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Abstract

A new class of Hardy type operator defined on a higher-dimensional product space is
discussed. It includes two different kinds of the classical Hardy operators. In addition,
we also consider the fractional Hardy operator Hg. The bound of operator Hg from L”

to L7 is explicitly worked out. Especially, the bound of operator Hg from L' to LTF> s
sharp.
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1 Introduction
The most fundamental averaging operator is the Hardy operator defined by

HVK@=§AfUMu

where the function f is a nonnegative integrable on R, = (0,00) and x > 0. A classical
inequality, due to Hardy [1], states that

[ = 55 0

holds for 1 < p < 00, and the constant ]ﬁ is best possible.
For the multidimensional case n > 2, generally speaking, there exist two different defi-
nitions. One is the rectangle averaging operator defined by

Rorlf) 1y 0r6) = — /3~/7mm@wn~m, )
0 0

xl Y xn
where the function f is a nonnegative measurable function on G = (0,00)" and x; > 0,
i=12,...,n.

Another definition is the spherical averaging operator, which was given by Christ and
Grafakos in [2] as follows:

1

H(f)(x) = 1B(0, [2D)] Jyyjcpe

f)dy, xeR"\{0}, )

where f is a nonnegative measurable function on R”.
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The boundedness of operator R, are discussed in many papers (cf. [3-6]).
IRl —1r, the norm of R, is ( 1%)” and obviously depends on the dimension of the
space. However, || H||1»— 17, the norm of H, is still 1%, and does not depend on the dimen-
sion of the space. The reason of generating the difference of the two kind of operators is,
roughly speaking, that each variable can independently dilate by itself in the operator R,,,
nevertheless, for the operator H, all variables dilate by the same scale simultaneously. Gen-
erally speaking, the spherical averaging operator has better properties than the rectangle
averaging operator does, such as the Hardy-Littlewood maximal function. A detailed ac-
count of the history of the topic can be found in the book [7]; see also Kufner and Persson’s
book [8].

For the operator R, we note that every variable is defined on the one-dimensional space.
In this paper, we shall extent the definition of R, so that every variable is spherical average
defined on a higher-dimensional space.

Next, we will give the definition of Hardy type operator on higher-dimensional product

spaces as follows and discuss the corresponding properties.

Definition 1.1 Let m e N, n; e N, x; e R",1 < i < m, and f be a nonnegative measurable

function on R™ x R"2 x ... x R". The Hardy type operator is defined by

m

1
" - - e V) Y1 - Aoy 3
Hnlr)) (H |B<o,|xi|>|)/yl|<x1| /|ym|<|xm|f Oreeesdm) - dy ®

i=1
where x = (x1,%,...,%,) € R x R™ x -+ x R" with [, |x:| #0.

Our first aim in this paper is to provide transparent treatments of multivariate inequal-
ities of higher-dimensional Hardy type both for the rectangle and for the ball case. Our
results subsume those of [9] and [6]. In fact, if m = 1, then the operator H,, will become
‘H defined by (2); if n; =ny = --- = n,, = 1, then H,, will become R,, defined by (1). Con-
sequently, the operator #,, includes both 23, and H. It is much significant to discuss the
properties of H,,.

Our second aim is to consider the fractional Hardy operator on the Lebesgue spaces.
Recall that, for a nonnegative measurable function f on R”, the #n-dimensional fractional

Hardy operator Hg with spherical mean is defined by

1

Hp(f)(x) = ————
IBO, | "

/ S0y xeRNO) @)
lyl<|x

where 0 < 8 < n (cf. [10]). Clearly, Hg(|f|)(x) < CMp(f)(x), where My is the fractional

Hardy-Littlewood maximal function defined by

1
M )= - g3 d )
p(f)x sup T /qulf@)\ y

where f is a measurable function.

