
Demirtürk Bitim and Keskin Journal of Inequalities and Applications 2013, 2013:162
http://www.journalofinequalitiesandapplications.com/content/2013/1/162

RESEARCH Open Access

On some Diophantine equations
Bahar Demirtürk Bitim* and Refik Keskin

*Correspondence:
demirturk@sakarya.edu.tr
Department of Mathematics,
Sakarya University, Esentepe
Campus, Sakarya, 54187, Turkey

Abstract
We consider the sequences (un) and (vn) which are the generalizations of Fibonacci
and Lucas sequences, respectively. Then we determine some identities involving
these generalized sequences to present all solutions of the equations

x2 – vnxy + y2 = –(p2 – 4)u2n,

x2 – vnxy + y2 = u2n,

and

x2 – (p2 – 4)unxy – (p2 – 4)y2 = v2n ,

for p ≥ 3 and a square-free integer p2 – 4. In addition to these, all solutions of some
different Diophantine equations such as x2 – v2nxy + y2 = –(p2 – 4)u2n,
x2 – vnxy + y2 = –(p2 – 4), x2 – vnxy + y2 = 1, x2 – v2nxy + y2 = u2n, x

2 – v2nxy + y2 = v2n ,
x2 – (p2 – 4)unxy – (p2 – 4)y2 = 1 are identified, by using divisibility rules of the
sequences (un) and (vn).
MSC: 11B37; 11B39; 11C20; 11D09; 11D45
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1 Introduction
In this paper, we consider the generalized Fibonacci sequence (un) and the generalized
Lucas sequence (vn). Let p≥  be an integer. For any n ≥ , (un) is definedby the recurrence
relation un = pun– – un– with the initial conditions u = , u = . The generalized Lucas
sequence (vn) is defined by the recurrence relation vn = pvn– – vn– for any n ≥  with
the initial conditions v =  and v = p. The terms un and vn are called the nth generalized
Fibonacci and Lucas numbers, respectively.
Moreover, generalized Fibonacci and Lucas numbers can be extended to negative in-

dices. In general, for all n ∈ N, u–n = –un and v–n = vn. Furthermore it is known that
vn = un+ – un–. For more detailed information about these sequences, one can consult
[–] and [].
In [], McDaniel showed that the solutions of the equation x – (p – )y =  are given

by (x, y) = (vn,un) with n ≥ . Moreover, in [–] and [], Jones investigated whether the
equations x–(p∓)y = ∓, x–(p∓)y = ∓, x–(p∓)y = ∓ and x–(p∓)y =
∓ have solutions or not. In his proofs, he used Fermat’s method of infinite descent.
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In [], Demirtürk and Keskin determined all solutions of the knownDiophantine equa-
tions x – Lnxy – y = ∓, x – Lnxy + (–)ny = ∓ and new Diophantine equations

x – Fnxy – (–)ny = ∓,

x – Lnxy + y = ∓F
n ,

x – Lnxy + y = ∓F
n ,

x – Lnxy + y = ∓Ln

and

x – Lnxy + y = ∓Ln.

In this paper, our main purpose is to determine all (x, y) solutions of the Diophantine
equations

x + axy + by = c,

where a, b, c are generalized Fibonacci and generalized Lucas numbers. These equations
can be listed as follows:

x – vnxy + y = –
(
p – 

)
un,

x – vnxy + y = un,

x –
(
p – 

)
unxy –

(
p – 

)
y = vn,

x – vnxy + y = –
(
p – 

)
un,

x – vnxy + y = –
(
p – 

)
,

x – vnxy – y = ,

x – vnxy + y = un,

x – vnxy + y = vn

and

x –
(
p – 

)
unxy –

(
p – 

)
y = .

2 Divisibility rules of sequences (un) and (vn)
In this section, we recall some divisibility rules related to generalized Fibonacci and Lucas
sequences (un) and (vn). Since these rules are proved in [–], we omit their proofs.
Using these divisibility rules, in the last section, we will find all solutions of Diophantine
equations mentioned above.

Theorem  Let m,n ∈N. Then vn|um if and only if n|m and m/n is an even integer.

