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Abstract
In this paper, we prove a result on the existence of an f -orbit for generalized
f -contractive multivalued maps. Then, we establish main results on the existence of
coincidence points and common fixed points for generalized f -contractive maps not
involving the extended Hausdorff metric and the continuity condition. Our results
either generalize or improve a number of metric fixed point results.
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1 Introduction
Let (X,d) be a metric space. Let X , Cl(X) and CB(X) denote the collection of nonempty
subsets of X, nonempty closed subsets of X, and nonempty closed bounded subsets of X,
respectively. Let H be the Hausdorff metric with respect to d, that is,

H(A,B) =max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

for every A,B ∈ CB(X), where d(x,B) = infy∈B d(x, y).
Let f : X → X be a single-valued map, and let T : X → X be a multivalued map. A point

x ∈ X is called a fixed point of T if x ∈ T(x), and the set of fixed points of T is denoted by
Fix(T). A point x ∈ X is called a coincidence point of f and T if f (x) ∈ T(x). We denote by
C(f ∩ T) the set of coincidence points of f and T .
We say a sequence {xn} in X is an f -orbit of T at x ∈ X if fxn ∈ Txn– for all n ≥ . We

say that f and T weakly commute if fTx ⊂ Tfx for all x ∈ X. Clearly, commuting maps f
and T weakly commute.
A multivalued map T : X → CB(X) is called
(i) contraction [] if for a fixed constant λ ∈ (, ) and for each x, y ∈ X ,

H
(
T(x),T(y)

) ≤ λd(x, y).

(ii) f -contraction [] if for a fixed constant λ ∈ (, ) and for each x, y ∈ X ,

H
(
T(x),T(y)

) ≤ λd
(
f (x), f (y)

)
.
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Using the concept of Hausdorff metric, Nadler [] established the following fixed point
result for multivalued contraction maps, which in turn is a generalization of the well-
known Banach contraction principle.

Theorem . [] Let (X,d) be a complete metric space, and let T : X → CB(X) be a con-
traction map. Then Fix(T) �= ∅.

This result has been generalized in many directions. Kaneko [] extended the corre-
sponding results of Jungck [], Nadler [] and others as follows.

Theorem . [] Let (X,d) be a complete metric space, and let T : X → CB(X) be a mul-
tivalued f -contraction map which commutes with a continuous map f . Then C(f ∩T) �= ∅.

This result has been generalized in different directions. For example, see [–].
On the other hand, Kada et al. [] introduced the concept of w-distance on a metric

space as follows:
Let (X,d) be a metric space. A function ω : X × X → [,∞) is called a w-distance on X

if it satisfies the following for each x, y, z ∈ X:

(w) ω(x, z)≤ ω(x, y) +ω(y, z);
(w) a map ω(x, ·) : X → [,∞) is lower semicontinuous;
(w) for any ε > , there exists δ >  such that ω(z,x) ≤ δ and ω(z, y) ≤ δ imply d(x, y) ≤ ε.

Note that, in general, for x, y ∈ X, ω(x, y) �= ω(y,x) and not either of the implications
ω(x, y) =  ⇔ x = y necessarily hold. We say the w-distance ω on X is a w-distance if x = y
implies ω(x, y) = . Clearly, the metric d is a w-distance on X. Let (Y ,‖ · ‖) be a normed
space. Then the functions ω,ω : Y × Y → [,∞) defined by ω(x, y) = ‖y‖ and ω(x, y) =
‖x‖ + ‖y‖ for all x, y ∈ Y are w-distances []. Many other examples and properties of the
w-distance can be found in [, ].
The following useful lemma concerning a w-distance is given in [].

Lemma . [] Let (X,d) be a metric space, and let ω be a w-distance on X. Let {xn} and
{yn} be sequences in X, and let {αn} and {βn} be sequences in [,∞) converging to zero.
Then, for the w-distance ω on X, the following hold for every x, y, z ∈ X:
(a) if ω(xn, y) ≤ αn and ω(xn, z) ≤ βn for any n ∈N, then y = z; in particular, if ω(x, y) = 

and ω(x, z) = , then y = z;
(b) if ω(xn, yn) ≤ αn and ω(xn, z) ≤ βn for any n ∈N, then {yn} converges to z;
(c) if ω(xn,xm) ≤ αn for any n,m ∈ N with m > n, then {xn} is a Cauchy sequence;
(d) if ω(y,xn) ≤ αn for any n ∈N, then {xn} is a Cauchy sequence.

