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Abstract
In this paper, the change-point estimator for the shape parameter is proposed in a
negative associated gamma random variable sequence. Suppose that X1, . . . ,Xn are
negative associated random variables satisfying that X1, . . . ,X[nτ0] are identically
distributed with �(x;ν1,λ), and that X[nτ0]+1, . . . ,Xn are identically distributed with
�(x;ν2,λ); the change point τ0 is unknown. The weak and strong consistency, and
the weak and strong convergence rate of the change-point estimator, are given by
the CUSUMmethod. Furthermore, the OP convergence rate of the change-point
estimator is presented under the local alternative hypothesis condition.
MSC: 62F12; 62G10
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1 Introduction
The gamma distribution occurs frequently in a variety of applications, especially in relia-
bility, in survival analysis and in modeling income distributions. The density of a gamma-
distributed random variable X with a shape parameter ν and a scale parameter λ is given
by

f (x;ν,λ) =
λν

�(ν)
xν–e–λxI (x > ), ()

where I(·) is the indicator function, �(·) is a � function with �(p) =
∫ ∞
 e–xxp– dx.

The family of gamma distributions includes the chi-squared distribution, exponential
distribution and Erlang distribution. For example, the gamma distribution is an Erlang
distribution with a positive integer ν . When the shape parameter ν = , the gamma dis-
tribution is an exponential distribution with parameter λ; when λ = 

 , the gamma distri-
bution is a chi-squared distribution, with ν degrees of freedom. The shape parameter
is especially of interest in reliability theory because the gamma distribution is either a
decreasing failure rate (DFR), a constant or an increasing failure rate (IFR) according to
whether the shape parameter is negative, zero or positive. The shape parameter also plays
an important role in renewal theory when modeling arrival times of events.
As for the gamma distribution parameter change-point problems, Kander and Zacks []

proposed a statistic for testing a change in the one-parameter exponential family; Hsu []
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considered a change point for the scale parameter of gamma random variables, assuming
that the shape parameterwas constant; Diaz [] posed the Bayesian test regarding the scale
parameter change point for the independent gammavariables;Gupta andRamanayake [],
Ramanayake and Gupta [] discussed a linear trend change for the exponential distribu-
tion; Ramanayake [] proposed some tests for detecting a change in the shape parameter
of gamma distributions assuming that λ is constant. The strong consistency and conver-
gence rate of the change-point estimator have been investigated by applying the moving
averages method (Tan et al. []), assuming that there is at most one change point.
Change-point analysis is widely used in fields such as quality control, economics and

finance, biostatistics and so on (see Page []; Bai and Perron []; Braun et al. []; Chen
et al. []). Change-point problems have also received considerable attention due to the
wide variety of applications and recent developments in computational methods. There
is a considerable body of literature on change-point analysis that assume that the random
variables being considered are independent.
Let X,X, . . . ,Xn be a negative associated sequence that satisfies the conditions that

X, . . . ,X[nτ] have the common distribution �(x;ν,λ), and that X[nτ]+, . . . ,Xn have the
common distribution �(x;ν,λ), where τ is an unknown parameter called the change
point; ν, ν are the shape parameters before and after change, respectively. In this paper,
we assume that the scale parameter does not change, but the shape parameter is suscep-
tible to change at an unknown time [nτ] in the sequence. Noticing that λX ∼ �(x;ν, )
and its distribution is not related to the scale parameter, logarithm transformations may
be made for {Xi, i = , . . . ,n} as follows. Let

Yi = lnλXi, i = , , . . . ,n. ()

It can be shown that the mean of Y is μ = EY = �(ν) and the mean of Y[nτ]+ is μ =
EY[nτ]+ = �(ν), where �(ν) is the derivation of ln�(ν); that is,

�(ν) =
d[ln(�(ν))]

dν
=

�′(ν)
�(ν)

.

�(ν) can be expressed, as in [, p.], by

�(ν) = –γ +
∫ +∞



e–t – e–νt

 – e–t
dt,

where γ is the Euler-Mascheroni constant, that is, γ = –
∫ +∞
 e–x lnxdx. Since � ′(ν) =∫ +∞


t

–e–t e
–νt dt > , hence �(ν) is an increasing function in (,+∞).

Define

Uk =
k∑
i=

Yi –
k
n

n∑
i=

Yi,

ρ = ν – ν, μ = μ –μ.

