sn} is a sequence of nonexpansive mappings
onH . Under suitable conditions, some strong convergence theorems for approximating to
these common elements are proved. Our results extend and improve some corresponding
results in [, ] and the references therein.

2 Preliminaries
This section collects some lemmas which are used in the proofs of the main results in the
next section.
LetH be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ ·‖, respectively.

It is well known that for all x, y ∈H and λ ∈ [, ], the following holds:

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖.

Let C be a nonempty closed convex subset of H . Then, for any x ∈ H , there exists a
unique nearest point ofC, denoted by PCx, such that ‖x–PCx‖ ≤ ‖x–y‖ for all y ∈ C. Such
a PC is called the metric projection from H into C. We know that PC is nonexpansive. It is
also known that PCx ∈ C and

〈x – PCx,PCx – z〉 ≥ , ∀x ∈H and z ∈ C. (.)

It is easy to see that (.) is equivalent to

‖x – z‖ ≥ ‖x – PCx‖ + ‖PCx – z‖, ∀x ∈H and z ∈ C.

http://www.journalofinequalitiesandapplications.com/content/2013/1/165
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For solving the equilibrium problem for a bifunction F : C ×C → R, let us assume that
F satisfies the following conditions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, that is, F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim
t→

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

Lemma . [] Let C be a nonempty closed convex subset of H , and let F be a bifunction
of C ×C into R satisfying (A)-(A). Let r >  and x ∈H . Then there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Define a mapping Tr :H → C as follows:

Tr(x) =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all x ∈ H . Then the following hold:
() Tr is single-valued;
() Tr is firmly nonexpansive, that is, for any x, y ∈ H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

() Fix(Tr) = EP(F);
() EP(F) is closed and convex.

By the proof of Lemma  in [], we have the following lemma.

Lemma . Let C be a nonempty closed convex subset of a Hilbert space H , and let F :
C ×C →R be a bifunction. Let x ∈ C and r, r ∈ (,∞). Then

‖Trx – Trx‖ ≤
∣∣∣∣ – r

r

∣∣∣∣(‖Trx‖ + ‖x‖). (.)

Lemma . [] Let H be a Hilbert space, and let f :H → H be a Lipschitz mapping with
coefficient  < L. B : H → H is a k-Lipschitzian and η-strongly monotone operator with
k >  and η > . Then for  < γ < μη/α,

〈
x – y, (μB – γ f )x – (μB – γ f )y

〉 ≥ (μη – γL)‖x – y‖, x, y ∈H .

That is, μB – γ f is strongly monotone with coefficient μη – γL.

Lemma . [] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+ ≤ ( – γn)αn + δn, n≥ ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/165
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where {αn} is a sequence in (, ) and {δn} is a sequence in R such that
(i)

∑∞
n= γn = ∞,

(ii) lim supn→∞
δn
γn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ αn = .

Definition . Let A : C →H be a nonlinear mapping. A is said to be:
(i) Monotone if

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

(ii) Strongly monotone if there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C.

For such a case, A is said to be α-strongly-monotone.
(iii) Inverse-strongly monotone if there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

For such a case, A is said to be α-inverse-strongly-monotone.
(iv) k-Lipschitz continuous if there exists a constant k ≥  such that

‖Ax –Ay‖ ≤ k‖x – y‖, ∀x, y ∈ C.

Let I be the identity mapping on H . It is well known that if A : H → H is α-inverse-
strongly monotone, then A is a 

α
-Lipschitz continuous and monotone mapping. In addi-

tion, if  < λ ≤ α, then I – λA is a nonexpansive mapping.
A set-valued mapping M : H → H is called monotone if for all x, y ∈ H , f ∈ Mx and

g ∈ My imply 〈x – y, f – g〉 ≥ . A monotone mappingM :H → H is maximal if its graph
G(M) : {(x, f ) ∈H ×H|f ∈M(x)} ofM is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mappingM is maximal if and only if for
(x, f ) ∈H ×H , 〈x – y, f – g〉 ≥  for every (y, g) ∈G(H) implies f ∈Mx.
Let the set-valuedmappingM :H → H bemaximalmonotone.We define the resolvent

operator JM,λ associated withM and λ as follows:

JM,λ(u) = (I + λM)–(u), ∀u ∈H ,

where λ is a positive number. It is worth mentioning that the resolvent operator JM,λ is
single-valued, nonexpansive, and -inverse-stronglymonotone (see, for example, []) and
that a solution of problem (.) is a fixed point of the operator JM,λ(I – λA) for all λ > ;
see, for instance, []. Furthermore, a solution of a finite family of variational inclusion
problems (.) is a common fixed point of JMk ,λ(I – λAk), k ∈ {, . . . ,N}, λ > .

