RESEARCH

Open Access

f-Contractive multivalued maps and coincidence points

Marwan A Kutbi*

*Correspondence: mkutbi@yahoo.com Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia

Abstract

In this paper, we prove a result on the existence of an *f*-orbit for generalized *f*-contractive multivalued maps. Then, we establish main results on the existence of coincidence points and common fixed points for generalized *f*-contractive maps not involving the extended Hausdorff metric and the continuity condition. Our results either generalize or improve a number of metric fixed point results. **MSC:** 47H10; 47H09; 54H25

Keywords: metric space; fixed point; multivalued contractive map; coincidence point

1 Introduction

Let (X, d) be a metric space. Let 2^X , Cl(X) and CB(X) denote the collection of nonempty subsets of *X*, nonempty closed subsets of *X*, and nonempty closed bounded subsets of *X*, respectively. Let *H* be the Hausdorff metric with respect to *d*, that is,

$$H(A,B) = \max\left\{\sup_{x\in A} d(x,B), \sup_{y\in B} d(y,A)\right\}$$

for every $A, B \in CB(X)$, where $d(x, B) = \inf_{y \in B} d(x, y)$.

Let $f : X \to X$ be a single-valued map, and let $T : X \to 2^X$ be a multivalued map. A point $x \in X$ is called a fixed point of T if $x \in T(x)$, and the set of fixed points of T is denoted by Fix(T). A point $x \in X$ is called a coincidence point of f and T if $f(x) \in T(x)$. We denote by $C(f \cap T)$ the set of coincidence points of f and T.

We say a sequence $\{x_n\}$ in X is an f-orbit of T at $x_0 \in X$ if $fx_n \in Tx_{n-1}$ for all $n \ge 1$. We say that f and T weakly commute if $fTx \subset Tfx$ for all $x \in X$. Clearly, commuting maps f and T weakly commute.

A multivalued map $T: X \to CB(X)$ is called

(i) *contraction* [1] if for a fixed constant $\lambda \in (0, 1)$ and for each $x, y \in X$,

 $H(T(x), T(y)) \leq \lambda d(x, y).$

(ii) *f*-contraction [2] if for a fixed constant $\lambda \in (0, 1)$ and for each $x, y \in X$,

 $H(T(x), T(y)) \le \lambda d(f(x), f(y)).$

© 2013 Kutbi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Using the concept of Hausdorff metric, Nadler [1] established the following fixed point result for multivalued contraction maps, which in turn is a generalization of the well-known Banach contraction principle.

Theorem 1.1 [1] Let (X, d) be a complete metric space, and let $T : X \to CB(X)$ be a contraction map. Then $Fix(T) \neq \emptyset$.

This result has been generalized in many directions. Kaneko [2] extended the corresponding results of Jungck [3], Nadler [1] and others as follows.

Theorem 1.2 [2] Let (X, d) be a complete metric space, and let $T : X \to CB(X)$ be a multivalued f-contraction map which commutes with a continuous map f. Then $C(f \cap T) \neq \emptyset$.

This result has been generalized in different directions. For example, see [4–10].

On the other hand, Kada *et al.* [11] introduced the concept of *w*-distance on a metric space as follows:

Let (X, d) be a metric space. A function $\omega : X \times X \to [0, \infty)$ is called a *w*-*distance* on *X* if it satisfies the following for each *x*, *y*, *z* \in *X*:

- $(w_1) \quad \omega(x,z) \leq \omega(x,y) + \omega(y,z);$
- (w_2) a map $\omega(x, \cdot) : X \to [0, \infty)$ is lower semicontinuous;
- (w_3) for any $\epsilon > 0$, there exists $\delta > 0$ such that $\omega(z, x) \le \delta$ and $\omega(z, y) \le \delta$ imply $d(x, y) \le \epsilon$.

Note that, in general, for $x, y \in X$, $\omega(x, y) \neq \omega(y, x)$ and not either of the implications $\omega(x, y) = 0 \Leftrightarrow x = y$ necessarily hold. We say the *w*-distance ω on *X* is a w_0 -distance if x = y implies $\omega(x, y) = 0$. Clearly, the metric *d* is a *w*-distance on *X*. Let $(Y, \|\cdot\|)$ be a normed space. Then the functions $\omega_1, \omega_2 : Y \times Y \rightarrow [0, \infty)$ defined by $\omega_1(x, y) = \|y\|$ and $\omega_2(x, y) = \|x\| + \|y\|$ for all $x, y \in Y$ are *w*-distances [11]. Many other examples and properties of the *w*-distance can be found in [11, 12].

