On orthogonal polynomials and quadrature rules related to the second kind of beta distribution

Mohammad Masjed-Jamei' and Nawab Hussain ${ }^{2 *}$

Correspondence:
nhusain@kau.edu.sa
${ }^{2}$ Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia Full list of author information is available at the end of the article

Abstract

We consider a finite class of weighted quadratures with the weight function $x^{-2 a}\left(1+x^{2}\right)^{-b}$ on $(-\infty, \infty)$, which is valid only for finite values of n (the number of nodes). This means that classical Gauss-Jacobi quadrature rules cannot be considered for this class, because some restrictions such as $\{\max n\} \leq a+b-1 / 2, a<1 / 2, b>0$ and $(-1)^{2 a}=1$ must be satisfied for its orthogonality relation. Some analytic examples are given in this sense. MSC: 41A55; 65D30; 65D32 Keywords: Gauss-Jacobi quadrature rules; weight function; second kind of beta distribution; dual symmetric distributions family; symmetric orthogonal polynomials

1 Introduction

The differential equation

$$
\begin{align*}
& x^{2}\left(p x^{2}+q\right) \Phi_{n}^{\prime \prime}(x)+x\left(r x^{2}+s\right) \Phi_{n}^{\prime}(x) \\
& \quad-\left(n(r+(n-1) p) x^{2}+\left(1-(-1)^{n}\right) s / 2\right) \Phi_{n}(x)=0 \tag{1}
\end{align*}
$$

was introduced in [1], and it was established that the symmetric polynomials

$$
\begin{align*}
\Phi_{n}(x) & =S_{n}\left(\left.\begin{array}{ll}
r & s \\
p & q
\end{array} \right\rvert\, x\right) \\
& =\sum_{k=0}^{[n / 2]}\binom{[n / 2]}{k}\left(\prod_{i=0}^{[n / 2]-(k+1)} \frac{\left(2 i+(-1)^{n+1}+2[n / 2]\right) p+r}{\left(2 i+(-1)^{n+1}+2\right) q+s}\right) x^{n-2 k} \tag{2}
\end{align*}
$$

are a basis solution of it. If this equation is written in a self-adjoint form, then the firstorder equation

$$
\begin{equation*}
x \frac{d}{d x}\left(\left(p x^{2}+q\right) W(x)\right)=\left(r x^{2}+s\right) W(x) \tag{3}
\end{equation*}
$$

would appear. The solution of equation (3) is known as an analogue of Pearson distributions family and can be indicated as

$$
W\left(\left.\begin{array}{ll}
r & s \tag{4}\\
p & q
\end{array} \right\rvert\, x\right)=\exp \left(\int \frac{(r-2 p) x^{2}+s}{x\left(p x^{2}+q\right)} d x\right)
$$

There are four main sub-classes of distributions family (4) (and consequently, subsolutions of equation (3)) whose explicit probability density functions are, respectively, as follows:

$$
\begin{align*}
& K_{1} W\left(\left.\begin{array}{cc}
-2 a-2 b-2, & 2 a \\
-1, & 1
\end{array} \right\rvert\, x\right) \\
& \quad=\frac{\Gamma(a+b+3 / 2)}{\Gamma(a+1 / 2) \Gamma(b+1)} x^{2 a}\left(1-x^{2}\right)^{b} ; \quad-1 \leq x \leq 1 ; a+1 / 2>0 ; b+1>0, \tag{5}\\
& K_{2} W\left(\left.\begin{array}{cc}
-2, & 2 a \\
0, & 1
\end{array} \right\rvert\, x\right)=\frac{1}{\Gamma(a+1 / 2)} x^{2 a} e^{-x^{2}} ; \quad-\infty<x<\infty ; a+1 / 2>0, \tag{6}\\
& K_{3} W\left(\left.\begin{array}{cc}
-2 a-2 b+2, & -2 a \\
1, & 1
\end{array} \right\rvert\, x\right) \\
& \left.\quad=\frac{\Gamma(b)}{\Gamma(b+a-1 / 2) \Gamma(-a+1 / 2)} \begin{array}{l}
K_{4} W\left(\begin{array}{cc}
-2 a+2, & 2 \\
1, & 0
\end{array}\right) x \\
K_{4}
\end{array}\right)=\frac{1}{\Gamma(a-1 / 2)} x^{-2 a} e^{-\frac{1}{x^{2}}} ; \quad-\infty<x<\infty ; a>1 / 2, \tag{7}
\end{align*}
$$

where $K_{i} ; i=1,2,3,4$ play the normalizing constant role.
Clearly, the value of distribution vanishes at $x=0$ in each of the above mentioned four cases, i.e., $W(p, q, r, s ; 0)=0$ for $s \neq 0$.