Lemma . [] Let M : H → H be a maximal monotone mapping, and let A : H → H
be a Lipschitz-continuous mapping. Then the mapping S =M + A :H → H is a maximal
monotone mapping.

http://www.journalofinequalitiesandapplications.com/content/2013/1/165
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Lemma . For all x, y ∈H , the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉.

Lemma . (The resolvent identity) Let E be a Banach space, for λ > , μ > , and x ∈ E,

Jλx = Jμ
(

μ

λ
x +

(
 –

μ

λ

)
Jλx

)
.

Lemma . [] Let H be a Hilbert space. Let Ai : H → H , i = , , . . . ,N be αi-inverse-
strongly monotone mappings, let Mi : H → H , i = , , . . . ,N be maximal monotone map-
pings, and let {ωn} be a bounded sequence in H . Assume that λj,n > , j = , , . . . ,N , satisfy
the following:
(H) limn→∞

∑∞
n= |λj,n – λj,n+| < ∞,

(H) lim infn→∞ λj,n > .
Set k

n = JMk ,λk,n (I – λk,nAk) · · · JM,λ,n (I – λ,nA) for k ∈ {, , . . . ,N} and 
n = I for all n.

Then, for k ∈ {, , . . . ,N},
∞∑
i=

∥∥k
i+ωi –k

i ωi
∥∥ < ∞. (.)

Lemma . [] Let H be a real Hilbert space and B be a k-Lipschitzian and η-strongly
monotone operator with k > , η > . Let  < μ < η

k and τ = μ(η – ηk
 ). Then for t ∈

min{, 
τ
}, I – tμB is a contraction with a constant  – tτ .

3 Main results
LetH be a real Hilbert space and T be a nonexpansive mapping onH . Assume that the set
Fix(Sn) is nonempty, that is, Fix(Sn) := {x ∈ H : Snx = x} �= ∅. Since Fix(Sn) is closed convex,
the nearest point projection from H onto Fix(Sn) is well defined. Recall also that f is an
L-Lipschitz mapping on H with coefficient L > . Let B is a k-Lipschitzian and η-strongly
monotone operator on H with coefficients k >  and η > .
Now give f is an L-Lipschitz mapping on H with coefficient L > , t ∈ (, ). Let  < μ <

η/k,  < γ < μ(η – μk
 )/L = τ /L. Consider a mappingWt on H defined by

Wtx = tγ f (x) + (I –μtB)Snx, n > .

According to Lemma ., we can easily see that

‖Wtx –Wty‖ ≤ tγ
∥∥f (x) – f (y)

∥∥ +
∥∥(I –μtB)Tx – (I –μtB)Sny

∥∥
≤ (

 – t(τ – γL)
)‖x – y‖. (.)

Theorem . Let H be a real Hilbert space, let F be a bifunction H × H → R satisfying
(A)-(A), and let {Sn} be a sequence of nonexpansive mappings on H . Let Ai : H → H ,
i = , , . . . ,N , be αi-inverse-stronglymonotonemappings, letMi :H → H , i = , , . . . ,N , be
maximal monotone mappings such that � := (

⋂∞
n= Fix(Sn))∩ EP(F)∩ (

⋂N
i= I(Ai,Mi)) �= ∅.

Let f be an L-Lipschitz mapping on H with coefficient L > , and let B be a k-Lipschitzian

http://www.journalofinequalitiesandapplications.com/content/2013/1/165
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and η-strongly monotone operator on H with coefficients k >  and η > . Let {xn}, {yn}, and
{un} be sequences generated by x ∈H and

⎧⎪⎪⎨
⎪⎪⎩
F(un, y) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈H ,

yn = JMN ,λN ,n (I – λN ,nAN ) · · · JM,λ,n (I – λ,nA)un,

xn+ = εnγ f (xn) + (I –μεnB)Snyn,

(.)

for all n ∈N,where λi,n ∈ (, αi], i ∈ {, , . . . ,N}, satisfy (H)-(H), {εn} ⊂ [, ] and {rn} ⊂
(,∞) satisfy
(C) limn→∞ εn = ;
(C)

∑∞
n= εn = ∞;

(C)
∑∞

n= |εn+ – εn| <∞;
(C) lim infn→∞ rn > ;
(C)

∑∞
n= |rn+ – rn| < ∞.

