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Abstract
We consider a finite class of weighted quadratures with the weight function
x–2a(1 + x2)–b on (–∞,∞), which is valid only for finite values of n (the number of
nodes). This means that classical Gauss-Jacobi quadrature rules cannot be considered
for this class, because some restrictions such as {maxn} ≤ a + b – 1/2, a < 1/2, b > 0
and (–1)2a = 1 must be satisfied for its orthogonality relation. Some analytic examples
are given in this sense.
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1 Introduction
The differential equation
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was introduced in [], and it was established that the symmetric polynomials
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are a basis solution of it. If this equation is written in a self-adjoint form, then the first-
order equation
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would appear. The solution of equation () is known as an analogue of Pearson distribu-
tions family and can be indicated as

W
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r s
p q
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= exp

(∫ (r – p)x + s
x(px + q)
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)
. ()

There are four main sub-classes of distributions family () (and consequently, sub-
solutions of equation ()) whose explicit probability density functions are, respectively,
as follows:
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where Ki; i = , , ,  play the normalizing constant role.
Clearly, the value of distribution vanishes at x =  in each of the above mentioned four

cases, i.e.,W (p,q, r, s; ) =  for s �= .
As a special case of (), let us consider the values p = , q = , r = –a–b+ and s = –a

corresponding to distribution () and replace them in equation () to get
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By solving equation (), the polynomial solution of monic type is derived
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According to [], these polynomials are finitely orthogonal with respect to the second kind
of beta weight function x–a( + x)–b on (–∞,∞) if and only if {maxn} ≤ a + b – /, i.e.,
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we have
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if m,n = , , . . . , N ≤ a + b – /, where N =max{m,n}, δn,m =
{
 (n �=m),
 (n =m), a < /, b >  and

(–)a = . Moreover, they satisfy a three-term recurrence relation
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The orthogonality property () shows that the polynomials S̄n(, , –a–b+,–a;x) are
a suitable tool to finitely approximate the functions that satisfy the Dirichlet conditions
[–].
For example, ifN = {maxn} = , a+b≥ /, a < /, b >  and (–)a =  in (), then the

arbitrary function f (x) can be approximated as
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This means that the finite set {S̄i(, , –a–b+,–a;x)}i= is a basis space for all polyno-
mials of degree atmost three, i.e., for f (x) = ax +ax +ax+a, the approximation () is
exact. This matter helps us to state the application of symmetric orthogonal polynomials
() in weighted quadrature rules [–].

2 Application of S̄n(1, 1, –2a – 2b + 2, –2a;x) in quadrature rules
Consider the general form of a weighted quadrature

∫ β

α

w(x)f (x)dx =
n∑
i=

wif (xi) +
m∑
k=

vkf (zk) + Rn,m[f ], ()

where w(x) is a positive function on [α,β]; {wi}ni=, {vk}mk= are unknown coefficients; {xi}ni=
are unknownnodes; {zk}mk= are pre-determined nodes [, ]; and finally, the residueRn,m[f ]
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is determined (see, e.g., []) by
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(n +m)!

∫ β

α

w(x)
m∏
k=

(x – zk)
n∏
i=

(x – xi) dx; α < ξ < β . ()

It can be shown in () that Rn,m[f ] =  for any linear combination of the sequence
{,x, . . . ,xn+m+} if and only if {xi}ni= are the roots of orthogonal polynomials of degree
n with respect to the weight function w(x), and {zk}mk= belong to [α,β]; see [] for more
details. Also, it is proved that to derive {wi}ni= in (), when m = , it is not required to
solve the following linear system of order n× n:
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Now, by noting that the symmetric polynomials () are finitely orthogonal with respect
to the weight functionW (x,a,b) = x–a(+x)–b on the real line, we consider the following
finite class of quadrature rules:
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2.1 An important remark
The change of variable x = t–/( – t)/ in the left-hand side of () first changes the in-
terval (–∞,∞) to [, ] such that we have
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As the right-hand integral of () shows, the shifted Jacobi weight function ( – x)uxv has
appeared for u = –a – / and v = a + b – /. Hence, the shifted Gauss-Jacobi quadrature
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rule [, ] with the special parameters u = –a – / and v = a + b – / can also be applied
for estimating (). This procedure eventually changes () into the form
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where x(–a–/,a+b–/)j are the zeros of shifted Jacobi polynomials P(–a–/,a+b–/)
n,+ (x) on [, ].

