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Abstract
In this paper, we establish some new generalizations of the Hölder’s inequality
involving Csiszar’s f -divergence of two probability measures. Some related
inequalities are also presented.
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1 Introduction
Let /p + /q = , assume that f (x) and g(x) are continuous real-valued functions on [a,b].
Then
() for p > , we have the following Hölder inequality (see []):

∫ b

a
f (x)g(x)dx≤

(∫ b

a
f p(x)dx

)/p(∫ b

a
gq(x)dx

)/q

; (.)

() for  < p < , we have the following reverse Hölder inequality (see []):

∫ b

a
f (x)g(x)dx≥

(∫ b

a
f p(x)dx

)/p(∫ b

a
gq(x)dx

)/q

. (.)

The above inequalities play an important role in many areas of pure and applied math-
ematics. A large number of generalizations, refinements, variations and applications of
(.) and (.) have been investigated in the literature (see [–] and references therein).
Recently, G.A. Anastassiou [] established some Hölder’s type inequalities regarding
Csiszar’s f -divergence of two probability measures as follows.

Theorem . (see []) Let p,q >  such that /p + /q = . Then

�|ff|(μ,μ)≤
[
�|f|p (μ,μ)

]/p[
�|f|q (μ,μ)

]/q. (.)

Theorem . (see []) Let a,a, . . . ,am > ,m ∈N,
∑m

j=

aj
= . Then

�|∏m
j= fj |

(μ,μ) ≤
m∏
j=

(
�|fj|aj (μ,μ)

)/aj , (.)

which is a generalization of Theorem ..

© 2013 Chen and Shi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2013/1/151
mailto:cgswavelets@126.com
http://creativecommons.org/licenses/by/2.0


Chen and Shi Journal of Inequalities and Applications 2013, 2013:151 Page 2 of 6
http://www.journalofinequalitiesandapplications.com/content/2013/1/151

It follows the counterpart of Theorem ..

Theorem . (see []) Let  < p <  and q <  such that /p + /q = , we assume that
p >  a.e. [λ]. Then we have

�|ff|(μ,μ) ≥
[
�|f|p (μ,μ)

]/p[
�|f|q (μ,μ)

]/q. (.)

The aim of this paper is to give new generalizations of inequalities (.) and (.). Some
related inequalities are also considered. The paper is organized as follows. In Section ,
we recall some basic facts about the Csiszar’s f -divergence of two probability measures.
In Section , we will give the main result and its proof.

2 Preliminaries
Assume that f : (, +∞) → R is an arbitrary convex function which is strictly convex at .
As in Csiszar [, ], we agree with the following expressions:

f () = lim
u→+

f (u),  · f
(



)
= ,

 · f
(
a


)
= lim

ε→+
εf

(
a
ε

)
= a lim

u→+∞
f (u)
u

( < a < +∞).

Suppose that (X,A,λ) is an arbitrary measure space with λ being a finite or σ -finite
measure. Let μ, μ be probability measures on X such that μ,μ � λ (absolutely con-
tinuous).
The Radon-Nikodym derivatives (densities) of μi with respect to λ is expressed by pi(x):

pi(x) =
μi(dx)
λ(dx)

, i = , .

Definition . (see []) The f -divergence of the probability measures μ and μ is de-
fined as follows:

�f (μ,μ) =
∫
X
p(x)f

(
p(x)
p(x)

)
λ(dx),

where the function f is named the base function. From Lemma . of [], �f (μ,μ) is al-
ways well-defined and�f (μ,μ) ≥ f () with equality only forμ = μ. From [], we know
that �f (μ,μ) does not depend on the choice of λ. If f () = , then �f can be considered
as the most general measure of difference between probability measures. For arbitrary
convex function f , we notice that �f (μ,μ)≤ �|f |(μ,μ).