Suppose that
∑∞

n= sup{‖Sn+z–Snz‖ : z ∈ K} < ∞ for any bounded subset K of H . Let S be a
mapping of H into itself defined by Sx = limn→∞ Snx for all x ∈H , and suppose that Fix(S) =⋂∞

n= Fix(Sn). Then {xn}, {yn}, and {un} converge strongly to z, where z = P�(I –μB + γ f )(z)
is a unique solution of the variational inequality

〈
(μB – γ f )z, z – x

〉 ≤ , x ∈ �. (.)

Proof Using the definition of k
n in Lemma ., we have yn = N

n un. We divide the proof
into several steps.
Step . The sequence {xn} is bounded.
Let p ∈ �. Using the fact that JMk ,λk,n (I – λk,nAk), k ∈ {, , . . . ,N}, is nonexpansive and

p = JMk ,λk,n (I – λk,nAk)p, we have

‖yn – p‖ = ∥∥N
n un –N

n p
∥∥ ≤ ‖un – p‖ ≤ ‖Trxn – Trp‖ ≤ ‖xn – p‖

for all n ≥ . Then we have

‖xn+ – p‖ =
∥∥εnγ f (xn) + (I –μεnB)Snyn – p

∥∥
≤ εn

∥∥γ f (xn) –μBp
∥∥ + ‖I –μεnB‖‖yn – p‖

≤ εn
∥∥γ f (xn) –μBp

∥∥ + ( – εnτ )‖xn – p‖
≤ εn

∥∥γ
(
f (xn) – f (p)

)
+

(
γ f (p) –μBp

)∥∥ + ( – εnτ )‖xn – p‖
≤ εnγL‖xn – p‖ + εn

∥∥γ f (p) –μBp
∥∥ + ( – εnτ )‖xn – p‖

=
(
 – εn(γ̄ – γL)

)‖xn – p‖ + εn
∥∥γ f (p) –μBp

∥∥
=

(
 – εn(τ – γL)

)‖xn – p‖ + εn(τ – γL)
‖γ f (p) –μBp‖

(τ – γL)
. (.)

It follows from (.) and induction that

‖xn – p‖ ≤ max

{
‖x – p‖, ‖γ f (p) –μBp‖

τ – γL

}
, n > .

Hence {xn} is bounded and therefore {un}, {yn}, {f (xn)}, and {Snyn} are also bounded.

http://www.journalofinequalitiesandapplications.com/content/2013/1/165
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Step . We show that ‖xn+ – xn‖ → .
Since I – λA is nonexpansive, yn = N

n un and yn+ = N
n+un+, it follows that

‖yn+ – yn‖ =
∥∥N

n+un+ –N
n un

∥∥
≤ ∥∥N

n+un –N
n un

∥∥ +
∥∥N

n+un –N
n+un+

∥∥
≤ ∥∥N

n un –N
n+un

∥∥ + ‖un – un+‖. (.)

Then we have

‖xn+ – xn+‖
=

∥∥εn+γ f (xn+) + (I –μεn+B)Sn+yn+ – εnγ f (xn) – (I –μεnB)Snyn
∥∥

=
∥∥(I –μεn+B)(Sn+yn+ – Sn+yn) + (εn – εn+)μBSn+yn

+ ( –μεnB)(Sn+yn – Snyn) + (εn+ – εn)γ f (xn) + εn+γ
(
f (xn+) – f (xn)

)∥∥
≤ ( – εn+τ )‖yn+ – yn‖ + |εn – εn+|‖μBSn+yn‖ + ( – εnτ )‖Sn+yn – Snyn‖

+ |εn+ – εn|
∥∥γ f (xn)

∥∥ + εn+γL‖xn+ – xn‖
≤ ( – εn+τ )‖yn+ – yn‖ + εn+γL‖xn+ – xn‖ + |εn – εn+|

(‖μBSn+yn‖ + ∥∥γ f (xn)
∥∥)

+ ‖Sn+yn – Snyn‖
≤ ( – εn+τ )