The following useful lemma concerning a *w*-distance is given in [11].

Lemma 1.1 [11] Let (X,d) be a metric space, and let ω be a w-distance on X. Let $\{x_n\}$ and $\{y_n\}$ be sequences in X, and let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in $[0,\infty)$ converging to zero. Then, for the w-distance ω on X, the following hold for every $x, y, z \in X$:

- (a) if ω(x_n, y) ≤ α_n and ω(x_n, z) ≤ β_n for any n ∈ N, then y = z; in particular, if ω(x, y) = 0 and ω(x, z) = 0, then y = z;
- (b) if $\omega(x_n, y_n) \leq \alpha_n$ and $\omega(x_n, z) \leq \beta_n$ for any $n \in \mathbb{N}$, then $\{y_n\}$ converges to z;
- (c) if $\omega(x_n, x_m) \leq \alpha_n$ for any $n, m \in \mathbb{N}$ with m > n, then $\{x_n\}$ is a Cauchy sequence;
- (d) if $\omega(y, x_n) \le \alpha_n$ for any $n \in \mathbb{N}$, then $\{x_n\}$ is a Cauchy sequence.

For $x \in X$ and $A \in 2^X$, we denote, $\omega(x, A) = \inf_{y \in A} \omega(x, y)$. Now, let $T : X \to Cl(X)$ be a multivalued map, and let $f : X \to X$ be a single-valued map. We say

(iii) *T* is *w*-contractive [12] if there exist a *w*-distance ω on *X* and $\lambda \in (0, 1)$ such that for any $x, y \in X$ and $u \in T(x)$, there is $v \in T(y)$ with

 $\omega(u,v) \leq \lambda \omega(x,y).$

(iv) *T* is *generalized f*-contractive if there exist a w_0 -distance ω on *X* and $\lambda \in (0, 1)$ such that for any $x, y \in X$, $u \in T(x)$, there is $v \in T(y)$ with

$$\omega(u,v) \leq \lambda M_f(x,y),$$

where

$$\begin{split} M_f(x,y) &= \max\left\{\omega\big(f(x),f(y)\big), \omega\big(f(x),T(x)\big), \omega\big(f(y),T(y)\big), \\ & \frac{1}{2}\big[\omega\big(f(x),T(y)\big) + \omega\big(f(y),T(x)\big)\big]\right\}. \end{split}$$

Using the concept of *w*-distance, Suzuki and Takahashi [12] improved Nadler's fixed point result as follows.

Theorem 1.3 Let (X, d) be a complete metric space. Then for each w-contractive map $T : X \to Cl(X)$, the set $Fix(T) \neq \emptyset$.

This result has been generalized by many authors, for example, see [13-16]. In this paper, first we establish a lemma with respect to a *w*-distance, which is an improved version of the lemma given in [3], and then we prove a key lemma on the existence of an *f*-orbit for generalized *f*-contractive maps. Finally, we present our main results on the existence of coincidence points and common fixed points for generalized *f*-contractive maps not involving the extended Hausdorff metric. As a consequence, we obtain a fixed point result. Our results either generalize or improve a number of known results.

2 Results

Using the concept of *w*-distance, first we improve a corresponding result of Jungck [3] as follows.

Lemma 2.1 Let (X, d) be a complete metric space with a w-distance ω . If there exist a sequence $\{x_n\}$ in X and a constant λ , $0 < \lambda < 1$, such that for all $n \in \mathbb{N}$,

 $\omega(x_n, x_{n+1}) \leq \lambda \omega(x_{n-1}, x_n),$

then the sequence $\{x_n\}$ converges in X.