()

Since

Uk =
k∑
i=

lnλXi –
k
n

n∑
i=

lnλXi =
k∑
i=

lnXi –
k
n

n∑
i=

lnXi,
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are not related to the scale parameter λ, then if we know in advance or by test that there
is a change in the shape parameter, we may define the estimator of the change point τ as

τ̂ =

n
min

{
k : |Uk| = max

≤j≤n
|Uj|

}
. ()

For convenience, throughout this paper, c, c, . . . represent a constant which is indepen-
dent of n and may take different values in different expressions.
The paper is arranged as follows. In Section , the change-point estimator τ̂ is proposed

based on the CUSUM method by an appropriate logarithm transformation for {Xi, i =
, . . . ,n}, and its constancy and convergence rate are investigated. The proofs of theorems
are given in Section .

2 Main results
Theorem  Assume that X,X, . . . ,Xn is a negative associated random variable sequence
satisfying the conditions that X, . . . ,X[nτ] are identically distributed with �(x;ν,λ), and
X[nτ]+, . . . ,Xn are identically distributed with �(x;ν,λ). Let

k = [nτ], k̂ = [nτ̂ ], k = [nτ ] for some  < τ < , ()

where [A] denotes the integer part of a number A. If the ρ = ν – ν is a non-zero constant,
then τ̂ is a consistent estimator of τ and

|̂τ – τ| = oP
(
n–


 l(n)

)
, ()

where l(n) is a slowly varying function with limn→∞ l(n) = +∞.

Theorem  Assume that the conditions of Theorem  hold, then τ̂ is a strong consistent
estimator of τ, and

|̂τ – τ| = o
(
n–


 +δ

)
, a.s. for some  < δ <



. ()

Next, we will study the OP convergence rate of τ̂ under the local alternative hypothesis;
that is, ρ is not a constant independent of n, but it depends on n and is denoted by ρn.
Noticing that if ρn is large, the change-point estimation is usually quite precise. In practice
it may be more important to construct confidence intervals for τ when ρn is small. We
hence assume that ρn –→  as n –→ ∞. It can be seen that the results obtained in the
above theorems cannot be applied here, and we need to establish stronger results than
those obtained in the above theorems.
Notice that μi = �(νi), i = , . Then, by the mean theorem, μn (under the local alterna-

tive hypothesis, denoting μ as μn) can be expressed as

μn = μ –μ = � ′(ν̃)(ν – ν) = � ′(ν̃)ρn,

where ν̃ lies between ν and ν. Hence, with some added conditions, μn is equal to ρn in
practice.
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Theorem  Assume that X,X, . . . ,Xn is a negative associated random variable sequence,
andX, . . . ,X[nτ] are identically distributed by�(x;ν,λ),andX[nτ]+, . . . ,Xn are identically
distributed by �(x;ν,λ). If μn satisfies

μn –→ ,
√
nμn –→ ∞, ()

then

|̂τ – τ| =OP

(


nμ
n

)
. ()

Remark  Theorems  and  give the weak and strong consistency and convergence rates
for the change-point estimator τ̂ of the shape parameter in a gamma distribution. In The-
orem , the OP convergence rate of the change-point estimator τ̂ of the shape parameter
is proposed under the local alternative condition, and it is one of the necessary conditions
for studying the limiting distribution of τ̂ . Having this OP value, we can study the limiting
distribution of τ̂ . This will be the subject of a future paper.

3 Proof of the theorem
To prove the above theorems, we first consider the following lemmas.

Lemma  Let A,A, . . . ,Am be disjoint subsets of {, , . . . ,n}, and let ai = 
(Ai) be the num-
ber of elements in Ai, i = , , . . . ,m.Assume that Z,Z, . . . ,Zn are negative associated vari-
ables, then if

fi : Rai → R, i = , , . . . ,m ()

are the increasing (or decreasing) positive functions for every element, then f(Zj, j ∈
A), . . . , fm(Zj, j ∈ Am) are the negative associated variables.

Proof See Joag-Dev and Proschan []. �

Lemma  Let {Zj, j ∈ N} be a negative associated sequence with zero mean satisfying
βp = supj∈N E|Zj|p < ∞ for some p≥ .Denoting Sa,k =

∑k–
j= Za+j, then there exist constants

Cp,Kp ≥  related to p, for all a,n ∈N , such that

E|S,n|p ≤ Cpn
p
 –

n∑
j=

E|Zj|p; E
(
max
≤k≤n

|Sa,k|
)p ≤ Kpβpn

p
 . ()

Proof See Su, Zhao and Wang []. �

Lemma  Let {Zn,n ≥ } be a negative associated sequence, if {bk ,k ≥ } is an increasing
number serial, then ∀ε >  and m ≤ n, we have

P

(
max
≤k≤n

∣∣∣∣∣ bk
k∑
i=

(Xi – EXi)