(∥∥N
n un –N

n+un
∥∥ + ‖un – un+‖

)
+ εn+γL‖xn+ – xn‖

+ |εn – εn+|M + sup
{‖Sn+z – Snz‖ : z ∈ {yn}

}
, (.)

where M = sup{max{‖μBSn+yn‖,‖γ f (xn)‖} : n ≥ } < ∞. On the other hand, using
Lemma ., we have

‖un+ – un‖ = ‖Tn+xn+ – Tnxn‖ ≤ ‖Tn+xn+ – Tn+xn‖ + ‖Tn+xn – Tnxn‖

≤ ‖xn+ – xn‖ +
∣∣∣∣ – rn+

rn

∣∣∣∣(‖Tnxn‖ + ‖xn‖
)
. (.)

Combining (.) and (.), we have

‖xn+ – xn+‖

≤ (
 – εn+(γ̄ – γβ)

)‖xn+ – xn‖ +
∣∣∣∣ – rn+

rn

∣∣∣∣(‖Tnxn‖ + ‖xn‖
)
+ |εn – εn+|M

+
∥∥N

n+un –N
n un

∥∥ + sup
{‖Sn+z – Snz‖ : z ∈ {un}

}
. (.)

From boundedness of {un} and Lemma ., using the condition of (H)-(H), we obtain

∞∑
n=

∥∥N
n+un –N

n un
∥∥ <∞. (.)

Since {yn} is bounded, it follows that ∑∞
n= sup{‖Sn+z – Snz‖ : z ∈ K} < ∞. Hence, using

conditions (C)-(C), (.) and Lemma ., we have ‖xn+ – xn‖ →  as n→ ∞.
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Step . We now show that

lim
n→∞

∥∥k
nun –k–

n un
∥∥ = , k = , , . . . ,N . (.)

Indeed, let p ∈ �. It follows from the firmly nonexpansiveness of JMk ,λk,n (I – λk,nAk) that

∥∥k
nun – p

∥∥ =
∥∥JMk ,λk,n (I – λk,nAk)k–

n un – JMk ,λk,n (I – λk,nAk)p
∥∥

≤ 〈
k

nun – p,k–
n un – p

〉

=


(∥∥k

nun – p
∥∥ +

∥∥k–
n un – p

∥∥ –
∥∥k

nun –k–
n un

∥∥), (.)

for each k ∈ {, , . . . ,N}. Thus we get
∥∥k

nun – p
∥∥ ≤ ∥∥k–

n un – p
∥∥ –

∥∥k
nun –k–

n un
∥∥,

which implies that for each k ∈ {, , . . . ,N},

‖yn – p‖ =
∥∥N

n un – p
∥∥ ≤ ∥∥

nun – p
∥∥ –

N∑
k=

∥∥k
nun –k–

n un
∥∥

≤ ‖un – p‖ – ∥∥k
nun –k–

n un
∥∥

≤ ‖xn – p‖ – ∥∥k
nun –k–

n un
∥∥. (.)

Using Lemma . and noting that ‖ · ‖ is convex, we derive from (.)

‖xn+ – p‖ =
∥∥εnγ f (xn) + (I –μεnB)Snyn – p

∥∥

=
∥∥( –μεnB)(Snyn – p) + εn

(
γ f (xn) – Bp

)∥∥

≤ ( – εnτ )‖Snyn – p‖ + εn
〈
γ f (xn) –μBp,xn+ – p

〉
≤ ( – εnτ )‖yn – p‖ + εn

〈
γ f (xn) –μBp,xn+ – p

〉
≤ ( – εnτ )

(‖xn – p‖ – ∥∥k
nun –k–

n un
∥∥)

+ εnγ
〈
f (xn) – f (p),xn+ – p

〉
+ εn

〈
γ f (p) –μBp,xn+ – p

〉
≤ ( – εnτ )

(‖xn – p‖ – ∥∥k
nun –k–

n un
∥∥)

+ εnγL‖xn – p‖‖xn+ – p‖ + εn
∥∥f (p) –μBp

∥∥‖xn+ – p‖. (.)

PutM = supn≥{‖f (p) –μBp‖‖xn+ – p‖}. It follows from (.) that

( – εnτ )
∥∥k

nun –k–
n un

∥∥

≤ ‖xn – p‖ – ‖xn+ – p‖ + (
(εnτ ) – εnτ

)‖xn – p‖

+ εnγL‖xn – p‖‖xn+ – p‖ + εnM

≤ ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖) + εn

(
εnτ

 – τ
)‖xn – p‖

+ εnγL‖xn – p‖‖xn+ – p‖ + εnM.