Proof It is enough to show that $\{x_n\}$ is a Cauchy sequence in *X*. Note that for each $n \in \mathbb{N}$, we have

$$egin{aligned} &\omega(x_n,x_{n+1}) \leq \lambda \omega(x_{n-1},x_n) \ &\leq \lambda^2 \omega(x_{n-2},x_{n-1}) \ &\vdots \ &\leq \lambda^n \omega(x_0,x_1). \end{aligned}$$

Thus

$$\omega(x_n, x_{n+1}) \leq \lambda^n \omega(x_0, x_1).$$

Consequently, for $m \ge n$, we get

$$\begin{split} \omega(x_n, x_m) &\leq \omega(x_n, x_{n+1}) + \omega(x_{n+1}, x_{n+2}) + \dots + \omega(x_{m-1}, x_m) \\ &\leq \lambda^n \omega(x_0, x_1) + \lambda^{n+1} \omega(x_0, x_1) + \dots + \lambda^{m-1} \omega(x_0, x_1), \end{split}$$

and thus

$$\omega(x_n, x_m) \leq \frac{\lambda^n}{1-\lambda}\omega(x_0, x_1).$$

Since $0 < \lambda < 1$, we have $\lambda^n \to 0$ as $n \to \infty$. And thus by Lemma 1.1, $\{x_n\}$ is a Cauchy sequence in *X*. Since *X* is complete, the sequence $\{x_n\}$ converges to a point in *X*.

The following lemma is crucial for our main results.

Lemma 2.2 Let (X, d) be a complete metric space, and let $T : X \to Cl(X)$ be a generalized f-contractive map such that $T(X) \subset f(X)$. Then there exists an f-orbit $\{x_n\}$ of T at $x_0 \in X$ such that $\{f(x_n)\}$ converges in X.

Proof Let $x_0 \in X$ and choose $y_0 \in T(x_0)$. Since $T(x_0) \subset f(X)$, then there exists $x_1 \in X$ such that $f(x_1) = y_0 \in T(x_0)$, and thus, by the definition of T, there exists $y_1 \in T(x_1)$ such that

 $\omega(f(x_1), y_1) \leq \lambda M_f(x_0, x_1),$

where $0 < \lambda < 1$. Since $T(x_1) \subset f(X)$, there exists $x_2 \in X$ such that $f(x_2) = y_1 \in T(x_1)$. Thus

$$\omega(f(x_1), f(x_2)) \leq \lambda M_f(x_0, x_1).$$

Similarly, using the definition of *T* and the fact that $T(X) \subset f(X)$, there exists $x_3 \in X$ such that $f(x_3) \in T(x_2)$ and

 $\omega(f(x_2), f(x_3)) \leq \lambda M_f(x_1, x_2).$

Continuing this process, we get a sequence $\{x_n\}$ in X such that for all $n, f(x_{n+1}) \in T(x_n)$ and

$$\omega(f(x_n),f(x_{n+1})) \leq \lambda M_f(x_{n-1},x_n),$$

that is,

$$\begin{split} \omega\big(f(x_n), f(x_{n+1})\big) &\leq \lambda \max\left\{\omega\big(f(x_{n-1}), f(x_n)\big), \omega\big(f(x_{n-1}), T(x_{n-1})\big), \omega\big(f(x_n), T(x_n)\big), \\ \frac{1}{2}\big[\omega\big(f(x_{n-1}), T(x_n)\big) + \omega\big(f(x_n), T(x_{n-1})\big)\big]\right\}. \end{split}$$

Note that

$$\begin{split} \omega(f(x_n), f(x_{n+1})) &\leq \lambda \max \left\{ \omega(f(x_{n-1}), f(x_n)), \omega(f(x_{n-1}), f(x_n)), \omega(f(x_n), f(x_{n+1})), \\ & \frac{1}{2} \big[\omega(f(x_{n-1}), f(x_{n+1})) + \omega(f(x_n), f(x_n)) \big] \right\} \\ &= \lambda \max \left\{ \omega(f(x_{n-1}), f(x_n)), \omega(f(x_n), f(x_{n+1})), \frac{1}{2} \big[\omega(f(x_{n-1}), f(x_{n+1})) \big] \right\} \end{split}$$

and we get

$$\omega(f(x_n), f(x_{n+1})) \leq \lambda \max\left\{\omega(f(x_{n-1}), f(x_n)), \frac{1}{2}[\omega(f(x_{n-1}), f(x_{n+1}))]\right\}.$$