As a special case of (4), let us consider the values $p=1, q=1, r=-2 a-2 b+2$ and $s=-2 a$ corresponding to distribution (7) and replace them in equation (1) to get

$$
\begin{align*}
& x^{2}\left(x^{2}+1\right) \Phi_{n}^{\prime \prime}(x)-2 x\left((a+b-1) x^{2}+a\right) \Phi_{n}^{\prime}(x) \\
& \quad+\left(n(2 a+2 b-(n+1)) x^{2}+\left(1-(-1)^{n}\right) a\right) \Phi_{n}(x)=0 . \tag{9}
\end{align*}
$$

By solving equation (9), the polynomial solution of monic type is derived

$$
\begin{align*}
& \bar{S}_{n}\left(\left.\begin{array}{cc}
-2 a-2 b+2, & -2 a \\
1, & 1
\end{array} \right\rvert\, x\right) \\
& =\prod_{i=0}^{[n / 2]-1} \frac{2 i+(-1)^{n+1}+2-2 a}{2 i+2[n / 2]+(-1)^{n+1}+2-2 a-2 b} \\
& \quad \times \sum_{k=0}^{[n / 2]}\binom{[n / 2]}{k}\left(\prod_{i=0}^{[n / 2]-(k+1)} \frac{2 i+2[n / 2]+(-1)^{n+1}+2-2 a-2 b}{2 i+(-1)^{n+1}+2-2 a}\right) x^{n-2 k} . \tag{10}
\end{align*}
$$

According to [1], these polynomials are finitely orthogonal with respect to the second kind of beta weight function $x^{-2 a}\left(1+x^{2}\right)^{-b}$ on $(-\infty, \infty)$ if and only if $\{\max n\} \leq a+b-1 / 2$, i.e.,
we have

$$
\begin{align*}
& \int_{-\infty}^{\infty} \frac{x^{-2 a}}{\left(1+x^{2}\right)^{b}} \bar{S}_{n}\left(\left.\begin{array}{cc}
-2 a-2 b+2, & -2 a \\
1, & 1
\end{array} \right\rvert\, x\right) \bar{S}_{m}\left(\left.\begin{array}{cc}
-2 a-2 b+2, & -2 a \\
1, & 1
\end{array} \right\rvert\, x\right) d x \\
& =\left((-1)^{n} \prod_{i=1}^{n} \frac{\left(i-\left(1-(-1)^{i}\right) a\right)\left(i-\left(1-(-1)^{i}\right) a-2 b\right)}{(2 i-2 a-2 b+1)(2 i-2 a-2 b-1)}\right) \\
& \quad \times \frac{\Gamma(b+a-1 / 2) \Gamma(-a+1 / 2)}{\Gamma(b)} \delta_{n, m} \tag{11}
\end{align*}
$$

if $m, n=0,1, \ldots, N \leq a+b-1 / 2$, where $N=\max \{m, n\}, \delta_{n, m}=\left\{\begin{array}{ll}0 & (n \neq m), \\ 1 & (n=m),\end{array}, a<1 / 2, b>0\right.$ and $(-1)^{2 a}=1$. Moreover, they satisfy a three-term recurrence relation

$$
\begin{align*}
& \bar{S}_{n+1}(x)=x \bar{S}_{n}(x)+\frac{\left(n-\left(1-(-1)^{n}\right) a\right)\left(n-\left(1-(-1)^{n}\right) a-2 b\right)}{(2 n-2 a-2 b+1)(2 n-2 a-2 b-1)} \bar{S}_{n-1}(x), \\
& \quad \text { with } \bar{S}_{0}(x)=1, \bar{S}_{1}(x)=x, n \in \mathbf{N} . \tag{12}
\end{align*}
$$