Since εn →  and ‖xn – xn+‖ → , we have (.).
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Step . We prove limn→∞ ‖un – xn‖ = .
We note from (.),

‖xn – Snyn‖ ≤ ‖xn – Sn–yn–‖ + ‖Sn–yn– – Sn–yn‖ + ‖Sn–yn – Snyn‖
≤ εn–

∥∥γ f (xn–) –μBSn–yn–
∥∥ + ‖yn– – yn‖

+ sup
{‖Sn+z – Snz‖ : z ∈ ‖yn‖

}
. (.)

Since εn → , limn→∞ ‖yn+ – yn‖ = , and sup{‖Sn+z – Snz‖ : z ∈ {yn}} → , we get

‖xn – Snyn‖ → . (.)

Let p ∈ �. Since un = Trnxn, it follows from Lemma . that

‖un – p‖ = ‖Trnxn – Trnp‖ ≤ 〈Trnxn – Trnp,xn – p〉 = 〈un – p,xn – p〉

≤ 

(‖un – p‖ + ‖xn – p‖ – ‖un – xn‖

)
,

and hence ‖un – p‖ ≤ ‖xn – p‖ – ‖un – xn‖. Therefore, using Lemma . and (.), we
have

‖xn+ – p‖

≤ (
 – εnτ

)‖yn – p‖ + εnγ
〈
f (xn) – f (p),xn+ – p

〉
+ εn

〈
γ f (p) –μBp,xn+ – p

〉
≤ (

 – εnτ
)‖un – p‖ + εnγ

〈
f (xn) – f (p),xn+ – p

〉
+ εn

〈
γ f (p) –μBp,xn+ – p

〉
≤ ( – εnτ )

(‖xn – p‖ – ‖un – xn‖
)
+ εnγL‖xn – p‖‖xn+ – p‖

+ εn
∥∥γ f (p) –μBp

∥∥‖xn+ – p‖
≤ ‖xn – p‖ + εn

(
τ  – τ

)‖xn – p‖ – ( – εnτ )‖un – xn‖

+ εnγL‖xn – p‖‖xn+ – p‖
+ εn

∥∥γ f (p) –μBp
∥∥‖xn+ – p‖,

and hence

(I – εnτ )‖un – xn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + εn
(
τ  – τ

)‖xn – p‖

+ εnγL‖xn – p‖‖xn+ – p‖ + εn
∥∥γ f (p) –μBp

∥∥‖xn+ – p‖
≤ ‖xn – xn+‖

(‖xn – p‖ + ‖xn+ – p‖) + εn
(
τ  – τ

)‖xn – p‖

+ εnγL‖xn – p‖‖xn+ – p‖ + εn
∥∥γ f (p) –μBp

∥∥‖xn+ – p‖. (.)

Since {xn} is bounded, εn →  and limn→∞ ‖xn – xn+‖ = , it follows that

lim
n→∞‖un – xn‖ = . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/165
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Next we prove limn→∞ ‖un – yn‖ = .

‖un – yn‖ =
∥∥N

n un – un
∥∥

≤ ∥∥N
n un –N–

n un
∥∥ +

∥∥N–
n un –N–

n un
∥∥

+ · · · + ∥∥
nun –

nun
∥∥ +

∥∥
nun –

nun
∥∥ + ‖un – un‖.

From (.), we obtain

lim
n→∞‖un – yn‖ = . (.)

In addition, according to ‖xn – yn‖ ≤ ‖xn – un‖ + ‖un – yn‖, we have

lim
n→∞‖xn – yn‖ = . (.)

It follows from (.), (.) and the inequality ‖yn – Snyn‖ ≤ ‖yn – xn‖ + ‖xn – Snyn‖ that
limn→∞ ‖yn – Snyn‖ = . Since

‖Syn – yn‖ ≤ ‖Syn – Snyn‖ + ‖Snyn – yn‖
≤ sup

{‖Sz – Snz‖ : z ∈ {yn}
}
+ ‖Snyn – yn‖,

for all n ∈N, it follows that

lim
n→∞‖Syn – yn‖ = . (.)

