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Abstract
We give the analogue of the Lebesgue-Radon-Nikodym theorem with respect to a
weighted p-adic q-measure on Zp. In a special case, when the weight qx is 1, we can
derive the same result as Kim et al. (Abstr. Appl. Anal. 2011:637634, 2011). And if q = 1,
we have the same result as Kim (Russ. J. Math. Phys. 19:193-196, 2012).
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1 Introduction
Let p be a fixed odd prime number. Throughout this paper, the symbols Zp, Qp, and Cp

denote the ring of p-adic integers, the field of p-adic rational numbers, and the p-adic com-
pletion of the algebraic closure of Qp, respectively. Let νp be the normalized exponential
valuation of Cp with |p| = p–νp(p) = 

p and νp() = ∞.
When one speaks of q-extension, q can be regarded as an indeterminate, a complex

q ∈ C, or a p-adic number q ∈ Cp. In this paper, we assume that q ∈Cp with |–q| < , and
we use the notations of q-numbers as follows:

[x]q = [x : q] =
 – qx

 – q
and [x]–q =

 – (–q)x

 + q
. (.)

For any positive integer N , let

a + pNZp =
{
x ∈ Zp|x ≡ a

(
modpN

)}
, (.)

where a ∈ Z satisfies the condition  ≤ a < pN (see [–]).
It is known that the fermionic p-adic q-measure on Zp is given by Kim as follows:

μ–q
(
a + pNZp

)
=

(–q)a

[pN ]–q
=

 + q
 + qpN

(–q)a, (see [, , –]). (.)
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Let C(Zp) be the space of continuous functions on Zp. From (.), the fermionic p-adic
q-integral on Zp is defined by Kim as follows:

I–q(f ) =
∫
Zp

f (x)dμ–q(x) = lim
N→∞


[pN ]–q

pN–∑
x=

f (x)(–q)x, (.)

where f ∈ C(Zp) (see [, , –]).
Let us assume q ∈ Cp with |q – | < . By (.), we get

∫
Zp

q–xe[x]qt dμ–q(x) =
∞∑
n=

En,q
tn

n!
, (.)

(see [, , ]) where En,q are q-Euler numbers. The q-Euler polynomials, En,q(x), are also
defined by

∫
Zp

q–ye[x+y]qt dμ–y(t) =
∞∑
n=

En,q(x)
tn

n!
. (.)

By (.) and (.), we get

En,q(x) =
n∑
l=

(
n
l

)
xn–lEl,q = (x + Eq)n,

with the usual convention of replacing (Eq)n by En,q (see [, , , , ]),

En,q =
∫
Zp

q–x[x]nq dμ–q(x) =
[ι]q

( – q)n

n∑
l=

(–)l
(
n
l

)

[l]q

.

We will give the analogue of the Lebesgue-Radon-Nikodym theorem with respect to a
weighted p-adic q-measure on Zp. In a special case, when the weight qx is , we can derive
the same result as Kim et al. []. And if q = , we have the same result as Kim [].

2 Lebesgue-Radon-Nikody-type theoremwith respect to a weighted p-adic
q-measure on Zp

For any positive integer a and n, with a < pn and f ∈ C(Zp), let us define

μ̃f ,–q
(
a + pnZp

)
=

∫
a+pnZp

q–xf (x)dμ–q(x), (.)

where the integral is the fermionic p-adic q-integral on Zp.
From (.), (.), and (.), we note that

μ̃f ,–q
(
a + pnZp

)

= lim
m→∞


[pm+n]–q

pm–∑
x=

q–(a+p
nx)f

(
a + pnx

)
(–q)a+p

nx
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= lim
m→∞

(–)a

[pm]–q

pm–n–∑
x=

f
(
a + pnx

)
(–q)–p

nxqp
nx(–)x

=
[]q
[]qpn

(–)a lim
m→∞


[pm–n]–qpn

pm–n–∑
x=

f
(
a + pnx

)(
–qp

n)x

=
[]q
[]qpn

(–)a
∫
Zp

qp
nxf

(
a + pnx

)
dμ–qpn (x). (.)

By (.), we get

μ̃f ,–q
(
a + pnZp

)
=

[]q
[]qpn

(–)a
∫
Zp

qp
nxf

(
a + pnx

)
dμ–qpn (x). (.)