The orthogonality property (11) shows that the polynomials $\bar{S}_{n}(1,1,-2 a-2 b+2,-2 a ; x)$ are a suitable tool to finitely approximate the functions that satisfy the Dirichlet conditions [2-5].
For example, if $N=\{\max n\}=3, a+b \geq 7 / 2, a<1 / 2, b>0$ and $(-1)^{2 a}=1$ in (10), then the arbitrary function $f(x)$ can be approximated as

$$
\begin{equation*}
f(x) \cong \sum_{m=0}^{3} B_{m} \bar{S}_{m}(1,1,-2 a-2 b+2,-2 a ; x) \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
B_{m}= & \left((-1)^{m} \prod_{i=1}^{m} \frac{\left(i-\left(1-(-1)^{i}\right) a\right)\left(i-\left(1-(-1)^{i}\right) a-2 b\right)}{(2 i-2 a-2 b+1)(2 i-2 a-2 b-1)}\right) \frac{\Gamma(b+a-1 / 2) \Gamma(-a+1 / 2)}{\Gamma(b)} \\
& \times \int_{-\infty}^{\infty} \frac{x^{-2 a}}{\left(1+x^{2}\right)^{b}} \bar{S}_{m}\left(\left.\begin{array}{cc}
-2 a-2 b+2 & -2 a \\
1 & 1
\end{array} \right\rvert\, x\right) f(x) d x . \tag{14}
\end{align*}
$$

This means that the finite set $\left\{\bar{S}_{i}(1,1,-2 a-2 b+2,-2 a ; x)\right\}_{i=0}^{3}$ is a basis space for all polynomials of degree at most three, i.e., for $f(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$, the approximation (13) is exact. This matter helps us to state the application of symmetric orthogonal polynomials (10) in weighted quadrature rules [6-9].

2 Application of $\bar{S}_{n}(1,1,-2 a-2 b+2,-2 a ; x)$ in quadrature rules

Consider the general form of a weighted quadrature

$$
\begin{equation*}
\int_{\alpha}^{\beta} w(x) f(x) d x=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)+\sum_{k=1}^{m} v_{k} f\left(z_{k}\right)+R_{n, m}[f], \tag{15}
\end{equation*}
$$

where $w(x)$ is a positive function on $[\alpha, \beta] ;\left\{w_{i}\right\}_{i=1}^{n},\left\{v_{k}\right\}_{k=1}^{m}$ are unknown coefficients; $\left\{x_{i}\right\}_{i=1}^{n}$ are unknown nodes; $\left\{z_{k}\right\}_{k=1}^{m}$ are pre-determined nodes [7,8]; and finally, the residue $R_{n, m}[f]$
is determined (see, e.g., [8]) by

$$
\begin{equation*}
R_{n, m}[f]=\frac{f^{(2 n+m)}(\xi)}{(2 n+m)!} \int_{\alpha}^{\beta} w(x) \prod_{k=1}^{m}\left(x-z_{k}\right) \prod_{i=1}^{n}\left(x-x_{i}\right)^{2} d x ; \quad \alpha<\xi<\beta . \tag{16}
\end{equation*}
$$

It can be shown in (15) that $R_{n, m}[f]=0$ for any linear combination of the sequence $\left\{1, x, \ldots, x^{2 n+m+1}\right\}$ if and only if $\left\{x_{i}\right\}_{i=1}^{n}$ are the roots of orthogonal polynomials of degree n with respect to the weight function $w(x)$, and $\left\{z_{k}\right\}_{k=1}^{m}$ belong to $[\alpha, \beta]$; see [7] for more details. Also, it is proved that to derive $\left\{w_{i}\right\}_{i=1}^{n}$ in (15), when $m=0$, it is not required to solve the following linear system of order $n \times n$:

$$
\begin{equation*}
\sum_{i=1}^{n} w_{i} x_{i}^{j}=\int_{\alpha}^{\beta} w(x) x^{j} d x \quad \text { for } j=0,1, \ldots, 2 n-1 \tag{17}
\end{equation*}
$$

Rather, one can directly use the relation

$$
\begin{equation*}
\frac{1}{w_{i}}=\hat{P}_{0}^{2}\left(x_{i}\right)+\hat{P}_{1}^{2}\left(x_{i}\right)+\cdots+\hat{P}_{n-1}^{2}\left(x_{i}\right) \quad \text { for } i=1,2, \ldots, n \tag{18}
\end{equation*}
$$

in which $\hat{P}_{i}(x)$ is the orthonormal polynomial of $P_{i}(x)$, i.e.,

$$
\begin{equation*}
\hat{P}_{i}(x)=\left(\int_{\alpha}^{\beta} w(x) P_{i}^{2}(x) d x\right)^{-1 / 2} P_{i}(x) . \tag{19}
\end{equation*}
$$