Step . We show ω ∈ (
⋂∞

n= Fix(Sn))∩ EP(F)∩ (
⋂N

i= I(Ai,Mi)).
Since {xn} is bounded, there exists a subsequence {xni} of {xn} which converges weakly

to ω. From (.), we obtain {uni} which converges weakly to ω. From (.), it follows
yni ⇀ ω. We show ω ∈ EP(F). According to (.) and (A),


rn

〈y – un,un – xn〉 ≥ F(y,un),

and hence

〈
y – uni ,

uni – xni
rni

〉
≥ F(y,uni ).

Since uni–xni
rni

→  and uni ⇀ ω, from (A) it follows that  ≥ F(y,ω) for all y ∈ H . For t
with  < t ≤  and y ∈ H , let yt = ty + ( – t)ω, then we get  ≥ F(yt ,ω). So, from (A) and
(A), we have

 = F(yt , yt) ≤ tF(yt , y) + ( – t)F(yt ,ω) ≤ tF(yt , y),

and hence  ≤ F(yt , y). From (A), we have  ≤ F(ω, y) for all y ∈ H . Therefore, ω ∈ EP(F).

http://www.journalofinequalitiesandapplications.com/content/2013/1/165
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We show ω ∈ ⋂∞
n= Fix(Sn). Assume that ω /∈ ⋂∞

n= Fix(Sn), then we have ω �= Sω. It fol-
lows, by Opial’s condition and (.), that

lim inf
n→∞ ‖yn –ω‖ < lim inf

n→∞ ‖yn – Sω‖
≤ lim inf

n→∞
{‖yn – Syn‖ + ‖Syn – Sω‖}

≤ lim inf
n→∞ ‖yn –ω‖.

This is a contradiction. Hence ω ∈ ⋂∞
n= Fix(Sn).

We now show that ω ∈ ⋂N
i= I(Ai,Mi). In fact, since Ai is αi-inverse-strongly monotone,

then Ai, i = , , . . . ,N , is an 
αi
-Lipschitz continuous monotone mapping and D(Ai) = H ,

i = , , . . . ,N . It follows from Lemma . thatMi+Ai, i = , , . . . ,N , is maximalmonotone.
Let (p, g) ∈ G(Mi + Ai), i = , , . . . ,N , that is, g – Aip ∈ (Mip), i = , , . . . ,N . Since k

nun =
JMk ,λk,n (I – λk,nAk)k–

n un, we have k–
n un – λk,nAk

k–
n un ∈ (I + λk,nMk)(k

nun), that is,


λn,k

(
k–

n un –k
nun – λN ,nAk

k–
n un

) ∈ Mk
(
k

nun
)
.

By the maximal monotonicity ofMi +Ai, i = , , . . . ,N , we have

〈
p –k

nun, g –Akp –


λk,n

(
k–

n un –k
nun – λk,nAk

k–
n un

)〉 ≥ ,

which implies

〈
p –k

nun, g
〉

≥
〈
p –k

nun,Akp +


λn,k

(
k–

n un –k
nun – λk,nAk

k–
n un

)〉

=
〈
p –k

nun,Akp –Ak
k
nun +Ak

k
nun –Ak

k–
n un +


λk,n

(
k–

n un –k
nun

)〉

≥  +
〈
p –k

nun,Ak
k
nun –Ak

k–
n un

〉
+

〈
p –k

nun,


λk,n

(
k–

n un –k
nun

)〉
(.)

for k ∈ {, , . . . ,N}. From (.), it follows limn→∞ ‖k
nun – k–

n un‖ = , especially,
k

niuni ⇀ ω. Since Ak , k = , . . . ,N , are Lipschitz continuous operators, we have
‖Ak

k–
n un –Ak

k
nun‖ → . So, from (.), we have

lim
i→∞

〈
p –k

niuni , g
〉
= 〈p –ω, g〉 ≥ .

Since Ak +Mk , k ∈ {, , . . . ,N} is maximal monotone, this implies that  ∈ (Mk + Ak)(ω),
k ∈ {, , . . . ,N}, i.e., ω ∈ ⋂N

i= I(Ai,Mi). So, we obtain the result.
Step . We show that

lim sup
n→∞

〈
(μB – γ f )z, z – xn

〉 ≤ ,

where z = P�(I –μB + γ f )(z) is a unique solution of the variation (.).
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To show this, we choose a subsequence {xni} of {xn} such that

lim
i→∞

〈
(μB – γ f )z, z – xni

〉
= lim sup

n→∞

〈
(μB – γ f )z, z – xn

〉
.

