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Abstract
In this paper, we investigate several interesting properties of a composition operator
defined on the open unit ball B0 of the Banach algebra C(T ). We also consider the
Noshiro-Warschawski theorem in the Banach algebra of continuous functions.
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1 Introduction and definitions
Throughout this paper, C(T) denotes the Banach algebra, with sup norm, of continuous
complex-valued functions defined on a compact metric space T . Let B(f : r) be an open
ball in C(T) centered at f ∈ C(T) with radius r. In particular, for the sake of brevity, we
use the simplified notation B instead of B( : ).
Let A denote the class of functions ϕ(z) of the form

ϕ(z) = z +
∞∑
n=

anzn, (.)

which are analytic in the open unit disk

U =
{
z : z ∈C and |z| < 

}
.

Also, let S denote the class of all functions in A which are univalent in the unit disk U .
A function ϕ(z) belonging to the class S is said to be convex in U if and only if

�
{
 +

zϕ′′(z)
ϕ′(z)

}
>  (z ∈ U ).

We denote by K the class of all functions in S which are convex in U .
Corresponding to the function ϕ ∈A, we define a composition operator Fϕ : B → C(T)

by

Fϕ(f ) = ϕ ◦ f = f +
∞∑
n=

anf n. (.)
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Wedenote by SC the class of all functions Fϕ which are injective in the openunit ballB.We
note that Nikić ([], Definition ) defined a similar class SC without using the function ϕ.
In this case, we cannot ensure the convergence of the series

f +
∞∑
n=

anf n.

Now we let G be an open nonempty subset of C(T). A function F :G → C(T) is said to
be L-differentiable at a point f ∈ G if there exists λ ∈ C(T) and a map η defined in a ball
B( : r) with values in C(T) such that

lim
h→

η(h)
‖h‖ = 

and such that

F(f + h) – F(f ) = λh + η(h)

for all h ∈ B( : r). We call λ the L-derivative of F at f and denote it by F ′(f ). From [], we
see that

F ′
ϕ(f ) = ϕ′ ◦ f , (.)

where ϕ′ is a derivative of ϕ.
In the present paper, we investigate several geometric properties of the class SC associ-

ated with the theory of univalent functions.

2 Geometric properties of the composition operator Fϕ

We begin by proving the following theorem.

Theorem  Fϕ ∈ SC if and only if ϕ ∈ S .

Proof (⇐) Suppose that Fϕ(f ) = Fϕ(g) for the functions f and g in B. Then it means that

ϕ
(
f (t)

)
= ϕ

(
g(t)

)

for all t ∈ T . Since ϕ is univalent, f (t) = g(t) for all t ∈ T .
(⇒) Let ϕ(z) = ϕ(z) for z and z in U . If we take the constant functions f and g such

that f = z and g = z, then it is obvious that

f ∈ B and g ∈ B.

Furthermore, from (.) it is easy to see that

Fϕ(f ) = Fϕ(g).

Since Fϕ is injective, we have f = g . Hence we get z = z. This completes the proof of
Theorem . �
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By using Brange’s theorem [], we obtain the following.

Corollary  If

Fϕ(f ) = f +
∞∑
n=

anf n ∈ SC ,

then

|an| ≤ n.

Now we prove the Noshiro-Warschawski theorem ([], Theorem .) in the Banach
algebra C(T).

Theorem  If the L-derivative F ′
ϕ(f ) has a positive real part for all f ∈ B, then

Fϕ ∈ SC .

Proof If f ∈ B, f ∈ B and f �= f, then there exists t ∈ T such that

f(t) �= f(t). (.)

By the hypothesis,

�{
F ′

ϕ(f )
}
>  (.)

for all f ∈ B. It follows from (.) that

�{
ϕ′(f (t))} >  (f ∈ B : t ∈ T). (.)

Since

ϕ
(
f(t)

)
– ϕ

(
f(t)

)
=

∫ f(t)

f(t)
ϕ′(x)dx =

(
f(t) – f(t)

)∫ 


ϕ′(λf(t) + ( – λ)f(t)

)
dλ

and

λf(t) + ( – λ)f(t) ∈ B,

equations (.) and (.) imply that

ϕ
(
f(t)

) �= ϕ
(
f(t)

)
.