Therefore, by (.), we obtain the following theorem.

Theorem  For f , g ∈ C(Zp), we have

μ̃αf +βg,–q = αμ̃f ,–q + βμ̃g,–q, (.)

where α, β are constants.

From (.) and (.), we note that

∣∣μ̃f ,–q
(
a + pnZp

)∣∣ ≤ M‖fq‖∞, (.)

where ‖fq‖∞ = supx∈Zp |q–xf (x)| andM is some positive constant.
Now, we recall the definition of the strongly fermionic p-adic q-measure on Zp. If μ–q

satisfies the following equation:

∣∣μ–q
(
a + pnZp

)
–μ–q

(
a + pn+Zp

)∣∣ ≤ δn,q, (.)

where δn,q →  and n → ∞ and δn,q is independent of a, then μ–q is called a weakly
fermionic p-adic q-measure on Zp.
If δn,q is replaced by Cp–νp(–qn) (C is some constant), then μ–q is called a strongly

fermionic p-adic q-measure on Zp.
Let P(x) ∈ Cp[[x]q] be an arbitrary q-polynomial with

∑
ai[x]iq. Then we see that μP,–q

is a strongly fermionic p-adic q-measure on Zp. Without loss of generality, it is enough to
prove the statement for P(x) = [x]kq.
Let a be an integer with  ≤ a < pn. Then we get

μ̃P,–q
(
a + pnZp

)
=

[]q
[]qpn

(–)a lim
m→∞


[pm–n]–qpn

pm–n–∑
i=

[
a + ipn

]k
q(–)

iqp
ni, (.)

and

qp
ni =

i∑
l=

(
i
l

)[
pn

]l
q(q – )l.
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By (.), we easily get

μ̃P,–q
(
a + pnZp

) ≡ []q
[]qpn

(–)a[a]kq
(
mod

[
pn

]
q

)

≡ []q
[]qpn

(–)aP(a)
(
mod

[
pn

]
q

)
. (.)

Let x be arbitrary in Zp with x ≡ xn(modpn) and x ≡ xn+(modpn+), where xn and xn+
are positive integers such that ≤ xn < pn and ≤ xn+ < pn+. Thus, by (.), we have

∣∣μ̃P,–q
(
a + pnZp

)
– μ̃P,–q

(
a + pn+Zp

)∣∣ ≤ Cp–νp(–qp
n
), (.)

where C is some positive constant and n� .
Let

fμ̃P,–q (a) = lim
n→∞ μ̃P,–q

(
a + pnZp

)
. (.)

Then by (.), (.), and (.), we get

fμ̃P,–q (a) =
[]q


(–)a[a]kq =
[]q


(–)aP(a). (.)

Since fμ̃P,–q (x) is continuous on Zp, it follows, for all x ∈ Zp,

fμ̃P,–q (x) =
[]q


(–)xP(x). (.)

Let g ∈ C(Zp). By (.), (.), and (.), we get

∫
Zp

g(x)dμ̃P,–q(x) = lim
n→∞

pn–∑
i=

g(i)μ̃P,–q
(
i + pnZp

)

=
[]q


lim
n→∞

pn–∑
i=

g(i)(–q)i[i]kq

=
∫
Zp

q–xg(x)[x]kq dμ–q(x). (.)

Therefore, by (.), we obtain the following theorem.

Theorem  Let P(x) ∈Cp[[x]q] be an arbitrary q-polynomial with
∑

ai[x]iq. Then μ̃P,–q is
a strongly fermionic weighted p-adic q-measure on Zp, and for all x ∈ Zp,

fμ̃P,–q = (–)x
[]q


P(x). (.)

Furthermore, for any g ∈ C(Zp), we have

∫
Zp

g(x)dμ̃P,–q(x) =
∫
Zp

q–xg(x)P(x)dμ–q(x), (.)

where the second integral is a fermionic p-adic q-integral on Zp.
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Let f (x) =
∑∞

n= an,q
(x
n
)
q be the q-Mahler expansion of a continuous function on Zp,

where
(
x
n

)
q
=
[x]q[x – ]q · · · [x – n + ]q

[n]q!
(
see []

)
. (.)

Then we note that limn→∞ |an,q| = .
Let

fm(x) =
m∑
i=

ai,q
(
x
i

)
q
∈Cp

[
[x]q

]
. (.)