By the proof of Step , we obtain that

lim sup
n→∞

〈
(μB – γ f )z, z – xn

〉
= lim

i→∞
〈
(μB – γ f )z, z – xni

〉
=

〈
(μB – γ f )z, z –ω

〉 ≤ .

Step . We prove that xn → ω.
Using Lemma . and (.), we obtain

‖xn+ –ω‖

=
∥∥εnγ f (xn) + (I –μεnB)Snyn –ω

∥∥

=
∥∥εn

(
γ f (xn) –μBω

)
+ (I –μεnB)(Snyn –ω)

∥∥

≤ ∥∥(I –μεnB)(Snyn –ω)
∥∥ + εn

〈
γ f (xn) –μBω,xn+ –ω

〉
≤ ( – εnτ )‖yn –ω‖ + εn

〈
γ f (xn) – f (ω),xn+ –ω

〉
+ εn

〈
γ f (ω) –μBω,xn+ –ω

〉
≤ ( – εnτ )‖xn –ω‖ + εnγL‖xn –ω‖‖xn+ –ω‖ + εn

〈
γ f (ω) –μBω,xn+ –ω

〉
≤ ( – εnτ )‖xn –ω‖ + εnγL

(‖xn –ω‖ + ‖xn+ –ω‖)
+ εn

〈
γ f (ω) –μBω,xn+ –ω

〉
.

This implies that

‖xn+ –ω‖ ≤  – εnτ + (εnτ ) + εnγL
 – εnγL

‖xn –ω‖ + εn
 – εnγL

〈
γ f (ω) –μBω,xn+ –ω

〉

=
[
 –

(εn(τ ) – τ )
 – εnγL

]
‖xn –ω‖ + (εnτ )

 – εnγL
‖xn –ω‖

+
εn

 – εnγL
〈
γ f (ω) –μBω,xn+ –ω

〉

≤ ( – γn)‖xn –ω‖ + δn,

where γn = εn(τ–γL)
–εnγL and δn = εn

–εnγL (εnτ
‖xn –ω‖ + 〈γ f (ω) –μBω,xn+ –ω〉). It is easily

verified that γn → ,
∑∞

n= γn = ∞, and lim supn→∞ δn/γn ≤ . Hence, by Lemma ., the
sequence {xn} converges strongly to ω. Furthermore, from (.) and (.), we obtain that
the sequences {yn} and {un} converge strongly to ω. �

Let B ≡ I and γ =  in Theorem .; we obtain the following corollary.

Corollary . Let H be a real Hilbert space, let F be a bifunction H × H → R satisfying
(A)-(A), and let Sn be a sequence of nonexpansive mappings on H . Let A : H → H be
an α-inverse-strongly monotone mapping, and let M : H → H be a maximal monotone
mapping such that � =

⋂∞
n= Fix(Sn)∩ EP(F)∩ (

⋂N
i= I(Ai,Mi)) �= ∅. Let f be an L-Lipschitz

mapping on H with coefficient L > . Let {xn}, {yn}, and {un} be sequences generated by
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x ∈H and

⎧⎪⎪⎨
⎪⎪⎩
F(un, y) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈H ,

yn = JMN ,λN ,n (I – λN ,nAN ) · · · JM,λ,n (I – λ,nA)un, ∀n > ,

xn+ = εnf (xn) + (I – εn)Snyn,

(.)

for all n ∈N ,where λi,n ∈ (, αi], i ∈ {, , . . . ,N}, satisfy (H)-(H), {εn} ⊂ [, ] and {rn} ⊂
(,∞) satisfy:
(C) limn→∞ εn = ;
(C)

∑∞
n= εn = ∞;

(C)
∑∞

n= |εn+ – εn| <∞;
(C) lim infn→∞ rn > ;
(C)

∑∞
n= |rn+ – rn| < ∞.

Suppose that
∑∞

n= sup{‖Sn+z – Snz‖ : z ∈ K} < ∞ for any bounded subset K of H . Let S
be a mapping of H into itself defined by Sx = limn→∞ Snx for all x ∈ H , and suppose that
Fix(S) =

⋂∞
n= Fix(Sn).Then {xn}, {yn},and {un} converge strongly to z,where z = P�(I–γ f )(z)

is a unique solution of the variational inequality

〈
(I – γ f )z, z – x

〉 ≤ , x ∈ �.
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