Hence

Fϕ

(
f(t)

) �= Fϕ

(
f(t)

)

at t ∈ T , which shows that Fϕ is injective. �
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Remark Since T is compact, {f (t) : t ∈ T} is a closed proper subset of U . Hence the con-
dition (.) does not imply

�{
ϕ′(z)

}
>  (z ∈ U ).

Next we obtain the following.

Theorem  Let

ϕ(z) =
z

 – z
.

Then

{
Fϕ(f ) : f ∈ B

}

is a convex subset in C(T).

Proof Assume that

α > , β >  and α + β = .

For the functions f and g in B, we let

u(t) ≡ αFϕ

(
f (t)

)
+ βFϕ

(
g(t)

)

and

v(t)≡ u(t)
 + u(t)

.

Then we have

u(t) =
v(t)

 – v(t)
= Fϕ

(
v(t)

)
.

Since

 –
∣∣v(t)∣∣ =  – v(t)v(t)

=  –
u(t)

 + u(t)
u(t)

 + u(t)

=


 + u(t)
(
 + u(t) + u(t)

) 
 + u(t)

=
 + �{u(t)}
 + |u(t)| > ,

the function v belongs to B. Thus we have

u = Fϕ(v) ∈
{
Fϕ(f ) : f ∈ B

}
.

This completes the proof of Theorem . �
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We now recall that the function

ϕη(z) =
z

 – ηz
(
η ∈C, |η| = 

)

is the well-known extremal function (see []) for the classK of convex functions. If we let

ϕ(z) =
z

 – z
,

then we note that

ϕη(z) = η–ϕ(ηz). (.)

Making use of Theorem  and (.), we can derive the following.

Corollary  If ϕ is an extreme point of K, then

{
Fϕ(f ) : f ∈ B

}

is a convex subset in C(T).

It is well known that the sharp inequality

∣∣f (n)(z)∣∣ ≤ n!(n + |z|)
( – |z|)n+ (n = , , , . . .) (.)

holds for every f ∈ S (see [, p., Exercise ]).
In view of the inequality (.), we have a generalization of [, Theorem ] as follows.

Theorem  If f ∈ B and ϕ ∈ S , then the nth L-derivative of Fϕ at f satisfies

∥∥F (n)(f )
∥∥ ≤ n!(n + ‖f ‖)

( – ‖f ‖)n+ .

Remark The proof would run parallel to that of [, Theorem ] because there are many
similarities. But, as we have seen in equation (.), we find it to be different from the defi-
nition of the class SC , which was given by Nikić []. So, we include the proof of Theorem .

Proof Applying (.) and (.), it is not difficult to show that

F (n)
ϕ (f ) = ϕ(n) ◦ f (n = , , , . . .),

where ϕ(n) is the nth derivative of ϕ. Since

F (n)
ϕ (f ) ∈ C(T)

and T is a compact metric space, there exists a point ξ ∈ T such that

∥∥F (n)
ϕ (f )

∥∥ =
∣∣F (n)

ϕ

(
f (ξ )

)∣∣ = ∣∣ϕ(n)(f (ξ ))∣∣. (.)
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Since ϕ ∈ S , from (.) we have

∣∣ϕ(n)(f (ξ ))∣∣ ≤ n!(n + |f (ξ )|)
( – |f (ξ )|)n+ ≤ n!(n + ‖f ‖)

( – ‖f ‖)n+ . (.)

Combining (.) and (.), we obtain the desired result. �

3 Examples
Example  Let the function ϕ be defined by (.). For a fixed radius  < r < , we let T =
{z ∈C : |z| ≤ r}. If we define a continuous function f : T →C by f (z) = z, then

Fϕ(f ) = ϕ

on T .

Example  Setting ϕ(z) = z in (.), we have

Fϕ(f ) = f .

Example  If ϕ ∈A satisfies

�{
ϕ′(z)

}
>  (z ∈ U ),

then the Noshiro-Warschawski theorem implies that ϕ is univalent. Hence, by Theorem ,
we obtain

Fϕ ∈ SC .
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