Now, by noting that the symmetric polynomials (10) are finitely orthogonal with respect to the weight function $W(x, a, b)=x^{-2 a}\left(1+x^{2}\right)^{-b}$ on the real line, we consider the following finite class of quadrature rules:

$$
\begin{align*}
& \int_{-\infty}^{\infty} \frac{x^{-2 a}}{\left(1+x^{2}\right)^{b}} f(x) d x \\
& \quad=\sum_{j=1}^{n} w_{j} f\left(x_{j}\right)+\frac{f^{(2 n)}(\xi)}{(2 n)!} \int_{-\infty}^{\infty} \frac{x^{-2 a}}{\left(1+x^{2}\right)^{b}} \prod_{j=1}^{n}\left(x-x_{j}\right)^{2} d x, \quad \xi \in \mathbf{R}, \tag{20}
\end{align*}
$$

where x_{j} are the roots of polynomials $\bar{S}_{n}(1,1,-2 a-2 b+2,-2 a ; x)$ and w_{j} are calculated by

$$
\begin{equation*}
\frac{1}{w_{j}}=\sum_{i=0}^{n-1}\left(\bar{S}_{i}^{*}\left(1,1,-2 a-2 b+2,-2 a ; x_{j}\right)\right)^{2} \quad \text { for } j=0,1,2, \ldots, n . \tag{21}
\end{equation*}
$$

2.1 An important remark

The change of variable $x=t^{-1 / 2}(1-t)^{1 / 2}$ in the left-hand side of (20) first changes the interval $(-\infty, \infty)$ to $[0,1]$ such that we have

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x^{-2 a}}{\left(1+x^{2}\right)^{b}} f(x) d x=\int_{0}^{1} t^{a+b-\frac{3}{2}}(1-t)^{-a-\frac{1}{2}} f\left(\sqrt{\frac{1}{t}-1}\right) d t \tag{22}
\end{equation*}
$$

As the right-hand integral of (22) shows, the shifted Jacobi weight function $(1-x)^{u} x^{\nu}$ has appeared for $u=-a-1 / 2$ and $v=a+b-3 / 2$. Hence, the shifted Gauss-Jacobi quadrature
rule $[6,9]$ with the special parameters $u=-a-1 / 2$ and $v=a+b-3 / 2$ can also be applied for estimating (22). This procedure eventually changes (20) into the form

$$
\begin{align*}
& \int_{-\infty}^{\infty} \frac{x^{-2 a}}{\left(1+x^{2}\right)^{b}} f(x) d x \\
& \quad=\sum_{j=1}^{n} w_{j}^{\left(-a-\frac{1}{2}, a+b-\frac{3}{2}\right)} f\left(\frac{1}{\sqrt{x_{j}^{(-a-1 / 2, a+b-3 / 2)}}}\right)+R_{n}\left[f\left(\sqrt{\frac{1}{x}-1}\right)\right], \tag{23}
\end{align*}
$$

where $x_{j}^{(-a-1 / 2, a+b-3 / 2)}$ are the zeros of shifted Jacobi polynomials $P_{n,+}^{(-a-1 / 2, a+b-3 / 2)}(x)$ on $[0,1]$. But, there is the main problem for the formula (23). From (16), it is generally known that the residue of quadrature rules depends on $f^{(2 n)}(\xi) ; \alpha<\xi<\beta$. Therefore, by noting (23), we should have

$$
\begin{equation*}
\frac{d^{2 n} f\left(\sqrt{x^{-1}-1}\right)}{d x^{2 n}}=\sum_{i=0}^{2 n} \varphi_{i}(x) f^{(i)}\left(\sqrt{x^{-1}-1}\right) \tag{24}
\end{equation*}
$$

where φ_{i} are real functions to be computed and $f^{(i)}, i=0,1,2, \ldots, 2 n$ are the successive derivatives of the function f. On the other hand, the function f cannot be in the form of an arbitrary polynomial in order that the right-hand side of (24) becomes zero. In other words, the formula (23) cannot be exact for all elements of the basis $f(x)=x^{j}$; $j=0,1,2, \ldots, 2 n-1$. This is the main disadvantage of using (23), which shows the importance of the polynomials (10) in estimating a class of weighted quadrature rules [10]. The following examples clarify this remark.

