RESEARCH

Open Access

Univalent functions in the Banach algebra of continuous functions

Yong Chan Kim¹ and Jae Ho Choi^{2*}

^{*}Correspondence: choijh@dnue.ac.kr ²Department of Mathematics Education, Daegu National University of Education, Daegu, 705-715, Korea Full list of author information is available at the end of the article

Abstract

In this paper, we investigate several interesting properties of a composition operator defined on the open unit ball B_0 of the Banach algebra C(T). We also consider the Noshiro-Warschawski theorem in the Banach algebra of continuous functions. **MSC:** Primary 30C45; secondary 46J10

Keywords: analytic function; univalent function; Banach algebra; Noshiro-Warschawski theorem

1 Introduction and definitions

Throughout this paper, C(T) denotes the Banach algebra, with sup norm, of continuous complex-valued functions defined on a compact metric space T. Let B(f : r) be an open ball in C(T) centered at $f \in C(T)$ with radius r. In particular, for the sake of brevity, we use the simplified notation B_0 instead of B(0:1).

Let $\mathcal A$ denote the class of functions $\varphi(z)$ of the form

$$\varphi(z) = z + \sum_{n=2}^{\infty} a_n z^n, \tag{1.1}$$

which are analytic in the open unit disk

 $\mathcal{U} = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \}.$

Also, let S denote the class of all functions in A which are *univalent* in the unit disk U. A function $\varphi(z)$ belonging to the class S is said to be *convex* in U if and only if

$$\Re\left\{1+rac{z\varphi''(z)}{\varphi'(z)}
ight\}>0\quad(z\in\mathcal{U}).$$

We denote by ${\mathcal K}$ the class of all functions in ${\mathcal S}$ which are convex in ${\mathcal U}.$

Corresponding to the function $\varphi \in A$, we define a composition operator $F_{\varphi}: B_0 \to C(T)$ by

$$F_{\varphi}(f) = \varphi \circ f = f + \sum_{n=2}^{\infty} a_n f^n.$$
(1.2)

© 2013 Kim and Choi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We denote by S_C the class of all functions F_{φ} which are injective in the open unit ball B_0 . We note that Nikić ([1], Definition 2) defined a similar class S_C without using the function φ . In this case, we cannot ensure the convergence of the series

$$f+\sum_{n=2}^{\infty}a_nf^n.$$

Now we let *G* be an open nonempty subset of C(T). A function $F : G \to C(T)$ is said to be *L*-differentiable at a point $f \in G$ if there exists $\lambda \in C(T)$ and a map η defined in a ball B(0:r) with values in C(T) such that

$$\lim_{h \to 0} \frac{\eta(h)}{\|h\|} = 0$$

and such that

$$F(f+h) - F(f) = \lambda h + \eta(h)$$

for all $h \in B(0:r)$. We call λ the *L*-derivative of *F* at *f* and denote it by F'(f). From [1], we see that

$$F'_{\varphi}(f) = \varphi' \circ f, \tag{1.3}$$

where φ' is a derivative of φ .

In the present paper, we investigate several geometric properties of the class S_C associated with the theory of univalent functions.

2 Geometric properties of the composition operator F_{φ}

We begin by proving the following theorem.

Theorem 1 $F_{\varphi} \in S_C$ if and only if $\varphi \in S$.

Proof (\Leftarrow) Suppose that $F_{\varphi}(f) = F_{\varphi}(g)$ for the functions f and g in B_0 . Then it means that

 $\varphi(f(t)) = \varphi(g(t))$

for all $t \in T$. Since φ is univalent, f(t) = g(t) for all $t \in T$.

(⇒) Let $\varphi(z_1) = \varphi(z_2)$ for z_1 and z_2 in \mathcal{U} . If we take the constant functions f and g such that $f = z_1$ and $g = z_2$, then it is obvious that

$$f \in B_0$$
 and $g \in B_0$.

Furthermore, from (1.2) it is easy to see that

$$F_\varphi(f)=F_\varphi(g).$$

Since F_{φ} is injective, we have f = g. Hence we get $z_1 = z_2$. This completes the proof of Theorem 1.