Theorem  Let m,n ∈N. Then un|um if and only if n|m.
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Theorem  Let m,n ∈N. Then vn|vm if and only if n|m and m/n is an odd integer.

Theorem Let m,n ∈N and n > . Then un|vm if and only if n =  andm is an odd integer.

3 Some identities of the sequences (un) and (vn)
In this section, we obtain some identities by using special matrices including generalized
Fibonacci and Lucas numbers.
Now we compile some identities to use in the proofs of the following theorems. These

identities can be found in [, , ] and [].

un – punun– + un– = , (.)

vn – pvnvn– + vn– = –
(
p – 

)
, (.)

vmun – umvn = un–m, (.)

vmvn –
(
p – 

)
umun = vn–m, (.)

unum+ – umun– = un+m, (.)

vmvn +
(
p – 

)
umun = vn+m, (.)

umvn + vmun = un+m, (.)

un+ – un– = vn, (.)

vn+ – vn– =
(
p – 

)
un, (.)

vn –
(
p – 

)
un = , (.)

um+vn – umvn– = vn+m (.)

for allm,n ∈ Z.

Theorem 

vn+m –
(
p – 

)
un–tvn+mum+t –

(
p – 

)
um+t = vn–t ,

for all m,n, t ∈ Z.

Proof If we consider identities (.) and (.), then the matrix multiplication

[
vn/ (p – )un/
ut/ vt/

][
vm
um

]
=

[
vn+m
um+t

]

can be written. By identity (.), we get

[
vm
um

]
=

[
vn/ (p – )un/
ut/ vt/

]– [
vn+m
um+t

]
=


vn–t

[
vt/ –(p – )un/
–ut/ vn/

][
vn+m
um+t

]
,

since∣∣∣∣∣vn/
(
p – 

)
un/

ut/ vt/

∣∣∣∣∣ = vnvt – (p – )unut


=
vn–t


�= .
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Thus, it follows that

vm =
vtvn+m – (p – )unum+t

vn–t

and

um =
vnum+t – utvn+m

vn–t
.

Since vm – (p – )um = , we have

(
vtvn+m –

(
p – 

)
unum+t

) – (
p – 

)
(vnum+t – utvn+m) = vn–t .

Therefore, we obtain (vt – (p – )ut )vn+m – (p – )(vtun – vnut)vn+mum+t – (p – )(vn –
(p – )un)um+t = vn–t . By using (.) and (.) in this equation, it is seen that

vn+m – 
(
p – 

)
un–tvn+mum+t – 

(
p – 

)
um+t = vn–t .

Thus, we get

vn+m –
(
p – 

)
un–tvn+mum+t –

(
p – 

)
um+t = vn–t . (.)

�

Theorem  Let m,n, t ∈ Z and t �= n. Then

vn+m – vn–tvn+mvm+t + vm+t = –
(
p – 

)
un–t .

Proof By using (.), we can consider the matrix multiplication

[
vn/ (p – )un/
vt/ (p – )ut/

][
vm
um

]
=

[
vn+m
vm+t

]
.

Since t �= n, we get

∣∣∣∣∣vn/
(
p – 

)
un/

vt/
(
p – 

)
ut/

∣∣∣∣∣ = (p – )(vnut – vtun)


=
(p – )un–t


�= ,

by (.). Therefore, we have

[
vm
um

]
=

[
vn/ (p – )un/
vt/ (p – )ut/

]– [
vn+m
vm+t

]

=


(p – )un–t

[
(p – )ut/ –(p – )un/

–vt/ vn/

][
vn+m
vm+t

]
.

Thus, it follows that

vm =
utvn+m – unvm+t

un–t

http://www.journalofinequalitiesandapplications.com/content/2013/1/162
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and

um =
vnvm+t – vtvn+m
(p – )un–t

.

Since vm – (p – )um = , we get

(
p – 

)
(utvn+m – unvm+t) – (vnvm+t – vtvn+m) = 

(
p – 

)
un–t .

Hence, it is seen that –(vt – (p – )ut )vn+m + (vnvt – (p – )utun)vn+mvm+t – (vn – (p –
)un)vm+t = (p – )un–t . By using identities (.) and (.), we obtain

vn+m – vn–tvn+mvm+t + vm+t = –
(
p – 

)
un–t ,

that is,

vn+m – vn–tvn+mvm+t + vm+t = –
(
p – 

)
un–t . (.)