Example 1 Consider the two-point quadrature formula

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{-2 a}\left(1+x^{2}\right)^{-b} f(x) d x \cong w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right) \tag{25}
\end{equation*}
$$

in which $a+b \geq 5 / 2, a<1 / 2, b>0$ and $(-1)^{2 a}=1$. According to the explained comments, (25) must be exact for all elements of the basis $f(x)=\left\{1, x, x^{2}, x^{3}\right\}$ if and only if x_{1}, x_{2} are two roots of $\bar{S}_{2}(1,1,-2 a-2 b+2,-2 a ; x)$. As a particular sample, let us take $a=0$ and $b=3$. Then (25) is reduced to

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{3}} f(x) d x \cong w_{1} f\left(\frac{\sqrt{3}}{3}\right)+w_{2} f\left(-\frac{\sqrt{3}}{3}\right), \tag{26}
\end{equation*}
$$

in which $\sqrt{3} / 3$ and $-\sqrt{3} / 3$ are zeros of $\bar{S}_{2}(1,1,-4,0 ; x)$ and w_{1}, w_{2} are computed by solving the linear system

$$
\begin{equation*}
w_{1}+w_{2}=\int_{-\infty}^{\infty}\left(1+x^{2}\right)^{-3} d x=\frac{3}{8} \pi, \quad \frac{\sqrt{3}}{3}\left(w_{1}-w_{2}\right)=\int_{-\infty}^{\infty} x\left(1+x^{2}\right)^{-3} d x=0 . \tag{27}
\end{equation*}
$$

After deriving w_{1}, w_{2} in (27), the complete form of (26) would be

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{3}} f(x) d x=\frac{3 \pi}{16}\left(f\left(\frac{\sqrt{3}}{3}\right)+f\left(-\frac{\sqrt{3}}{3}\right)\right)+R_{2}[f] \tag{28}
\end{equation*}
$$

where

$$
R_{2}[f]=\frac{f^{(4)}(\xi)}{4!} \int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{3}}\left(\bar{S}_{2}\left(\left.\begin{array}{cc}
-4 & 0 \tag{29}\\
1 & 1
\end{array} \right\rvert\, x\right)\right)^{2} d x=\frac{\pi}{72} f^{(4)}(\xi), \quad \xi \in \mathbf{R} .
$$

Relation (28) shows that it is exact for any arbitrary polynomial of degree at most three.
Example 2 To have a three-point formula of type (20), first we should note that the conditions $a+b \geq 7 / 2, a<1 / 2, b>0$ and $(-1)^{2 a}=1$ must be satisfied. For instance, if $a=-1$ and $b=5$, then after some computations, the related formula takes the form

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{5}} f(x) d x=\frac{\pi}{1,280}\left(9 f\left(\sqrt{\frac{5}{3}}\right)+32 f(0)+9 f\left(-\sqrt{\frac{5}{3}}\right)\right)+R_{3}[f] \tag{30}
\end{equation*}
$$

where

$$
R_{3}[f]=\frac{f^{(6)}(\xi)}{6!} \int_{-\infty}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{5}}\left(\bar{S}_{3}\left(\left.\begin{array}{cc}
-6 & 2 \tag{31}\\
1 & 1
\end{array} \right\rvert\, x\right)\right)^{2} d x=\frac{5 \pi}{3,456} f^{(6)}(\xi), \quad \xi \in \mathbf{R},
$$

and $x_{1}=\sqrt{5 / 3}, x_{2}=0, x_{3}=-\sqrt{5 / 3}$ are the roots of $\bar{S}_{3}(1,1,-6,2 ; x)=x^{3}-(5 / 3) x$.
Example 3 To derive a four-point formula of type (20), first the conditions $a+b \geq 9 / 2$, $a<1 / 2, b>0$ and $(-1)^{2 a}=1$ must be satisfied. For example, if $a=0$ and $b=6$, then

$$
\begin{align*}
& \int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{6}} f(x) d x \\
& =\frac{7 \pi}{6,144}(54-11 \sqrt{21})\left(f\left(\sqrt{\frac{21+4 \sqrt{21}}{35}}\right)+f\left(-\sqrt{\frac{21+4 \sqrt{21}}{35}}\right)\right) \\
& \quad+\frac{7 \pi}{6,144}(54+11 \sqrt{21})\left(f\left(\sqrt{\frac{21-4 \sqrt{21}}{35}}\right)+f\left(-\sqrt{\frac{21-4 \sqrt{21}}{35}}\right)\right)+R_{4}[f] \tag{32}
\end{align*}
$$

where

$$
\begin{align*}
R_{4}[f] & =\frac{f^{(8)}(\xi)}{8!} \int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{6}}\left(\bar{S}_{4}\left(\left.\begin{array}{cc}
-10 & 0 \\
1 & 1
\end{array} \right\rvert\, x\right)\right)^{2} d x \\
& =\frac{\pi}{2,822,400} f^{(8)}(\xi), \quad \xi \in \mathbf{R} . \tag{33}
\end{align*}
$$

This formula is exact for all elements of the basis $f(x)=x^{j} ; j=0,1,2, \ldots, 7$ and its nodes are the roots of $\bar{S}_{4}(1,0,-8,2 ; x)=x^{4}-(6 / 5) x^{2}+3 / 35$.