By using Brange's theorem [2], we obtain the following.

Corollary 1 If

$$F_{\varphi}(f) = f + \sum_{n=2}^{\infty} a_n f^n \in S_C,$$

then

 $|a_n| \leq n$.

Now we prove the Noshiro-Warschawski theorem ([3], Theorem 2.16) in the Banach algebra C(T).

Theorem 2 If the *L*-derivative $F'_{\varphi}(f)$ has a positive real part for all $f \in B_0$, then

$$F_{\varphi} \in S_C$$
.

Proof If $f_1 \in B_0$, $f_2 \in B_0$ and $f_1 \neq f_2$, then there exists $t \in T$ such that

$$f_1(t) \neq f_2(t). \tag{2.1}$$

By the hypothesis,

$$\Re\left\{F_{\varphi}'(f)\right\} > 0 \tag{2.2}$$

for all $f \in B_0$. It follows from (1.3) that

$$\Re\left\{\varphi'\left(f(t)\right)\right\} > 0 \quad (f \in B_0 : t \in T).$$

$$(2.3)$$

Since

$$\varphi(f_2(t)) - \varphi(f_1(t)) = \int_{f_1(t)}^{f_2(t)} \varphi'(x) \, dx = \left(f_2(t) - f_1(t)\right) \int_0^1 \varphi'\left(\lambda f_2(t) + (1-\lambda)f_1(t)\right) \, d\lambda$$

and

$$\lambda f_2(t) + (1-\lambda)f_1(t) \in B_0,$$

equations (2.1) and (2.3) imply that

$$\varphi(f_2(t)) \neq \varphi(f_1(t)).$$

Hence

$$F_{\varphi}(f_1(t)) \neq F_{\varphi}(f_2(t))$$

at $t \in T$, which shows that F_{φ} is injective.

Remark Since *T* is compact, $\{f(t) : t \in T\}$ is a closed proper subset of U. Hence the condition (2.2) does not imply

$$\Re\{\varphi'(z)\}>0 \quad (z\in\mathcal{U}).$$

Next we obtain the following.

Theorem 3 Let

$$\varphi(z)=\frac{z}{1-z}.$$

Then

$$\left\{F_{\varphi}(f):f\in B_0\right\}$$

is a convex subset in C(T).

Proof Assume that

 $\alpha > 0$, $\beta > 0$ and $\alpha + \beta = 1$.

For the functions f and g in B_0 , we let

$$u(t) \equiv \alpha F_{\varphi}(f(t)) + \beta F_{\varphi}(g(t))$$

and

$$v(t) \equiv \frac{u(t)}{1+u(t)}.$$

Then we have

$$u(t)=\frac{v(t)}{1-v(t)}=F_{\varphi}(v(t)).$$

Since

$$\begin{split} 1 - \left| \nu(t) \right|^2 &= 1 - \nu(t) \overline{\nu(t)} \\ &= 1 - \frac{u(t)}{1 + u(t)} \frac{\overline{u(t)}}{1 + \overline{u(t)}} \\ &= \frac{1}{1 + \overline{u(t)}} \Big(1 + u(t) + \overline{u(t)} \Big) \frac{1}{1 + u(t)} \\ &= \frac{1 + 2\Re\{u(t)\}}{1 + |u(t)|^2} > 0, \end{split}$$

the function ν belongs to B_0 . Thus we have

$$u = F_{\varphi}(v) \in \{F_{\varphi}(f) : f \in B_0\}.$$

This completes the proof of Theorem 3.

We now recall that the function

$$arphi_\eta(z) = rac{z}{1-\eta z} \quad \left(\eta \in \mathbb{C}, |\eta| = 1
ight)$$

is the well-known extremal function (see [3]) for the class $\mathcal K$ of convex functions. If we let

$$\varphi(z)=\frac{z}{1-z},$$

then we note that

$$\varphi_{\eta}(z) = \eta^{-1} \varphi(\eta z). \tag{2.4}$$

Making use of Theorem 3 and (2.4), we can derive the following.