Then

‖f – fm‖∞ ≤ sup
m≤n

|an,q|. (.)

Writing f = fm + f – fm, we easily get

∣∣μ̃f ,–q
(
a + pnZp

)
– μ̃f ,–q

(
a + pn+Zp

)∣∣
≤ max

{∣∣μ̃fm ,–q
(
a + pnZp

)
– μ̃fm ,–q

(
a + pn+Zp

)∣∣,∣∣μ̃f –fm ,–q
(
a + pnZp

)
– μ̃f –fm ,–q

(
a + pn+Zp

)∣∣}. (.)

From Theorem , we note that

∣∣μ̃f –fm ,–q
(
a + pnZp

)∣∣ ≤ ‖f – fm‖∞ ≤ Cp–νp(–qp
n
), (.)

where C is some positive constant.
Form � , we have ‖f ‖∞ = ‖fm‖∞.
So,

∣∣μ̃fm ,–q
(
a + pnZp

)
– μ̃fm ,–q

(
a + pn+Zp

)∣∣ ≤ Cp–νp(–qp
n
), (.)

where C is also some positive constant.
By (.) and (.), we see that

∣∣f (a) – μ̃f ,–q
(
a + pnZp

)∣∣
≤ max

{∣∣f (a) – fm(a)
∣∣, ∣∣fm(a) – μ̃fm ,–q

(
a + pnZp

)∣∣, ∣∣μ̃f –fm ,–q
(
a + pnZp

)∣∣}
≤ max

{∣∣f (a) – fm(a)
∣∣, ∣∣fm(a) – μ̃fm ,–q

(
a + pnZp

)∣∣,‖f – fm‖∞
}
. (.)

If we fix ε >  and fixm such that ‖f – fm‖ ≤ ε, then for n� , we have

∣∣f (a) – μ̃f ,–q
(
a + pnZp

)∣∣ ≤ ε. (.)

Hence, we have

fμf ,–q (a) = lim
n→∞ μ̃f ,–q

(
a + pnZp

)
=
[]q


(–)af (a). (.)
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Let m be a sufficiently large number such that ‖f – fm‖∞ ≤ p–n.
Then we get

μ̃f ,–q
(
a + pnZp

)
= μ̃fm ,–q

(
a + pnZp

)
+ μ̃f –fm ,–q

(
a + pnZp

)
= μ̃fm ,–q

(
a + pnZp

)

= (–)a
[]q
[]qpn

f (a)
(
mod

[
pn

]
q

)
. (.)

For any g ∈ C(Zp), we have

∫
Zp

g(x)dμ̃f ,–q(x) =
∫
Zp

q–xf (x)g(x)dμ–q(x). (.)

Assume that f is the function from C(Zp,Cp) to Lip(Zp,Cp). By the definition of μ̃–q, we
easily see that μ̃–q is a strongly p-adic q-measure on Zp, and for n� ,

∣∣fμ̃–q (a) – μ̃–q
(
a + pnZp

)∣∣ ≤ Cp–νp(–qp
n
), (.)

where C is some positive constant.
If μ̃,–q is associated with strongly fermionic weighted p-adic q-measure on Zp, then we

have

∣∣μ̃,–q
(
a + pnZp

)
– fμ̃–q (a)

∣∣ ≤ Cp–νp(–qp
n
), (.)

where n�  and C is some positive constant.
From (.), we get

∣∣μ̃–q
(
a + pnZp

)
– μ̃,–q

(
a + pnZp

)∣∣
≤ ∣∣μ̃–q

(
a + pnZp

)
– fμ̃–q (a)

∣∣ + ∣∣fμ̃–q (a) – μ̃,–q
(
a + pnZp

)∣∣ ≤ K , (.)

where K is some positive constant.
Therefore, μ̃–q – μ̃,–q is a q-measure on Zp. Hence, we obtain the following theorem.

Theorem  Let μ̃–q be a strongly fermionic weighted p-adic q-measure on Zp, and assume
that the fermionic weighted Radon-Nikodym derivative fμ̃–q on Zp is a continuous function
on Zp. Suppose that μ̃,–q is the strongly fermionic weighted p-adic q-measure associated
to fμ̃–q . Then there exists a q-measure μ̃,–q on Zp such that

μ̃–q = μ̃,–q + μ̃,–q. (.)
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