For x ∈ X and A ∈ X , we denote, ω(x,A) = infy∈A ω(x, y). Now, let T : X → Cl(X) be a
multivalued map, and let f : X → X be a single-valued map. We say
(iii) T is w-contractive [] if there exist a w-distance ω on X and λ ∈ (, ) such that for

any x, y ∈ X and u ∈ T(x), there is v ∈ T(y) with

ω(u, v)≤ λω(x, y).
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(iv) T is generalized f -contractive if there exist a w-distance ω on X and λ ∈ (, ) such
that for any x, y ∈ X , u ∈ T(x), there is v ∈ T(y) with

ω(u, v)≤ λMf (x, y),

where

Mf (x, y) = max

{
ω

(
f (x), f (y)

)
,ω

(
f (x),T(x)

)
,ω

(
f (y),T(y)

)
,



[
ω

(
f (x),T(y)

)
+ω

(
f (y),T(x)

)]}
.

Using the concept of w-distance, Suzuki and Takahashi [] improved Nadler’s fixed
point result as follows.

Theorem . Let (X,d) be a complete metric space. Then for each w-contractive map T :
X → Cl(X), the set Fix(T) �= ∅.

This result has been generalized bymany authors, for example, see [–]. In this paper,
first we establish a lemma with respect to a w-distance, which is an improved version of
the lemma given in [], and then we prove a key lemma on the existence of an f -orbit
for generalized f -contractive maps. Finally, we present our main results on the existence
of coincidence points and common fixed points for generalized f -contractive maps not
involving the extendedHausdorffmetric. As a consequence, we obtain a fixed point result.
Our results either generalize or improve a number of known results.

2 Results
Using the concept of w-distance, first we improve a corresponding result of Jungck [] as
follows.

Lemma . Let (X,d) be a complete metric space with a w-distance ω. If there exist a
sequence {xn} in X and a constant λ,  < λ < , such that for all n ∈N,

ω(xn,xn+) ≤ λω(xn–,xn),

then the sequence {xn} converges in X.

Proof It is enough to show that {xn} is a Cauchy sequence in X. Note that for each n ∈ N,
we have

ω(xn,xn+) ≤ λω(xn–,xn)

≤ λω(xn–,xn–)
...

≤ λnω(x,x).
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Thus

ω(xn,xn+) ≤ λnω(x,x).

Consequently, form ≥ n, we get

ω(xn,xm) ≤ ω(xn,xn+) +ω(xn+,xn+) + · · · +ω(xm–,xm)

≤ λnω(x,x) + λn+ω(x,x) + · · · + λm–ω(x,x),

and thus

ω(xn,xm) ≤ λn

 – λ
ω(x,x).

Since  < λ < , we have λn →  as n → ∞. And thus by Lemma ., {xn} is a Cauchy
sequence in X. Since X is complete, the sequence {xn} converges to a point in X. �

The following lemma is crucial for our main results.

Lemma . Let (X,d) be a complete metric space, and let T : X → Cl(X) be a generalized
f -contractive map such that T(X) ⊂ f (X). Then there exists an f -orbit {xn} of T at x ∈ X
such that {f (xn)} converges in X.

Proof Let x ∈ X and choose y ∈ T(x). Since T(x) ⊂ f (X), then there exists x ∈ X such
that f (x) = y ∈ T(x), and thus, by the definition of T , there exists y ∈ T(x) such that

ω
(
f (x), y

) ≤ λMf (x,x),

where  < λ < . Since T(x) ⊂ f (X), there exists x ∈ X such that f (x) = y ∈ T(x). Thus

ω
(
f (x), f (x)

) ≤ λMf (x,x).

Similarly, using the definition of T and the fact that T(X)⊂ f (X), there exists x ∈ X such
that f (x) ∈ T(x) and

ω
(
f (x), f (x)

) ≤ λMf (x,x).

Continuing this process, we get a sequence {xn} in X such that for all n, f (xn+) ∈ T(xn)
and

ω
(
f (xn), f (xn+)

) ≤ λMf (xn–,xn),

that is,

ω
(
f (xn), f (xn+)

) ≤ λmax

{
ω

(
f (xn–), f (xn)

)
,ω

(
f (xn–),T(xn–)

)
,ω

(
f (xn),T(xn)

)
,



[
ω

(
f (xn–),T(xn)

)
+ω

(
f (xn),T(xn–)

)]}
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/141


Kutbi Journal of Inequalities and Applications 2013, 2013:141 Page 5 of 7
http://www.journalofinequalitiesandapplications.com/content/2013/1/141

Note that

ω
(
f (xn), f (xn+)

) ≤ λmax

{
ω

(
f (xn–), f (xn)

)
,ω

(
f (xn–), f (xn)

)
,ω

(
f (xn), f (xn+)

)
,



[
ω

(
f (xn–), f (xn+)

)
+ω

(
f (xn), f (xn)

)]}

= λmax

{
ω

(
f (xn–), f (xn)

)
,ω

(
f (xn), f (xn+)

)
,


[
ω

(
f (xn–), f (xn+)

)]}
,

and we get

ω
(
f (xn), f (xn+)

) ≤ λmax

{
ω

(
f (xn–), f (xn)

)
,


[
ω

(
f (xn–), f (xn+)

)]}
.