�

Using (.) and the matrix multiplication

[
un/ vn/
ut/ vt/

][
vm
um

]
=

[
un+m
um+t

]
,

we can give the following theorem.

Theorem  Let m,n, t ∈ Z and t �= n. Then

un+m – vn–tun+mum+t + um+t = un–t . (.)

4 Solutions of some Diophantine equations
In [], Melham proved that all solutions of the equations y – vmxy + x = ∓um are (x, y) =
∓(un,un+m) with n ∈ Z. Moreover, he showed that if m ∈ Z and p –  is a square-free
integer, then all solutions of the equation y – vmxy+ x = –(p – )um are given by (x, y) =
∓(vn, vn+m) with n ∈ Z. These theorems of Melham are generalized forms of the theorems
given in [], by McDaniel. In [], Kılıç and Ömür examined more general situations of the
conics that McDaniel and Melham dealt in [] and [], respectively.
In this section, using the identities given in (.) and (.), we will obtain all solutions

of the equations

x – vnxy + y = –
(
p – 

)
un

and

x – vnxy + y = un

with n≥ , p≥  and p –  is a square-free integer. The solutions of these equations were
explored by Kimberling,McDaniel andMelham, respectively in [, ] and [], but we will

http://www.journalofinequalitiesandapplications.com/content/2013/1/162
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give different proofs of them here. Moreover, for p ≥ , we will obtain all solutions of the
Diophantine equation

x –
(
p – 

)
unxy –

(
p – 

)
y = vn,

by using (.). Subsequently, if p≥  and p –  is a square-free integer, then we will find
all solutions of Diophantine equations

x – vnxy + y = –
(
p – 

)
un

and

x – vnxy + y = –
(
p – 

)
.

Moreover, all solutions of the equations

x – vnxy + y = , x – vnxy + y = un

and

x – vnxy + y = vn

will be determined. Addition to this, if p≥ , then all solutions of the equation

x –
(
p – 

)
unxy –

(
p – 

)
y = 

will be found.
Now we will remind some Diophantine equations with their solutions. The solutions of

these equations are explored in [] and []. We will use these equations for determining
all solutions of other Diophantine equations.

Theorem  Let p > . All solutions of the equation x – pxy + y =  are given by (x, y) =
∓(um,um–) with m ∈ Z.

Since Corollary  can be seen from Theorem  and Corollary  is stated in [], we will
give them without proof.

Corollary  All solutions of the equation x –xy+y =  are given by (x, y) = ∓(Fm+,Fm)
with m ∈ Z.

Corollary  Let p > . All nonnegative solutions of the equation u – (p – )v =  are
given by (u, v) = (vm,um) with m ≥ .

Theorem  and Theorem  are stated in [], so will give them without proof.

Theorem  Let p > . Then the equation x – pxy + y = – has no solutions.

Theorem  All solutions of the equation x – xy + y = – are given by (x, y) =
∓(Fm+,Fm–) with m ∈ Z.

http://www.journalofinequalitiesandapplications.com/content/2013/1/162
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From now on we will assume that n is an integer such that n≥ .

Theorem  If p ≥ , then all solutions of the equation x – (p – )unxy – (p – )y = vn
are given by (x, y) = ∓(vn+m,um) with m ∈ Z.

Proof Assume that x – (p – )unxy– (p – )y = vn for some integers x and y. Hence, we
can write

(
x –

(
p – 

)
uny

) – ((
p – 

)un + 
(
p – 

))
y = vn.

Thus, it follows that (x – (p – )uny) – (p – )((p – )un + )y = vn. By using (.)
in this equation, we get (x – (p – )uny) – (p – )vny = vn. Therefore it can be seen
that vn|x – (p – )uny. Then taking

u =
( (x–(p

–)uny)
vn + py)


and v = y,

we obtain u = (x + vn–y)/vn, by (.). From here we get

u – puv + v =
(
(x + vn–y)/vn

) – p
(
(x – vn–y)/vn

)
y + y

=
(
x – (vn+ – vn–)xy + y

(
vn – pvnvn– + vn–

))
/vn.