But, there is the main problem for the formula (). From (), it is generally known that
the residue of quadrature rules depends on f (n)(ξ ); α < ξ < β . Therefore, by noting (),
we should have

dnf (
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(√
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where ϕi are real functions to be computed and f (i), i = , , , . . . , n are the successive
derivatives of the function f . On the other hand, the function f cannot be in the form
of an arbitrary polynomial in order that the right-hand side of () becomes zero. In
other words, the formula () cannot be exact for all elements of the basis f (x) = xj;
j = , , , . . . , n – . This is the main disadvantage of using (), which shows the impor-
tance of the polynomials () in estimating a class of weighted quadrature rules []. The
following examples clarify this remark.

Example  Consider the two-point quadrature formula
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in which a + b ≥ /, a < /, b >  and (–)a = . According to the explained comments,
() must be exact for all elements of the basis f (x) = {,x,x,x} if and only if x, x are
two roots of S̄(, , –a–b+,–a;x). As a particular sample, let us take a =  and b = .
Then () is reduced to
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where
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Relation () shows that it is exact for any arbitrary polynomial of degree at most three.

Example  To have a three-point formula of type (), first we should note that the con-
ditions a + b ≥ /, a < /, b >  and (–)a =  must be satisfied. For instance, if a = –
and b = , then after some computations, the related formula takes the form
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and x =
√
/, x = , x = –

√
/ are the roots of S̄(, , –, ;x) = x – (/)x.

Example  To derive a four-point formula of type (), first the conditions a + b ≥ /,
a < /, b >  and (–)a =  must be satisfied. For example, if a =  and b = , then

∫ ∞

–∞


( + x)
f (x)dx

=
π

,
( – 

√
)

(
f
(√

 + 
√




)
+ f

(
–

√
 + 

√




))

+
π

,
( + 

√
)

(
f
(√

 – 
√




)
+ f

(
–

√
 – 

√




))
+ R[f ], ()

where

R[f ] =
f ()(ξ )
!

∫ ∞

–∞


( + x)

(
S̄

(
– 
 

∣∣∣∣∣x
))

dx

=
π

,,
f ()(ξ ), ξ ∈ R. ()

This formula is exact for all elements of the basis f (x) = xj; j = , , , . . . ,  and its nodes are
the roots of S̄(, ,–, ;x) = x – (/)x + /.

Tables - show some numerical examples related to three given examples.

Table 1 Numerical results for two-point formula (28)

f (x) Approximate value (2-point) Exact value Error

cos x2 1.113251175 1.041656130 0.071595045
exp(–x2/2) 0.997237788 1.037543288 0.040305500
exp(– cos x) 0.509660126 0.519034734 0.009374608√
1 + x2 1.360349524 1.333333333 0.027016191
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Table 2 Numerical results for three-point formula (30)

f (x) Approximate value (3-point) Exact value Error

cos x2 0.0743108795 0.09326578594 0.01895490641
exp(–x2/2) 0.09773977703 0.09545329274 0.00228738430
exp(– cos x) 0.06241097330 0.06149960816 0.00091136514√
1 + x2 0.15068324430 0.15238095240 0.00169770810

Table 3 Numerical results for four-point formula (32)

f (x) Approximate value (4-point) Exact value Error

cos x2 0.7563575358 0.7567616833 0.0004041475
exp(–x2/2) 0.7341056789 0.7341611797 0.0000555010
exp(– cos x) 0.3013485879 0.3013339743 0.0000146136√
1 + x2 0.8128655892 0.8126984127 0.0001671765
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