F0r0§ﬂ<n,1<p§§,andl—

5 % = é, the following two statements (a) and (b) are
well-known (cf. [11]).
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(a) Iff € LP(R"), then

|Mp()] 4 < CIfllers

(b) if f € LY(R"), then, for any A > 0,

erR@A@gXM>AH§(%nﬂD>Wﬁ

However the constant C, the bound of operator Mg, were not given explicit expression of
depending on the parameters p, g and $. In this paper, the bounds of the operator Hg from
L” to L7 and from L! to L7 are explicitly worked out. Furthermore, we will show that
the constant 1 is the bound of operator Hy from L' to L77 and is beat possible, that is,

gl | 2500

Throughout the paper, we use the following notation. The set B(0, |x|) denotes a ball
with center at the original point and radius |x|, and |B(0, |x|)| denotes the volume of the
ball B(0, |x]); (B(0, |x]))* = R" \ B(0, |x).

2 Sharp bounds for the Hardy type operator on product space

Theorem 2.1 Let1<p<oo,meN, m; e N, x; e R%, i=1,...,m. If f € [P(R" x R™ x
oo R x)9), where |x]% = |x1|% |%2]92 - - o |* and a;j < (p — 1)n;, then the Hardy type
operator H,, defined in (3) is bounded on LP(R™ x R" x .. x R", |x|%), moreover, the

norm of H,, can be obtained as follows:

- p
1Hom Nl o i@y 12121y = l—[ <7)

-
L \p-1-4
ja\p=1-3

Proof of Theorem 2.1 We merely give the proof with the case m = 2 for the sake of clarity in
writing, and the same is true for the general case m > 2. We adapt some ideas and methods
used in [12].

Set
1 1
g e, x2) = F(l1l6n |x02162) do (1) do (&),
Wy Wy Jsm-1 Jgma-1
where w,,; = i’(’ ?) and x; € R, i =1,2. Obviously, g is a nonnegative radial function with
7

respect to the variables x; and x,, respectively. In the following, we briefly call this function
is a radial function on product space.
It follows that H(gr)(x1,%2) is equal to

1 1 / / 1
[B(O, %1 1)1 1B(O, [%21)] JB0,1x11) JBO,1x01) @1 @y

X / / S (In11&1 1y21&2) do (&) do (&) dy: dy,
sm-1 Jgnp-1

B 1 / / 1 1
Oy Wy Jsm-1 Jom-1 |B(O, [y [)| [B(O, |x2])]
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X / f S (1180 1y21&2) dyr dy do (&) do (&)
B(0,]x1) v/ B(0,]x2])

1 1
B /snrl /snz—l B0, [%11)1 1B(O, |2 )]

[x1l plxal
x f Fr&LrE)P 2 dr dry do (&) do (&)
0 0

1 1
= ,V2) dy d-
1B(O, [x11)] 1B(O, |z )| /Bm,m) /B(o,.xz>f Or72) dy dy
= Ha () (%1, %2).

Using the generalized Minkowski’s inequality and Hélder’s inequality, we conclude that
"gf”Lp(‘x‘&) is equal to

L Gs)

p -
X (/ / AR da(gl)dd(éz)) x|* doxy dxz)
Snl—l Snz—l

1
=
Wy Wyy Jsm-1 Jgna-1

x(/ / (f(|x1|51,|x2|sz>)’”|x1|“l|x2|“2dxldxz)”do(sl)da(sz)
R JR™2

1
< ( / f f (F(x1l&1, |x2182))”
Wy Wy Jsm-1 Jgm-1 Jrm JrR2

P
X [t | oo |*2 doey dxy do(&1) dU(Sz))

- ( /S /; / / (f (i, &)Y i s dry dry do (gl)dg(g2)>
n] -1 ny-1 Jo 0

= W ll o (may-

1
r

1
P

Thus, we conclude that the following inequality:

||H2(f)||w(|x|5t) < ||H2(gf)||uf(|x|&)
|[f||Lp(|x|5t) N ||gf||1,n(|x|&)

holds provided that [|f | » () # 0- In addition, clearly if / is a nonnegative radial function,
then we have gr = f. This means that the norm of the operator H, is equal to the norm
that #; restricts to the set of nonnegative radial functions. Consequently, without loss of
generality, it suffices to fulfil the proof of the theorem by assuming that f is a nonnegative
radial function.