The Csiszar’s f -divergence �f incorporatedmost of special cases of probability measure
distances, including the variation distance, χ-divergence, information for discrimination
or generalized entropy, information gain, mutual information, mean square contingency,
etc. �f has many applications to almost all applied sciences where stochastics enters. For
more references, one can see [–].
In this paper, we assume that the base function f appearing in the function �f have all

the above properties of f .
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3 Main results
In the section, we establish some new generalizations of the Hölder inequality involving
Csiszar’s f -divergence of two probability measures.

Theorem . Let  < am < , aj <  (j = , , . . . ,m – ),m ∈N,
∑m

j=

aj
= . Then

�|∏m
j= fj |

(μ,μ) ≥
m∏
j=

(
�|fj|aj (μ,μ)

)/aj . (.)

Proof Here, we use the generalized Hölder’s inequality (see []). We obtain

�|∏m
j= fj |

(μ,μ) =
∫
X
p

∣∣∣∣∣
m∏
j=

fj
(
p
p

)∣∣∣∣∣dλ

=
∫
X

m∏
j=

p/aj

∣∣∣∣fj
(
p
p

)∣∣∣∣dλ

≥
m∏
j=

(∫
X
p|fj|aj

(
p
p

)
dλ

)/aj

=
m∏
j=

(
�|fj|aj (μ,μ)

)/aj . (.)

Hence, we get the desired inequality. �

Theorem . Let αkj ∈ R (j = , , . . . ,m, k = , , . . . , s),
∑s

k

ak

= ,
∑s

k= αkj = . Then
() for ak > , we have the following inequality:

�|∏m
j= fj |

(μ,μ) ≤
s∏

k=

(
�

|∏m
j= f

+akαkj
j |

(μ,μ)
)/ak ; (.)

() for  < as < , ak <  (k = , , . . . , s – ), we have the following reverse inequality:

�|∏m
j= fj |

(μ,μ) ≥
s∏

k=

(
�

|∏m
j= f

+akαkj
j |

(μ,μ)
)/ak . (.)

Proof () Set

gk(x) =

( m∏
j=

f
+akαkj
j (x)

)/ak

. (.)

Applying the assumptions
∑s

k

ak

=  and
∑s

k= αkj = , we have

s∏
k=

gk(x) = gg · · · gs

=

( m∏
j=

f +aαjj (x)

)/a( m∏
j=

f +aαjj (x)

)/a

· · ·
( m∏

j=

f +asαsjj (x)

)/as
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=
m∏
j=

f /a+αj
j (x)

m∏
j=

f /a+αj
j (x) · · ·

m∏
j=

f /as+αsj
j (x)

=
m∏
j=

f /a+/a+···+/as+αj+αj+···+αsj
j (x) =

m∏
j=

fj(x).

That is,

s∏
k=

gk(x) =
m∏
j=

fj(x).

Then we find

�|∏m
j= fj |

(μ,μ) = �|∏s
k= gk | (μ,μ). (.)

By the inequality (.), we obtain

�|∏s
k= gk | (μ,μ) ≤

s∏
k=

(
�|gk |ak (μ,μ)

)/ak . (.)

In view of (.), we have

s∏
k=

(
�|gk |ak (μ,μ)

)/ak

=
s∏

k=

(∫
X
p|gk|ak

(
p
p

)
dλ

)/ak

=
s∏

k=

(∫
X
p

∣∣∣∣∣
m∏
j=

f
+akαkj
j

∣∣∣∣∣
(
p
p

)
dλ

)/ak

=
s∏

k=

(
�

|∏m
j= f

+akαkj
j |

(μ,μ)
)/ak . (.)

By (.), (.) and (.), we obtain inequality (.).
() Similar to the proof of inequality (.), by (.), (.), (.) and the inequality (.),

we have inequality (.) immediately. �

Corrollary . Under the assumptions of Theorem ., taking s =m, αkj = –t/ak for j �= k
and αkk = t( – /ak) with t ∈ R, then we have
() for αk > , we have the following inequality:

�|∏m
j= fj |

(μ,μ) ≤
s∏

k=

(
�

(|∏m
j= fj |)–t |f

ak
k |t

(μ,μ)
)/ak ; (.)