Tables 1-3 show some numerical examples related to three given examples.

Table 1 Numerical results for two-point formula (28)

$\boldsymbol{f}(\boldsymbol{x})$	Approximate value (2-point)	Exact value	Error
$\cos x^{2}$	1.113251175	1.041656130	0.071595045
$\exp \left(-x^{2} / 2\right)$	0.997237788	1.037543288	0.040305500
$\exp (-\cos x)$	0.509660126	0.519034734	0.009374608
$\sqrt{1+x^{2}}$	1.360349524	1.333333333	0.027016191

Table 2 Numerical results for three-point formula (30)

$\boldsymbol{f}(\boldsymbol{x})$	Approximate value (3-point)	Exact value	Error
$\cos x^{2}$	0.0743108795	0.09326578594	0.01895490641
$\exp \left(-x^{2} / 2\right)$	0.09773977703	0.09545329274	0.00228738430
$\exp (-\cos x)$	0.06241097330	0.06149960816	0.00091136514
$\sqrt{1+x^{2}}$	0.15068324430	0.15238095240	0.00169770810

Table 3 Numerical results for four-point formula (32)

$\boldsymbol{f}(\boldsymbol{x})$	Approximate value (4-point)	Exact value	Error
$\cos x^{2}$	0.7563575358	0.7567616833	0.0004041475
$\exp \left(-x^{2} / 2\right)$	0.7341056789	0.7341611797	0.0000555010
$\exp (-\cos x)$	0.3013485879	0.3013339743	0.0000146136
$\sqrt{1+x^{2}}$	0.8128655892	0.8126984127	0.0001671765

Competing interests

The authors declare that they have no competing interests

Authors' contributions

Both authors contributed equally and significantly in writing this article. Both authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran. ${ }^{2}$ Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.

Acknowledgements

Dedicated to Professor Hari M Srivastava.
The work of the first author is supported by a grant from Iran National Science Foundation and the work of the second author has been supported by the Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU) of Jeddah.

Received: 2 February 2013 Accepted: 15 March 2013 Published: 5 April 2013

References

1. Masjed-Jamei, M: A basic class of symmetric orthogonal polynomials using the extended Sturm-Liouville theorem for symmetric functions. J. Math. Anal. Appl. 325, 753-775 (2007)
2. Masjed-Jamei, M: Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation. Integral Transforms Spec. Funct. 13, 169-190 (2002)
3. Masjed-Jamei, M, Srivastava, HM: An integral expansion for analytic functions based upon the remainder values of the Taylor series expansions. Appl. Math. Lett. 22, 406-411 (2009)
4. Masjed-Jamei, M, Srivastava, HM: Application of a new integral expansion for solving a class of functional equations. Appl. Math. Lett. 23, 421-425 (2010)
5. Masjed-Jamei, M, Hussain, N: More results on a functional generalization of the Cauchy-Schwarz inequality. J. Inequal. Appl. 2012, 239 (2012)
6. Davis, R, Rabinowitz, P: Methods of Numerical Integration, 2nd edn. Academic Press, New York (1984)
7. Gautschi, W: Construction of Gauss-Christoffel quadrature formulas. Math. Comput. 22, 251-270 (1968)
8. Krylov, VI: Approximate Calculation of Integrals. Macmillan Co., New York (1962)
9. Masjed-Jamei, M, Kutbi, MA, Hussain, N: Some new estimates for the error of Simpson integration rule. Abstr. Appl. Anal. 2012, Article ID 239695 (2012)
10. Stoer, J, Bulirsch, R: Introduction to Numerical Analysis, 2nd edn. Springer, New York (1993)

doi:10.1186/1029-242X-2013-157

Cite this article as: Masjed-Jamei and Hussain: On orthogonal polynomials and quadrature rules related to the second kind of beta distribution. Journal of Inequalities and Applications 2013 2013:157.