Also, note that

$$\begin{split} \omega(f(x_n), f(x_{n+1})) &\leq \lambda \max\left\{\omega(f(x_{n-1}), f(x_n)), \frac{1}{2} \big[\omega(f(x_{n-1}), f(x_n)) + \omega(f(x_n), f(x_{n+1}))\big] \right\} \\ &\leq \lambda \max\left\{ \big[\omega(f(x_{n-1}), f(x_n)), \omega(f(x_n), f(x_{n+1}))\big] \right\}. \end{split}$$

Thus, for each $n \in \mathbb{N}$, we get

$$\omega\big(f(x_n), f(x_{n+1})\big) \le \lambda \omega\big(f(x_{n-1}), f(x_n)\big). \tag{1}$$

Since the sequence $\{f(x_n)\}$ is in the complete metric space *X* satisfying the inequality (1), it follows from Lemma 2.1 that $\{f(x_n)\}$ converges in *X*.

Remark 2.1 Since for each $n \in \mathbb{N}$ we have

$$\omega(f(x_n), f(x_{n+1})) \leq \lambda \omega(f(x_{n-1}), f(x_n)),$$

following the proof of Lemma 2.1, we obtain the following two useful inequalities.

$$\omega(f(x_n), f(x_{n+1})) \le \lambda^n \omega(f(x_0), f(x_1))$$
(2)

and for $m \ge n$

$$\omega(f(x_n), f(x_m)) \le \frac{\lambda^n}{1 - \lambda} \omega(f(x_0), f(x_1)).$$
(3)

Without using the extended Hausdorff metric and continuity conditions, we prove a coincidence result which improves many known results including Theorem 1.2 due to [2], Theorem 3.3 in [17] and Theorem 2 in [7].

Theorem 2.1 Suppose that all the hypotheses of Lemma 2.2 hold. Furthermore, if for every $y \in X$ with $f(y) \notin T(y)$

$$\inf \left\{ \omega \big(f(x), y \big) + \omega \big(f(x), T(x) \big) : x \in X \right\} > 0.$$

Then $C(f \cap T) \neq \emptyset$.

Proof By Lemma 2.2, there exists an *f*-orbit $\{x_n\}$ of *T* at $x_0 \in X$ such that $\{f(x_n)\}$ converges in *X*. Also note that for each $n \in \mathbb{N}$, we have

$$\omega(f(x_n), f(x_{n+1})) \leq \lambda \omega(f(x_{n-1}), f(x_n)),$$

where $0 < \lambda < 1$. Let $f(x_n) \rightarrow y \in X$. Now since $\omega(f(x_n), \cdot)$ is lower semicontinuous, from Remark 2.1 (2), we have

$$\omega(f(x_n), y) \leq \lim_{m \to \infty} \inf \omega(f(x_n), f(x_m))$$
$$\leq \frac{\lambda^n}{1 - \lambda} \omega(f(x_0), f(x_1)).$$

Since $\lambda < 1$, we get $\omega(f(x_n), y) \to 0$ as $n \to \infty$. Assume that $f(y) \notin T(y)$, then from the hypothesis and Remark 2.1, we get

$$0 < \inf \{ \omega(f(x), y) + \omega(f(x), T(x)) : x \in X \}$$

$$\leq \inf \{ \omega(f(x_n), y) + \omega(f(x_n), T(x_n)) : n \in \mathbb{N} \}$$

$$\leq \inf \{ \omega(f(x_n), y) + \omega(f(x_n), f(x_{n+1})) : n \in \mathbb{N} \}$$

$$\leq \inf \{ \frac{\lambda^n}{1 - \lambda} \omega(f(x_o), f(x_1)) + \lambda^n \omega(f(x_0), f(x_1)) : n \in \mathbb{N} \}$$

$$= \{ \frac{2 - \lambda}{1 - \lambda} \} \omega(f(x_0), f(x_1)) \inf \{ \lambda^n : n \in \mathbb{N} \} = 0,$$

which is impossible, and thus $f(y) \in T(y)$, that is, y is a coincidence point of f and T. \Box

If we take f = I (an identity map on X) in Theorem 2.1, we obtain the following improved version of the corresponding fixed point results in [12, 17, 18].