Hence, it follows that

u – puv + v =
(
x –

(
p – 

)
unxy –

(
p – 

)
y

)
/vn = vn/v


n = ,

by using (.) and (.). From Theorem , we obtain (u, v) = ∓(um+,um) for some m ∈ Z.
Thus, it is seen that

(x + vn–y)/vn = ∓um+ and y = ∓um,

so we get x = ∓(um+vn – vn–um) and y = ∓um. Now using (.), we obtain

(x, y) = ∓(vn+m,um).

Conversely, if (x, y) = ∓(vn+m,um) with m ∈ Z, then it can be seen that x – (p – )unxy –
(p – )y = vn, by (.). �

Using Theorem  in the same manner with Theorem , the following corollary can be
given.

Corollary  If p > , then the equation x – (p –)unxy–(p –)y = –vn has no solutions.

Proof Assume that x – (p – )unxy – (p – )y = –vn for some integers x and y. Similar
with the proof of Theorem , taking u = (x + vn–y)/vn and v = y, it can be seen that

u – puv + v =
(
x –

(
p – 

)
unxy –

(
p – 

)
y

)
/vn = –vn/v


n = –,

http://www.journalofinequalitiesandapplications.com/content/2013/1/162
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which is impossible by Theorem . Thus, it follows that the equation x – (p – )unxy –
(p – )y = –vn has no integer solutions. �

The following corollary is a result of Theorem . Since it is proved in [], we will give
it without proof.

Corollary  All solutions of the equation x – Fnxy – y = –Ln are given by (x, y) =
∓(Ln+m+,Fm+) with m ∈ Z.

Theorem  and Theorem  are stated by Melham, Kılıç and Ömür without proof in
[] and [], respectively. Now we will prove them.

Theorem  Let p≥  and p –  be a square-free integer. Then all solutions of the equa-
tion x – vnxy + y = –(p – )un are given by (x, y) = ∓(vn+m, vm) with m ∈ Z.

Proof Assume that x –vnxy+y = –(p –)un for some integers x and y. Thenmultiplying
both sides of this equation by  and using (.), we get (x–vny) – (p –)uny = –(p –
)un. Since p –  is square-free, it follows that un|x – vny. Therefore, there is an integer
z such that x– vny = unz. From here we get (unz) – (p – )uny = –(p – )un, and then
z – (p – )y = –(p – ). This implies that (p – )|z. Then there is an integer a such
that z = (p – )a, and we have x – vny = (p – )una. Thus, it follows that

y –
(
p – 

)
a = .

Since

y – pa =  + a,

we have y – pa is even. Then we can see that y and pa have the same parity. Taking
u = (y + pa)/ and v = a, we obtain

u =
y + p( x–vny

(p–)un
)


=
px + ((p – )un – pvn)y

(p – )un
=
px – vn–y
(p – )un

and

v =
x – vny
(p – )un

.

Hence, we get

u – puv + v =
(
px – vn–y
(p – )un

)

– p
(
px – vn–y
(p – )un

)(
x – vny
(p – )un

)
+

(
x – vny
(p – )un

)

= –
(
p – 

)(
x – vnxy + y

)
/
(
p – 

)un = .

Therefore it follows that (u, v) = ∓(um+,um) withm ∈ Z fromTheorem . Thus, we obtain

(px – vn–y)/
(
p – 

)
un = ∓um+ and (x – vny)/

(
p – 

)
un = ∓um. (.)

Using the identities (.), (.) and (.) in (.), we get (x, y) = ∓(vn+m, vm).

http://www.journalofinequalitiesandapplications.com/content/2013/1/162
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Conversely, if (x, y) = ∓(vn+m, vm), then it follows that x – vnxy + y = –(p – )un, by
(.). �

Using Theorem  in the samemanner with Theorem , we can give the following corol-
lary.

Corollary  Let p >  and p – be a square-free integer.Then the equation x –vnxy+y =
(p – )un has no solutions.

We can give the following corollary from Corollary .

Corollary  Let p >  and p – be a square-free integer.Then the equation x –vnxy+y =
(p – ) has no solutions.