∣∣∣∣∣ ≥ ε

)
≤ 

ε

n∑
j=

Var(Xj)
bj

; ()

P

(
max
m≤k≤n

∣∣∣∣∣ bk
k∑
i=

(Xi – EXi)

∣∣∣∣∣ ≥ ε

)
≤ 

ε

( m∑
j=

Var(Xj)
bm

+ 
n∑

j=m+

Var(Xj)
bj

)
. ()
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Proof See Hu and Zhang []. �

Proof of Theorem  Noticing that ln(λx) is an increasing positive function and X, . . . ,Xn

are negative associated sequences, we have fromLemma  that {Yi, i = , . . . ,n} are negative
associated sequences. Without loss of generality, assuming that ν > ν, by the increasing
character of �(ν) in (,∞), we know that μ = μ –μ > . By simple computation, it can
be shown that

EUk =
k(n – k)

n
(μ –μ) = nτ( – τ)μ, ()

and

EUk =

⎧⎨⎩
k(n–k)

n μ, k ≤ k,
(n–k)k

n μ, k > k,
=

⎧⎨⎩nτ ( – τ)μ, k ≤ k,

n( – τ )τμ, k > k.
()

Hence,

|EUk | – |EUk| =
⎧⎨⎩n( – τ)(τ – τ )μ, k ≤ k,

nτ(τ – τ)μ, k > k,

≥ nτ ∗μ|τ – τ|, ()

where τ ∗ =min{τ,  – τ}.
From the triangle inequality, it can easily be shown that

|Uk| – |Uk | ≤  max
≤k≤n

|Uk – EUk| + |EUk| – |EUk |,

namely,

|EUk | – |EUk| ≤  max
≤k≤n

|Uk – Eμk| + |Uk | – |Uk|.

Noticing that |Uk | ≤ |Uk̂|, hence we have

|EUk | – |EUk̂| ≤  max
≤k≤n

|Uk – EUk|. ()

Let Y ∗
i = Yi – EYi, then by () and (), it follows that

nτ ∗μ|τ – τ| ≤  max
≤k≤n

|Uk – EUk| =  max
≤k≤n

∣∣∣∣∣
k∑
i=

Y ∗
i –

k
n

n∑
i=

Y ∗
i

∣∣∣∣∣
=  max

≤k≤n

∣∣∣∣∣n – k
n

k∑
i=

Y ∗
i –

k
n

n∑
i=k+

Y ∗
i

∣∣∣∣∣
≤  max

≤k≤n

∣∣∣∣∣
k∑
i=

Y ∗
i

∣∣∣∣∣ +  max
≤k≤n

∣∣∣∣∣
n∑

i=k+

Y ∗
i

∣∣∣∣∣. ()
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Hence,

P
(
g(n)|̂τ – τ| > ε

)
= P

(
|̂τ – τ| > ε

g(n)

)

≤ P

(


nτ ∗μ

{
max
≤k≤n

∣∣∣∣∣
k∑
i=

Y ∗
i

∣∣∣∣∣ + max
≤k≤n

∣∣∣∣∣
n∑

i=k+

Y ∗
i

∣∣∣∣∣
}
>

ε

g(n)

)

≤ P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Y ∗
i

∣∣∣∣∣ > nτ ∗μ

g(n)
ε

)
+ P

(
max
≤k≤n

∣∣∣∣∣
n∑

i=k+

Y ∗
i

∣∣∣∣∣ > nτ ∗μ

g(n)
ε

)
=̂ A +A. ()

Since Y,Y, . . . ,Yn are the negative associated variables, by the Markov inequality and
Lemma , ∀r > , we have

A ≤ E

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Y ∗
i

∣∣∣∣∣
)r/(

nτ ∗με

g(n)

)r

=
r

(ετ ∗μ)r
gr (n)
nr

E

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Y ∗
i

∣∣∣∣∣
)r

≤ r

(ετ ∗μ)r
gr (n)
nr

Krβrn
r
 ≤ rKrβr

(ετ ∗μ)r

(
n 



g(n)

)–r

, ()

where βr =max{E|Y ∗
 |r ,E|Y ∗

[nτ]+|r} is a constant independent of n. Similar arguments give
that

A ≤ rKrβr

(ετ ∗μ)r

(
n 



g(n)

)–r

. ()

Hence, if we choose g(n) = n 
 l–(n), where l(n) is a slowly varying function satisfying

limn→∞ l(n) = +∞, then combining ()-() we have, as n→ ∞,

P
(
g(n)|̂τ – τ| > ε

)
–→ ,

that is, τ̂ is the weak consistent estimator of τ, and

|̂τ – τ| = oP
(
n–


 l(n)