Corollary 2 If φ is an extreme point of \mathcal{K} , then

$$\left\{F_{\varphi}(f):f\in B_0\right\}$$

is a convex subset in C(T).

It is well known that the sharp inequality

$$\left|f^{(n)}(z)\right| \le \frac{n!(n+|z|)}{(1-|z|)^{n+2}} \quad (n=1,2,3,\ldots)$$
 (2.5)

holds for every $f \in S$ (see [3, p.70, Exercise 6]).

In view of the inequality (2.5), we have a generalization of [1, Theorem 2] as follows.

Theorem 4 If $f \in B_0$ and $\varphi \in S$, then the nth L-derivative of F_{φ} at f satisfies

$$\left\|F^{(n)}(f)\right\| \leq \frac{n!(n+\|f\|)}{(1-\|f\|)^{n+2}}.$$

Remark The proof would run parallel to that of [1, Theorem 2] because there are many similarities. But, as we have seen in equation (1.2), we find it to be different from the definition of the class S_C , which was given by Nikić [1]. So, we include the proof of Theorem 4.

Proof Applying (1.2) and (1.3), it is not difficult to show that

$$F_{\varphi}^{(n)}(f) = \varphi^{(n)} \circ f \quad (n = 1, 2, 3, ...),$$

where $\varphi^{(n)}$ is the *n*th derivative of φ . Since

$$F_{\varphi}^{(n)}(f) \in C(T)$$

and *T* is a compact metric space, there exists a point $\xi \in T$ such that

$$\left\|F_{\varphi}^{(n)}(f)\right\| = \left|F_{\varphi}^{(n)}(f(\xi))\right| = \left|\varphi^{(n)}(f(\xi))\right|.$$
(2.6)

Since $\varphi \in S$, from (2.4) we have

$$\left|\varphi^{(n)}(f(\xi))\right| \le \frac{n!(n+|f(\xi)|)}{(1-|f(\xi)|)^{n+2}} \le \frac{n!(n+||f||)}{(1-||f||)^{n+2}}.$$
(2.7)

Combining (2.6) and (2.7), we obtain the desired result.

3 Examples

Example 1 Let the function φ be defined by (1.1). For a fixed radius 0 < r < 1, we let $T = \{z \in \mathbb{C} : |z| \le r\}$. If we define a continuous function $f : T \to \mathbb{C}$ by f(z) = z, then

 $F_{\varphi}(f) = \varphi$

on T.

Example 2 Setting $\varphi(z) = z$ in (1.2), we have

 $F_{\varphi}(f) = f.$

Example 3 If $\varphi \in \mathcal{A}$ satisfies

 $\Re \big\{ \varphi'(z) \big\} > 0 \quad (z \in \mathcal{U}),$

then the Noshiro-Warschawski theorem implies that φ is univalent. Hence, by Theorem 1, we obtain

$$F_{\varphi} \in S_C$$
.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Author details

¹Department of Mathematics Education, Yeungnam University, Gyongsan, 712-749, Korea. ²Department of Mathematics Education, Daegu National University of Education, Daegu, 705-715, Korea.

Acknowledgements

Dedicated to Professor Hari M Srivastava.

Received: 24 December 2012 Accepted: 7 March 2013 Published: 2 April 2013

References

- 1. Nikić, M: Koebe's and Bieberbach's inequalities in the Banach algebra of continuous functions. J. Math. Anal. Appl. 199, 149-156 (1996)
- 2. de Branges, L: A proof of the Bieberbach conjecture. Acta Math. 154, 137-152 (1985)
- 3. Duren, PL: Univalent Functions. A Series of Comprehensive Studies in Mathematics, vol. 259. Springer, Berlin (1983)

doi:10.1186/1029-242X-2013-145

Cite this article as: Kim and Choi: Univalent functions in the Banach algebra of continuous functions. Journal of Inequalities and Applications 2013 2013:145.