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Abstract
The main purpose of the present paper is to derive the neighborhoods and partial
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1 Introduction
Let Am denote the class of functions f of the form

f (z) = z +
∞∑

k=m+

akzk
(
m ∈N := {, , , . . .}), (.)

which are analytic in the open unit disk

U :=
{
z : z ∈ C and |z| < 

}
.

A function f ∈ Am is said to be in the class S∗
m(β) of starlike functions of order β if it

satisfies the inequality

�
(
zf ′(z)
f (z)

)
> β (z ∈U; � β < ). (.)

Assuming that α � ,  � β <  and f ∈ Am, we say that a function f ∈ Hm(α,β) if it
satisfies the condition

�
(
zf ′(z)
f (z)

+ α
zf ′′(z)
f (z)

)
> αβ

(
β +

m

– 

)
+ β –

mα


(z ∈U). (.)

For convenience, throughout this paper, we write

γm := αβ

(
β +

m

– 

)
+ β –

mα


. (.)

Recently, Ravichandran et al. [] proved that Hm(α,β) ⊂ S∗
m(β). Subsequently, Liu et

al. [] derived various properties and characteristics such as inclusion relationships,
Hadamard products, coefficient estimates, distortion theorems and cover theorems for
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the class Hm(α,β) and a subclass of Hm(α,β) with negative coefficients. Furthermore,
Singh et al. [] generalized the class Hm(α,β) and found several sufficient conditions for
starlikeness. In the present paper, we aim at proving the neighborhoods and partial sums
of the classHm(α,β).

2 Main results
Following the earlier works (based upon the familiar concept of a neighborhood of analytic
functions) by Goodman [] and Ruscheweyh [], and (more recently) by Altintaş et al.
[–], Cǎtaş [], Frasin [], Keerthi et al. [] and Srivastava et al. [], we begin by
introducing here the δ-neighborhood of a function f ∈ Am of the form (.) by means of
the definition

Nδ(f ) :=

{
g ∈Am : g(z) = z +

∞∑
k=m+

bkzk and

∞∑
k=m+

k( + kα – α) – γm

 – γm
|ak – bk|� δ (δ,α � ;� β < ;γm < )

}
. (.)

By making use of the definition (.), we now derive the following result.

Theorem  If f ∈Am satisfies the condition

f (z) + εz
 + ε

∈Hm(α,β)
(
ε ∈ C; |ε| < δ; δ > 

)
, (.)

then

Nδ(f ) ⊂Hm(α,β). (.)

Proof By noting that the condition (.) can be rewritten as follows:

∣∣∣∣
zf ′(z)
f (z) + α

zf ′′(z)
f (z) – 

zf ′(z)
f (z) + α

zf ′′(z)
f (z) – (γm – )

∣∣∣∣ <  (z ∈U), (.)

we easily find from (.) that a function g ∈Hm(α,β) if and only if

zg ′(z) + αzg ′′(z) – g(z)
zg ′(z) + αzg ′′(z) – (γm – )g(z)

�= σ
(
z ∈U;σ ∈C; |σ | = 

)
,

which is equivalent to

(g ∗ h)(z)
z

�=  (z ∈U), (.)

where

h(z) = z +
∞∑

k=m+

ckzk
(
ck :=

k + αk(k – ) –  – [k + αk(k – ) – (γm – )]σ
(γm – )σ

)
. (.)
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It follows from (.) that

|ck| =
∣∣∣∣k + αk(k – ) –  – [k + αk(k – ) – (γm – )]σ

(γm – )σ

∣∣∣∣
� k + αk(k – ) –  + [k + αk(k – ) – (γm – )]|σ |

( – γm)|σ |

=
k( + kα – α) – γm

 – γm

(|σ | = 
)
.

If f ∈Am satisfies the condition (.), we deduce from (.) that

(f ∗ h)(z)
z

�= –ε
(|ε| < δ; δ > 

)
,

or, equivalently,

∣∣∣∣ (f ∗ h)(z)
z

∣∣∣∣ � δ (z ∈U; δ > ). (.)

We now suppose that

q(z) = z +
∞∑

k=m+

dkzk ∈Nδ(f ).

It follows from (.) that

∣∣∣∣ ((q – f ) ∗ h)(z)
z

∣∣∣∣ =
∣∣∣∣∣

∞∑
k=m+

(dk – ak)ckzk–
∣∣∣∣∣

� |z|
∞∑

k=m+

k( + kα – α) – γm

 – γm
|dk – ak| < δ. (.)

Combining (.) and (.), we easily find that

∣∣∣∣ (q ∗ h)(z)
z

∣∣∣∣ =
∣∣∣∣ ([f + (q – f )] ∗ h)(z)

z

∣∣∣∣�
∣∣∣∣ (f ∗ h)(z)

z

∣∣∣∣ –
∣∣∣∣ ((q – f ) ∗ h)(z)

z

∣∣∣∣ > ,

which implies that

(q ∗ h)(z)
z

�=  (z ∈U).