)
. �

Proof of Theorem  From () to () we have, for ∀ε > ,

∞∑
n=

P
(
g(n)|̂τ – τ| > ε

) ≤
∞∑
n=

rKrβr

(ετ ∗μ)r

(
n 



g(n)

)–r

if we choose g(n) = n 
 –δ for some  < δ < 

 . Let r >

δ
, then we have, as n→ ∞,

∞∑
n=

P
(
g(n)|̂τ – τ| > ε

)
< ∞. ()

By the Borel-Cantelli lemma, we obtain that τ̂ is the strongly consistent estimator of τ ,
and

|̂τ – τ| = o
(
n–


 +δ

)
a.s. for some  < δ <



. �
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Proof of Theorem  To this end, we choose a value  < θ < 
 such that τ ∈ (θ ,  – θ ). By ()

and ()-() (g(n) = ), it is easily found that τ̂ is a consistent estimator of τ. Therefore,
for every ε > , P(̂τ /∈ (θ ,  – θ )) < ε. Thus, we now have only to examine the behavior ofUk

over those k for which nθ ≤ k ≤ n( – θ ). To prove |̂τ – τ| =OP( 
nμ

n
), we shall prove that

P
(

|̂τ – τ| > M
nμ



)
–→ , ()

whenM –→ ∞. For everyM > , define

Dn,M =
{
k : nθ ≤ k ≤ n( – θ ), |k – k| > M

μ
n

}
.

Then we have

P
(

|̂τ – τ| > M
nμ



)
≤ P

(̂
τ /∈ (θ ,  – θ )

)
+ P

(
|̂τ – τ| > M

nμ
n
, τ̂ ∈ (θ ,  – θ )

)
≤ ε + P

(
sup

k∈Dn,M

|Uk| ≥ |Uk |
)
. ()

Since

P
(

sup
k∈Dn,M

|Uk| ≥ |Uk |
)

= P
(

sup
k∈Dn,M

|Uk| ≥ Uk ,Uk ≥ 
)
+ P

(
sup

k∈Dn,M

|Uk| ≥ –Uk ,Uk < 
)

= P
(

sup
k∈Dn,M

|Uk| –Uk ≥ ,Uk ≥ 
)
+ P

(
sup

k∈Dn,M

|Uk| +Uk ≥ ,Uk < 
)

≤ P
(

sup
k∈Dn,M

(Uk –Uk ) ≥ 
)
+ P

(
inf

k∈Dn,M
(Uk +Uk ) ≤ 

)
=̂ B + B. ()

Noticing that Uk + Uk ≤  implies Uk – EUk + Uk – EUk ≤ –EUk – EUk ≤ –EUk ,
which in turn implies that

Uk – EUk ≤ –


EUk or Uk – EUk ≤ –



EUk . ()

Since EUk > , we have

|Uk – EUk| ≥ 

EUk or |Uk – EUk | ≥



EUk .

Furthermore, we obtain

B ≤ P
(

sup
k∈Dn,M

|Uk – EUk| ≥ 

EUk

)
+ P

(
|Uk – EUk | ≥



EUk

)
=̂ D +D. ()
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It can be seen from the definition of Dn,M that

D ≤ P
(

sup
nθ≤k≤n(–θ )

|Uk – EUk| ≥ 

EUk

)

= P

(
sup

nθ≤k≤n(–θ )

∣∣∣∣∣
k∑
i=

Y ∗ –
k
n

n∑
i=

Y ∗
∣∣∣∣∣ ≥ 


nτ( – τ)μn

)

≤ P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Y ∗
i –

k
n

n∑
i=

Y ∗
i

∣∣∣∣∣ ≥ 

nτ( – τ)μn

)

≤ P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Y ∗
i

∣∣∣∣∣ ≥ 

nτ( – τ)μn

)
+ P

(
max
≤k≤n

∣∣∣∣∣kn
n∑
i=

Y ∗
i

∣∣∣∣∣ ≥ 

nτ( – τ)μn

)

≤ P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Y ∗
i

∣∣∣∣∣ ≥ 

nτ( – τ)μn

)
+ P

(∣∣∣∣∣
n∑
i=

Y ∗
i

∣∣∣∣∣ ≥ 

nτ( – τ)μn

)
=̂ E + E. ()

Because Y ∗
 , . . . ,Y ∗

n are negative associated variables, by theMarkov inequality, Lemma 
and (), ∀p≥ , we obtain

E = P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Y ∗
i

∣∣∣∣∣ ≥ 

nτ( – τ)μn

)