Substituting the variables z; = y—ll‘ and z, = 2%, we have that || H5(f)|| ;) equals

x lx2]”

1
p
</ / [ () @1, ) |7 11| 6|2 ey dx2>
R JR2

1 p
B (/R /R ( 1B(O, |21 1) 1B(0, [x2])] )
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p »
x( / f f(yl,yz)dyldm) |x1|”1|x2|“2dxldxz>
lyil<ler] J1yal<lx2]
1

1 , ;
) </ / (/ / flalal zlx) da dZZ) |01 |1 [%2]*2 dlxy dxz)
Vi Viy \JRm JRm2 \J 2141 J izt

Using the generalized Minkowski’s inequality again and noting that f is a radial func-

tion with respect to the first variable and the second variable, respectively, we have that
IH2 ()l p(1a) is not greater than

1
1 p o] o ’
(f(zlx1l, z2|%2 ) 121 Y %2 |°? dxy dxy | dza dzo
Vi Viy J1z11<1 Iz <1 \JR™ JR72
1
p
Vi Vg Jz1)<1 J|z31<1 \JR™ JR™2
1
lea\* (o2l \* P m
X (— — dxi1dx> | |zl 7 |22 7 dzidzy
|z1] |2
/ / |Zl| |Zz| 7 dz Az |f |l 1o ()
Vi Vg Jlz1]<1 JIzg)<1

. )
= Nl 1o i
g(p—l—aj/l’l/ (1)

where v,. = =F—— is the volume of the unit ball in R, i =1,2.
: (1+n 72)

Therefore, it implies that

2

H @ @)
I 2"1}’|x| )—>LP(|x|%) H(p 1- (XI/VIJ)

Next, we need to prove the converse inequality.
For the purpose of getting the sharp bound, we set

{ (pr-Dn (p2-1)n }
0 <& <min , ,
P2 P2

and define

X{j1|<Ljxa) <1y (%1, %2).

Selrna) = a7 |

It follows from the elementary calculation that |[f; || ;»(ya) is

1

p
(/ / Joea | p|x2| p|x|a dx, dxl)
<1 |xp[<1
1/p %
= (/ |x1| pdx1> </ Ix |( +8)p dx )
1 ]<1 Jp <1
1
_(em) " (@)
pe pe '
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We rewrite Hy(f;) as follows:

1
Ho () (1, %) = / / (v, y2) dyr d
)0 2%2) = (R L DB oD it Doy 072 P12

fe(z1lx1), z21%2]) dzy dzo

~ B(0,1)[1B(0,1)] f1 zl<1

_nmre n2+a2
T T

|B(0,1)[|B(0,1)]

X / / |Zl
{lz1l<L,|z1|<V/|x1]} S {lzal<L|z2]<1/|x2]}

Thus, we estimate the norm of || Hy(f:) || > as follows:

p _mtog +e
|#a(f2) H 1P(xld) = a7
(Vn Vnz)p R™ ]R"Z {lz1]<1,|z1 | < oy \22\<l,|zg\<ﬁ}

x |22| " dzy dz P [P o [P x| ey dy

> — | lz1] 7
(qu Vi P St Jisatar g1 Sz

S Dy [PETL | 5., (PE-12
X |z 7 T dzydz|P x| oo | dxy dx,
1 o, o _ s
©Om Ony ( / f a5y dzmzl)
(anvnz pe pe lz1]<1 /|22 <1

1 o 4
(Vg Vi )P <n1(1 -1/p—oy/pm + 8/111))

|Zz | B dZ2 dz,.