() for  < αm < , αk <  (k = , , . . . ,m – ), we have the following reverse inequality:

�|∏m
j= fj |

(μ,μ) ≥
s∏

k=

(
�

(|∏m
j= fj |)–t |f

ak
k |t

(μ,μ)
)/ak . (.)
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Theorem . Let αkj ∈ R (j = , , . . . ,m, k = , , . . . , s),
∑s

k

αk

= r,
∑s

k= αkj = . Then
() for rαk > , we have the following inequality:

�|∏m
j= fj |

(μ,μ) ≤
s∏

k=

(
�

|∏m
j= f

+rakαkj
j |

(μ,μ)
)/rak ; (.)

() for  < rαs < , rαk <  (k = , , . . . , s – ), we have the following reverse inequality:

�|∏m
j= fj |

(μ,μ) ≥
s∏

k=

(
�

|∏m
j= f

+rakαkj
j |

(μ,μ)
)/rak . (.)

Proof () Since rαk >  and
∑s

k

αk

= r, we get
∑s

k


rαk
= . Then by (.), we immediately

obtain the inequality (.).
() Since  < rαs < , rαk <  and

∑s
k


αk

= r, we have
∑s

k


rαk
= , by (.), we immediately

have the inequality (.). This completes the proof. �

Theorem . Under the assumptions of Theorem ., and let s = , α = p, α = q, αj =
–αj = βj, then
() for rp > , we have the following inequality:

�|∏m
j= fj |

(μ,μ) ≤
(
�

|∏m
j= f

+rpβj
j |

(μ,μ)
)/rp(

�
|∏m

j= f
–rqβj
j |

(μ,μ)
)/rq; (.)

() for  < rp < , we have the following reverse inequality:

�|∏m
j= fj |

(μ,μ) ≥
(
�

|∏m
j= f

+rpβj
j |

(μ,μ)
)/rp(

�
|∏m

j= f
–rqβj
j |

(μ,μ)
)/rq. (.)

Proof () By inequality (.), we get

�|∏m
j= fj |

(μ,μ) =
∫
X
p

∣∣∣∣∣
m∏
j=

fj
(
p
p

)∣∣∣∣∣dλ

=
∫
X

m∏
j=

p/rp

∣∣∣∣fj
(
p
p

)∣∣∣∣
(+rpβj)/rp

p/rq

∣∣∣∣fj
(
p
p

)∣∣∣∣
(–rqβj)/rq

dλ

≤
(∫

X
p

m∏
j=

|fj|+rpβj
(
p
p

)
dλ

)/rp(∫
X
p

m∏
j=

|fj|–rqβj
(
p
p

)
dλ

)/rq

=
(
�|∏m

j= f
+rpβj
j |(μ,μ)

)/rp(
�|∏m

j= f
–rqβj
j |(μ,μ)

)/rq.
() Similar to the proof of inequality (.), by inequality (.), we obtain inequality

(.). �

Remark Assume that X is a finite or countable discrete set, A is its power set P(X) and
λ has mass  for each x ∈ X, then �f becomes a finite or infinite sum, respectively. As
a consequence, all the above obtained integral inequalities are discretized and become
summation inequalities.
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21. Anwar, M, Hussain, S, Pečarić, J: Some inequalities for Csiszár-divergence measures. Int. J. Math. Anal. 3(26), 1295-1304

(2009)
22. Kafka, P, Österreicher, F, Vincze, I: On powers of f -divergences defining a distance. Studia Sci. Math. Hung. 26(4),

415-422 (1991)
23. Cheung, W-S: Genegralizations of Hölder’s inequality. Int. J. Math. Math. Sci. 26(1), 7-10 (2001)

doi:10.1186/1029-242X-2013-151
Cite this article as: Chen and Shi: Generalizations of Hölder inequalities for Csiszar’s f -divergence. Journal of
Inequalities and Applications 2013 2013:151.

http://www.journalofinequalitiesandapplications.com/content/2013/1/151
http://www.gbspublisher.com
http://rgmia.vu.edu.au

	Generalizations of Hölder inequalities for Csiszar's f-divergence
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