Therefore, we conclude that

q(z) ∈Nδ(f ) ⊂Hm(α,β).

We thus complete the proof of Theorem . �

Next, we derive the partial sums of the class Hm(α,β). For some recent investigations
involving the partial sums in analytic function theory, one can refer to [–] and the
references cited therein.
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Theorem  Let f ∈Am be given by (.) and define the partial sums fn(z) of f by

fn(z) = z +
n∑

k=m+

akzk (n ∈ N;n�m + ). (.)

If

∞∑
k=m+

k( + kα – α) – γm

 – γm
|ak|�  (α � ;� β < ;γm < ), (.)

then
() f ∈Hm(α,β);
()

�
(
f (z)
fn(z)

)
� n( + α + nα)

(n + )( + nα) – γm
(n ∈N;n�m + ; z ∈U) (.)

and

�
(
fn(z)
f (z)

)
� (n + )( + nα) – γm

(n + )( + nα) +  – γm
(n ∈ N;n�m + ; z ∈U). (.)

The bounds in (.) and (.) are sharp.

Proof () Suppose that f(z) = z. We know that z ∈Hm(α,β), which implies that

f(z) + εz
 + ε

= z ∈Hm(α,β).

From (.), we easily find that

∞∑
k=m+

k( + kα – α) – γm

 – γm
|ak – |� ,

which implies that f ∈N(z). In view of Theorem , we deduce that

f ∈N(z) ⊂Hm(α,β).

() It is easy to verify that

(n + )[ + (n + )α – α] – γm

 – γm
=
(n + )( + nα) – γm

 – γm

>
n( + nα – α) – γm

 – γm
>  (n ∈N).

Therefore, we have

n∑
k=m+

|ak| + (n + )( + nα) – γm

 – γm

∞∑
k=n+

|ak|�
∞∑

k=m+

k( + kα – α) – γm

 – γm
|ak|� . (.)
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We now suppose that

ψ(z) =
(n + )( + nα) – γm

 – γm

(
f (z)
fn(z)

–
n( + α + nα)

(n + )( + nα) – γm

)

=  +
(n+)(+nα)–γm

–γm

∑∞
k=n+ akzk–

 +
∑n

k=m+ akzk–
. (.)

It follows from (.) and (.) that

∣∣∣∣ψ(z) – 
ψ(z) + 

∣∣∣∣�
(n+)(+nα)–γm

–γm

∑∞
k=n+ |ak|

 – 
∑n

k=m+ |ak| – (n+)(+nα)–γm
–γm

∑∞
k=n+ |ak|

�  (z ∈U),

which shows that

�(
ψ(z)

)
�  (z ∈U). (.)

Combining (.) and (.), we deduce that the assertion (.) holds true.
Moreover, if we put

f (z) = z +
 – γm

(n + )( + nα) – γm
zn+

(
n ∈N \ {, , . . . ,m – };m ∈N

)
, (.)

then for z = reiπ/n, we have

f (z)
fn(z)

=  +
 – γm

(n + )( + nα) – γm
zn → n( + α + nα)

(n + )( + nα) – γm

(
r → –

)
,

which implies that the bound in (.) is the best possible for each n ∈ N \ {, , . . . ,m – }.
Similarly, we suppose that

ϕ(z) =
(n + )( + nα) +  – γm

 – γm

(
fn(z)
f (z)

–
(n + )( + nα) – γm

(n + )( + nα) +  – γm

)

=  –
(n+)(+nα)+–γm

–γm

∑∞
k=n+ akzk–

 +
∑∞

k=m+ akzk–
. (.)

In view of (.) and (.), we conclude that

∣∣∣∣ϕ(z) – 
ϕ(z) + 

∣∣∣∣ �
(n+)(+nα)+–γm

–γm

∑∞
k=n+ |ak|

 – 
∑n

k=m+ |ak| – n(+α+nα)
–γm

∑∞
k=n+ |ak|

�  (z ∈U),

which implies that

�(
ϕ(z)

)
�  (z ∈ U). (.)

Combining (.) and (.), we readily get the assertion (.) of Theorem . The bound
in (.) is sharp with the extremal function f given by (.).
The proof of Theorem  is thus completed. �
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Finally, we turn to ratios involving derivatives. The proof of Theorem  below is much
akin to that of Theorem , we here choose to omit the analogous details.

Theorem  Let f ∈ Am be given by (.) and define the partial sums fn(z) of f by (.). If
the condition (.) holds, then

�
(
f ′(z)
f ′
n(z)

)
� (n + )(nα + γm) – γm

(n + )( + nα) – γm
(n ∈ N;n�m + ; z ∈U) (.)

and

�
(
f ′
n(z)
f ′(z)

)
� (n + )( + nα) – γm

(n + )( + nα – γm) – γm
(n ∈N;n�m + ; z ∈ U). (.)

The bounds in (.) and (.) are sharp with the extremal function given by (.).

Remark By setting α =  andm =  in Theorems  and , we get the corresponding results
obtained by Silverman [].
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