Corollary 2.1 Let (X,d) be a complete metric space, let ω be a w-distance on X, and let $T: X \rightarrow Cl(X)$ be a multivalued map satisfying the following:

(I) for fixed $\lambda \in (0,1)$, for each $x, y \in X$ and $u \in T(x)$, there exists $v \in T(y)$ such that

$$\omega(u,v) \leq \lambda M_{\omega}(x,y),$$

where

$$M_{\omega}(x,y) = \max\left\{\omega(x,y), \omega(x,T(x)), \omega(y,T(y)), \frac{1}{2}[\omega(x,T(y)) + \omega(y,T(x))]\right\},$$

(II) $\inf\{\omega(x, y) + \omega(x, T(x)) : x \in X\} > 0.$ Then $Fix(T) \neq \emptyset$.

Finally, we obtain a common fixed point result.

Theorem 2.2 Suppose that all the hypotheses of Theorem 2.1 hold. Further, if the maps f and T commute weakly and satisfy the condition that $f(x) \neq f^2(x)$, which implies $f(x) \notin T(x)$, then f and T have a common fixed point.

Proof From Theorem 2.1 we have $f(y) \in T(y)$, and thus we get $f(y) = f^2(y)$. Note that

$$f(y) = f(f(y)) \in f(T(y)) \subseteq T(f(y)),$$

that is, f(y) is a fixed point of T. Also note that f(y) is a fixed point of f and thus f(y) is a common fixed point of T and f.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

This paper is funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. 491/130/1432. The author therefore acknowledges with thanks DSR for technical and financial support.

Received: 2 October 2012 Accepted: 13 March 2013 Published: 2 April 2013

References

- 1. Nadler, SB: Multivalued contraction mappings. Pac. J. Math. 30, 475-488 (1969)
- 2. Kaneko, H: Single-valued and multivalued f-contractions. Boll. Unione Mat. Ital. 6, 29-33 (1985)
- 3. Jungck, G: Commuting mappings and fixed points. Am. Math. Mon. 83, 261-263 (1976)
- Abbas, M, Hussain, N, Rhoades, BE: Coincidence point theorems for multivalued f-weak contraction mappings and applications. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. a Mat. (Ed. Impr.) 105(2), 261-272 (2011). doi:10.1007/s13398-011-0036-4
- 5. Daffer, PZ, Kaneko, H: Multivalued *f*-contractive mappings. Boll. Unione Mat. Ital. **8-A**(7), 233-241 (1994)
- Hussain, N, Alotaibi, A: Coupled coincidences for multi-valued nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl. 2011, 81 (2011) (18 November 2011)
- Kaneko, H, Sessa, S: Fixed point theorems for compatible multi-valued and single-valued mappings. Int. J. Math. Math. Sci. 12(2), 257-262 (1989)
- 8. Latif, A, Tweddle, I: Some results on coincidence points. Bull. Aust. Math. Soc. 59, 111-117 (1999)
- 9. Pathak, HK: Fixed point theorems for weak compatible multivalued and single-valued mappings. Acta Math. Hung. 67(1-2), 69-78 (1995)
- 10. Pathak, HK, Khan, MS: Fixed and coincidence points of hybrid mappings. Arch. Math. 3, 201-208 (2002)
- Kada, O, Susuki, T, Takahashi, W: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44, 381-391 (1996)
- Suzuki, T, Takahashi, W: Fixed point theorems and characterizations of metric completeness. Topol. Methods Nonlinear Anal. 8, 371-382 (1996)
- 13. Bin Dehaish, BA, Latif, A: Fixed point results for multivalued contractive maps. Fixed Point Theory Appl. 2012, 61 (2012)
- Latif, A, Abdou, AAN: Fixed points of generalized contractive maps. Fixed Point Theory Appl. 2009, Article ID 487161 (2009). doi:10.1155/2009/487161
- Latif, A, Abdou, AAN: Multivalued generalized nonlinear contractive maps and fixed points. Nonlinear Anal. 74, 1436-1444 (2011)
- 16. Suzuki, T: Generalized distance and existence theorems in complete metric spaces. J. Math. Anal. Appl. 253, 440-458 (2001)
- 17. Daffer, PZ, Kaneko, H: Fixed points generalized contractive multi-valued mappings. J. Math. Anal. Appl. **192**, 655-666 (1995)
- 18. Kaneko, H: A general principle for fixed points of contractive multivalued mappings. Math. Jpn. 31(3), 407-422 (1986)

doi:10.1186/1029-242X-2013-141

Cite this article as: Kutbi: f-Contractive multivalued maps and coincidence points. Journal of Inequalities and Applications 2013 2013:141.