≤ E

(
max
k

∣∣∣∣∣
k∑
i=

Y ∗
i

∣∣∣∣∣
p)/(



nτ( – τ)μn

)p

≤ p

[nτ( – τ)μn]p
Kpβpn

p
 ≤ c


(n 

 μn)p
–→ 

(
as nμ

n –→ ∞)
. ()

Similar arguments give

E = P

(∣∣∣∣∣
n∑
i=

Y ∗
i

∣∣∣∣∣ ≥ 

nτ( – τ)μn

)

≤ p

[nτ( – τ)μn]p
Cpn

p
 –

n∑
i=

E|Y ∗|p ≤ c


(n 
 μn)p

–→ 
(
as nμ

n –→ ∞)
. ()

Combining ()-(), we see that

D –→  as nμ
n –→ ∞. ()

Similar arguments as those for D give

D = P

(∣∣∣∣∣
k∑
i=

Y ∗
i –

k
n

n∑
i=

Y ∗
i

∣∣∣∣∣ ≥ 

nτ( – τ)μn

)

≤ P

(∣∣∣∣∣
k∑
i=

Y ∗
i

∣∣∣∣∣ ≥ 

nτ( – τ)μn

)
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+ P

(∣∣∣∣∣
n∑
i=

Y ∗
i

∣∣∣∣∣ ≥ 

nτ( – τ)μn

)

≤ c


(n 
 μn)p

–→  as nμ
n –→ ∞. ()

Combining (), () and (), we obtain

B –→ . ()

Now consider B. Because of symmetry, we only consider the case of k ≤ k. The event
Uk –Uk ≥  implies that

Uk – EUk – (Uk – EUk )

≥ EUk – EUk

⇐⇒
( k∑

i=

Y ∗
i –

k
n

n∑
i=

Y ∗
i

)
–

( k∑
i=

Y ∗
i –

k
n

n∑
i=

Y ∗
i

)
≥ nτ ∗μn|τ – τ|

⇐⇒
(
–

k∑
i=k+

Y ∗
i –

k – k
n

n∑
i=

Y ∗
i

)
≥ nτ ∗μn|τ – τ|

⇐⇒ –
k – k

k∑
i=k+

Y ∗
i +


n

n∑
i=

Y ∗
i ≥ τ ∗μn.

Therefore,

B ≤ P

(
max
k∈Dn,M

∣∣∣∣∣ 
k – k

k∑
i=k+

Y ∗
i +


n

n∑
i=

Y ∗
i

∣∣∣∣∣ ≥ τ ∗μn

)

≤ P

(
max
k∈Dn,M

∣∣∣∣∣ 
k – k

k∑
i=k+

Y ∗
i

∣∣∣∣∣ ≥ 

τ ∗μn

)
+ P

(
max
k∈Dn,M

∣∣∣∣∣
n∑
i=

Y ∗
i

∣∣∣∣∣ ≥ 

nτ ∗μn

)
=̂ F + F. ()

From the Markov inequality, Lemma  and (), we obtain

F ≤ p
CP

(nτ ∗μn)p
n

p
 ≤ c

(


nμ
n

) p

–→ . ()

Denoting σ 
 =Var(Y ∗

 ), from Lemma  and (), we obtain

F = P

(
max

nθ≤k≤k– M
μn

∣∣∣∣∣ 
k – k

k∑
i=k+

Y ∗
i

∣∣∣∣∣ ≥ 

τ ∗μn

)

= P

(
max

M
μn

≤k–k≤k–nθ

∣∣∣∣∣ 
k – k

k–k∑
j=

Y ∗
k+–j

∣∣∣∣∣ ≥ 

τ ∗μn

)

= P

(
max

M
μn

≤t≤k–nθ

∣∣∣∣∣t
t∑
j=

Y ∗
k+–j

∣∣∣∣∣ ≥ 

τ ∗μn

)
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≤  ∗ 
(τ ∗μn)

{ M
μn∑
j=

Var(Y ∗
k+–j)

( M
μ
n
)

+ 
k–nθ∑
j= M

μn
+

Var(Y ∗
k+–j)
j

}

≤ 
σ 


(τ ∗)μ
n

{
μ
n

M
+ 

k–nθ∑
j= M

μn
+


j(j – )

}

= 
σ 


(τ ∗)μ
n

{
μ
n

M
+ 

(
μ
n

M
–


k – nθ – 

)}
= 

σ 


(τ ∗)

(

M

–


(k – nθ – )μ
n

)
–→ 

(
as nμ

n → ∞,M → ∞)
. ()

Combining ()-(), we have

B –→ . ()

From (), () and (), we know that () holds; that is, Theorem  is proved. �
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