\x\

+&

Wy, »
X (”12(1 —1/p—oay/pny + 8/7[2)) ”ﬁ?”uf

_ p P l?,, -
p-l—ay/n+peln p—1-ay/n+pelny LP(jx|*)
Therefore, it implies that

”,Hz(fs)”[p(\x\&) - V4 ) p
Vellpway — P—1—oa/n+pelm p-1-aa/n+peln

Consequently, using the definition of the norm of the operator and letting ¢ — 0, we con-

clude that

2

H B @)
I#H2ll1p x18) L w1y H(p 1- a,/n,)

j=1

This finishes the proof of the theorem. d

3 Explicit bounds for the fractional Hardy operator
Theorem 3.1 Suppose that 0 < <n, 1<p< 2 zznd L - 5 é
(i) Iff € LP(R"), then we have

[Hs(N)] 0 < Clif I2rs

Page6of 11
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where

1/q 1/q 1-1/gq 1/p-1/q 12
(2) G5) Gh) (-0 =e=(G5)
q p-1 q-1 q p-1

(ii) Iff € L\(R"), then for any A > 0,

{x e R": |Hp()x)| > 2}| < l|[f||L1 .
A

Moreover,

IHgll | 50 =1
Proof of (i) of Theorem 3.1 Set w, = Zn%/F(g) as above. Let
1 n
&) = o lf(lylé)dé, yeR"

Clearly, g is a radial function.

1
Hg(gr)x) = ——— )d
) (Vs |x|")l-§ /y|<|x|gf(y y

(v || )1 /y|<|xl( /s =1 (Iylé)dé) &
(Vi le l‘é/ < /y<|x| (|y|$)dy)d§
i E

(v |x[" )1

= Hp(f) ().

lyl<lxl

Using the generalized Minkowski inequality and Holder’s inequality, we have that

g = ([ ool x)’

1

L] (e o

1§1=1
1/p

00 1/p
@p P n-1
= d d
Wy /|;1</; lf(t5)| g t) :
wil/p » ) )l/p< )11/]7
t&)| " dtd d.
Wy (fs 1/ Lf( §)| : /IE=1 :

1 llze-

IA

Therefore, we have that

I (Fllza _ NELp(gr)llza
Wlle = gl
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As above, this means that the norm of the operator Hpg from L” to L? is equal to the norm
that Hp restricts to radial functions. Consequently, without loss of generality, it suffices to
carry out the proof of the theorem by assuming that f is a radial function.

A simple estimate implies that ||Hg(f)| 1« equals

1

.\

[ paf )

(/]R (V| /|y|<xf(y e

v ( LI roa e o) et dx) '
]Rn

Ly b\
<) Ilfll K (/ (v,,|x|”)<1 pla p)|7.[(f)(x)|1’|x|nq(n Dip dx)

- ," ( fR an(f)(x>|‘”dx)q < (pf 1>q|lf||u9,

[yl<lxl

:\’:n
»&m

where we use the well-known consequence that # is bounded on L?(R”) with the sharp
bound ;%1 and the following relationship:

(q—p)<1—1> +p+<ﬁ—1)q=0.
)4 n

nC
To obtain a better lower bound of ||H||1»— 14, we can take fo(x) = || 7 X<y (%), G > -1
Then

WollZy = c +1

We have

sl = [ (s [ 1% @) as
1 \ (U2 A=A f)
1 nCy q
+ - - | |pd> dx
/|x|<1<(vn|x|”)(1ﬁ’”’ /|y|<x e

q

w,
= (/ || B~ e +/ Paes qu)
vy (nCyfp + mya N1 =

(L+g) p 1 1
T oah m\1+C  p-1)
Uy ”q(nCl/p+n)qq Lp

So, we have

s (o)l ( o p ( 1 1 ))é(gﬂ)é
= — + —
follze WP p + ma qgn\1+ Gt p-1 Vy
P\ 1+ C)Vp 1 1\
== +
q 1+G/p \1+C; p-1
1

_ <g>1/q< p )1/q (1+C1)},—q (5)
7/ \p=1) qicyp)

Page8of 11


http://www.journalofinequalitiesandapplications.com/content/2013/1/148

Lu et al. Journal of Inequalities and Applications 2013, 2013:148 Page9of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/148