When p = , the equation x – vnxy + y = (p – )un has solutions. In this case we have
the equation x –Lnxy+ y = F

n. Now we can give all solutions of these equations in the
following lemma. Since this lemma is proved in [], we will give it without proof.

Lemma  All solutions of the equation x – Lnxy + y = F
n are given by (x, y) =

∓(Ln+m+,Lm+) with m ∈ Z.

Theorem  All solutions of the equation x – vnxy + y = un are given by (x, y) =
∓(un+m,um) with m ∈ Z.

Proof Suppose that x – vnxy + y = un for some integers x and y. Completing the square
gives (x – vny) – (p – )uny = un, and it is seen that un|x – vny. Thus, it follows that

(
(x – vny)/un

) – (
p – 

)
y = .

Taking u = (((x – vny)/un) + py)/ = (x + un–y)/un and v = y, we have u – puv + v = .
Therefore, from Theorem , we get (u, v) = ∓(um+,um) withm ∈ Z. From here, we obtain
(x, y) = ∓(unum+ – un–um,um). Then by (.), it follows that (x, y) = ∓(un+m,um).
Conversely, if (x, y) = ∓(un+m,um), then it can be seen that x – vnxy + y = un, by (.).

�

Using Theorem  in the samemanner with Theorem , we can give the following corol-
laries.

Corollary  The equation x – vnxy + y = –un has no solutions.

The following corollary is a generalized form of Theorem . Since it is proved in [],
we will give it without proof.

Corollary  All solutions of the equation x – Lnxy + y = –F
n are given by (x, y) =

∓(Fn+m+,Fm+) with m ∈ Z.

Now, let us examine all solutions of the following equations by using Diophantine equa-
tions given in Theorem , Theorem , Theorem  and the divisibility rules of the se-
quences (un) and (vn).

http://www.journalofinequalitiesandapplications.com/content/2013/1/162
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Theorem  All solutions of the equation x – vnxy + y =  are given by (x, y) = ∓(u(t+)n/
un,utn/un) with t ∈ Z.

Proof Assume that x – vnxy + y =  for some integers x and y. Multiplying both sides of
this equation by un, we get

(unx) – vn(unx)(uny) + (uny) = un.

From Theorem , it follows that unx = ∓un+m and uny = ∓um for some integerm. Hence,
we get x = ∓un+m/un and y = ∓um/un. Since x and y are integers, it is clear that n|m. There-
fore, it follows thatm = tn for some t ∈ Z. Then we obtain

(x, y) = ∓(u(t+)n/un,utn/un).

Conversely, if (x, y) = ∓(u(t+)n/un,utn/un) with t ∈ Z, then it follows that x–vnxy+y = ,
by (.). �

Multiplying both sides of the equation x – vnxy + y = – by un and using Corollary ,
the following corollary can be given.

Corollary  The equation x – vnxy + y = – has no solutions.

Theorem  If p ≥ , then all solutions of the equation x – (p – )unxy – (p – )y = 
are given by (x, y) = ∓(v(t+)n/vn,utn/vn) with t ∈ Z.

Proof Assume that x – (p –)unxy– (p –)y =  for some integers x and y. Multiplying
both sides of this equation by vn, we get

(vnx) –
(
p – 

)
un(vnx)(vny) –

(
p – 

)
(vny) = vn.

Thus, it follows that vnx = ∓vn+m and uny = ∓um according to Theorem . Hence, we get
(x, y) = ∓(vn+m/vn,um/vn). From Theorem  and Theorem , it can be seen that n|m and
m/n is an even integer. This implies that m = tn for some t ∈ Z. Therefore, we obtain
(x, y) = ∓(v(t+)n/vn,utn/vn).
Conversely, if (x, y) = ∓(v(t+)n/vn,utn/vn) for some t ∈ Z, then it follows that x – (p –

)unxy – (p – )y = , by (.). �

The following corollary can be given from Corollary .

Corollary  If p≥ , then the equation x –(p –)unxy–(p –)y = – has no solutions.

Theorem  If p≥  and p –  is a square-free integer, then all solutions of the equation
x – vnxy + y = –(p – )un are given by (x, y) = ∓(v(t+)n/vn, v(t+)n/vn) with t ∈ Z.