Letg(t) =1+ t)!%’%i 1+ t/p)f(k%), t > —1. Taking g'(¢*) = 0, we get t* = —p/q, where ¢’ is
the derivative of the function g. It can be easily verified that the function g(¢) defined over
the open interval (-1, 00) has a unique global maximum at the point ¢*. Taking C; = —p/q
together with inequality (5), we get

1/q 1/q 1-1/q 1/p-1/q
gl 7 za > (‘3) (L) (i) (1 - If) . 6)
q p-1 q-1 q

Proof of (ii) of Theorem 3.1 Since

1 1
Hp (f)(x) = —— )| dy < ——— If I
ﬂ(f X _% \/I;’<x Lf(yi .y (vn|x|}’l)1—§ |.f L

(v ]!

we have that

erR”:|Hﬁ(f)(x)| >A}’ <

1
{xeaniﬁufnLl >A}‘

(‘)nlxw)kz

1
=3
{xeR”:|x|<<”fHL;> H
1-£
Ay, "

(V)

Next, we will show that the constant 1 is a sharp bound by constructing a suitable func-

tion. In fact, set
glx) = X\x\d(x)'
we have

lgllzr = v

It follows that

[{y: [yl < minf|x|, 1}}

B
(Vn|x|n)1_7

1
Hp(@x) = ——— a)dy =
p(@)(x (vn|x|”)1_é /|y<x Xy () dy

B
We assert that Hg(g)(x) < v, for all x € R”. We rewrite

B
{xeR":Hp(g)(x) > v, } :=AUB,
where

A:=B(0,1)N {x e R": Hpg(g)(x) > vné },

B:=(B(0,1))°N {x e R": Hiy(g)(x) > v,? ).

Next, we estimate two sets A and B, respectively.
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If x € A, then |x| < 1. It follows that

Hp(g)(x) < Hy: byl < el |xf[}| = (vnlxl”)é < vn%.
(Vn|~x|n)kH

If x € B, then |x| > 1. It follows that

{y:lyl <1}

B
= <vi.
(U lx|™)

Hpg(g)(x) <

B
Consequently, we have A = B = {). This implies that Hg(g)(x) <v,’.

For any 0 < A < v/, we conclude that

[{x e R": [Hy(@)@)| > 1}|
B

c I
(B(0,1)) ﬂ{xeR : P >)\”

B 1
vy o\ B
{xeR”:1§|x|<(Tn> ”

= |B(0,1)ﬂ {xeR”:va3 >k}| +

; )\’1//3
xeR :v Tn <lx] <1
n

)
A

If there exists a constant C such that

+

S H
—
~
~

] Cllfllz:
[{xeR :|Hﬁ(f)(x)y>x}y§(#)
holds for all f € L'(R"). Then we can choose that

fx) = X\x\<1(x)~

It follows from equality (7) that

Yn m_xg< Cou )7
A - A

B
always holds for every 0 < A < v,'. Letting A — 07, this forces that C > 1. This means that

the constant 1 is sharp. d

At the end of this paper, we revisit the lower bound of ||Hg||;»— 4. Using L'Hospital’s
rule, we obtain that

1/p-1/q
lim (1 - ’3) -1
q—p* q

This implies that

s

1Hlzr—rr = .
p-1

Page 10 of 11
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Remark 3.1 If 8 = 0, the operator Hpg is reduced to the classical Hardy operator H. In
addition, in order to study the endpoint estimate for Hardy operator, we in [13] modified
the definition of (2) as follows:

H(f)(x) = 5 fO)dy, xeRM\{0},

1
(0, |x|)| [yl<|x|

where f is a measurable function on R”. In fact, the operators 7 and A enjoy the same
boundedness property for I” — I” and L! — L%*, but they do not have the same property
involving the Hardy space H 1 For instance, the operator H is bounded from H! to L'; but
the operator H is not since H is nonnegative (cf. [13]).

The well-known fact is that | H |-z = 1% (cf. [2]) and | H || ;1 p1oo = I Hll 1 pree = 1
(cf. [13]). On account of these facts, we guess that the lower bound of (i) in Theorem 3.1 is

sharp.
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