Proof Suppose that x – vnxy + y = –(p – )un for some integers x and y. Multiplying
both sides of this equation by vn and considering the fact that un = unvn, we get

(vnx) – vn(vnx)(vny) + (vny) = –
(
p – 

)
un.

http://www.journalofinequalitiesandapplications.com/content/2013/1/162
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From Theorem , it follows that vnx = ∓vn+m and vny = ∓vm. Hence we get (x, y) =
∓(vn+m/vn, vm/vn). Moreover, since x and y are integers, it follows that n|m and m/n is
an odd integer from Theorem . Then there is an integer t such thatm = (t + )n. There-
fore, we obtain (x, y) = ∓(v(t+)n/vn, v(t+)n/vn).
Conversely, if (x, y) = ∓(v(t+)n/vn, v(t+)n/vn) for some t ∈ Z, then it follows that x –

vnxy + y = –(p – )un, by (.). �

The following corollary can be proved similar to Theorem , by using Corollary . So,
we omit its proof.

Corollary  If p >  and p – is a square-free integer, then the equation x – vnxy+ y =
(p – )un has no solutions.

Theorem  All solutions of the equations x – vnxy+ y = un and x – vnxy+ y = vn are
given by (x, y) = ∓(u(t+)n/vn,utn/vn) and (x, y) = ∓(u(t+)n/un,utn/un) with t ∈ Z, respec-
tively.

Proof Assume that x – vnxy + y = un for some integers x and y. Multiplying both sides
of this equation by vn, we get

(vnx) – vn(vnx)(vny) + (vny) = un.

Then from Theorem , it follows that (x, y) = ∓(un+m/vn,um/vn) for somem ∈ Z. Hence,
using Theorem  it is seen that n|m andm/n is an even integer. Thus, we havem = tn for
some t ∈ Z. Therefore, (x, y) = ∓(u(t+)n/vn,utn/vn).
Conversely, if (x, y) = ∓(u(t+)n/vn,utn/vn) for some t ∈ Z, then by (.) it follows that

x – vnxy + y = un.
Now suppose that x – vnxy + y = vn for some integers x and y. Multiplying both sides

of this equation by un and considering Theorem , we get (x, y) = ∓(un+m/un,um/un) for
some m ∈ Z. Furthermore, since xandy are integers, it follows that n|m from Theorem .
Then we havem = tn for some t ∈ Z. Thus, we obtain (x, y) = ∓(u(t+)n/un,utn/un).
Conversely, if (x, y) = ∓(u(t+)n/un,utn/un), then by (.) it follows that x – vnxy + y =

vn. �

The proof of the following corollary is similar to that of Theorem , by using Corol-
lary . So, we omit its proof.

Corollary  The equations x – Lnxy + y = –F
n and x – Lnxy + y = –Ln have no

solutions.

Theorem Let p≥ , p – be a square-free integer. If n > , then the equation x –vnxy+
y = –(p–) has no solutions andall solutions of the equation x–(p–)xy+y = –(p–)
are given by (x, y) = ∓( vt+p , vt+p ) with t ∈ Z.

Proof Assume that x – vnxy + y = –(p – ) for some integers x and y. Multiplying both
sides of this equation by un, we get

(unx) – vn(unx)(uny) + (uny) = –
(
p – 

)
un.

http://www.journalofinequalitiesandapplications.com/content/2013/1/162


Demirtürk Bitim and Keskin Journal of Inequalities and Applications 2013, 2013:162 Page 12 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/162

From Theorem , it follows that (x, y) = ∓(vn+m/un, vm/un) with m ∈ Z. If n > , then
un � vm from Theorem . Therefore, the equation x – vnxy + y = –(p – ) has no solu-
tions. If n = , then we get that all solutions of the equation x – (p – )xy+ y = –(p – )
are given by (x, y) = ∓(vm+/u, vm/u) with m ∈ Z. Hence, it is seen that m is an odd in-
teger according to Theorem . Thus, m = t +  for some t ∈ Z. Therefore, it follows that
(x, y) = ∓( vt+p , vt+p ). �
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