Also, note that

ω
(
f (xn), f (xn+)

) ≤ λmax

{
ω

(
f (xn–), f (xn)

)
,


[
ω

(
f (xn–), f (xn)

)
+ω

(
f (xn), f (xn+)

)]}

≤ λmax
{[

ω
(
f (xn–), f (xn)

)
,ω

(
f (xn), f (xn+)

)]}
.

Thus, for each n ∈N, we get

ω
(
f (xn), f (xn+)

) ≤ λω
(
f (xn–), f (xn)

)
. ()

Since the sequence {f (xn)} is in the complete metric space X satisfying the inequality (),
it follows from Lemma . that {f (xn)} converges in X. �

Remark . Since for each n ∈N we have

ω
(
f (xn), f (xn+)

) ≤ λω
(
f (xn–), f (xn)

)
,

following the proof of Lemma ., we obtain the following two useful inequalities.

ω
(
f (xn), f (xn+)

) ≤ λnω
(
f (x), f (x)

)
()

and form ≥ n

ω
(
f (xn), f (xm)

) ≤ λn

 – λ
ω

(
f (x), f (x)

)
. ()

Without using the extended Hausdorff metric and continuity conditions, we prove a
coincidence result which improves many known results including Theorem . due to [],
Theorem . in [] and Theorem  in [].

Theorem . Suppose that all the hypotheses of Lemma . hold. Furthermore, if for every
y ∈ X with f (y) /∈ T(y)

inf
{
ω

(
f (x), y

)
+ω

(
f (x),T(x)

)
: x ∈ X

}
> .

Then C(f ∩ T) �= ∅.
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Proof By Lemma ., there exists an f -orbit {xn} of T at x ∈ X such that {f (xn)} converges
in X. Also note that for each n ∈N, we have

ω
(
f (xn), f (xn+)

) ≤ λω
(
f (xn–), f (xn)

)
,

where  < λ < . Let f (xn) → y ∈ X. Now since ω(f (xn), ·) is lower semicontinuous, from
Remark . (), we have

ω
(
f (xn), y

) ≤ lim
m→∞ infω

(
f (xn), f (xm)

)

≤ λn

 – λ
ω

(
f (x), f (x)

)
.

Since λ < , we get ω(f (xn), y) →  as n → ∞. Assume that f (y) /∈ T(y), then from the
hypothesis and Remark ., we get

 < inf
{
ω

(
f (x), y

)
+ω

(
f (x),T(x)

)
: x ∈ X

}
≤ inf

{
ω

(
f (xn), y

)
+ω

(
f (xn),T(xn)

)
: n ∈N

}
≤ inf

{
ω

(
f (xn), y

)
+ω

(
f (xn), f (xn+)

)
: n ∈ N

}

≤ inf

{
λn

 – λ
ω

(
f (xo), f (x)

)
+ λnω

(
f (x), f (x)

)
: n ∈N

}

=
{
 – λ

 – λ

}
ω

(
f (x), f (x)

)
inf

{
λn : n ∈N

}
= ,

which is impossible, and thus f (y) ∈ T(y), that is, y is a coincidence point of f and T . �

If we take f = I (an identity map onX) in Theorem ., we obtain the following improved
version of the corresponding fixed point results in [, , ].

Corollary . Let (X,d) be a complete metric space, let ω be a w-distance on X, and let
T : X → Cl(X) be a multivalued map satisfying the following:

(I) for fixed λ ∈ (, ), for each x, y ∈ X and u ∈ T(x), there exists v ∈ T(y) such that

ω(u, v) ≤ λMω(x, y),

where

Mω(x, y) =max

{
ω(x, y),ω

(
x,T(x)

)
,ω

(
y,T(y)

)
,


[
ω

(
x,T(y)

)
+ω

(
y,T(x)

)]}
,

(II) inf{ω(x, y) +ω(x,T(x)) : x ∈ X} > .
Then Fix(T) �= ∅.

Finally, we obtain a common fixed point result.

Theorem . Suppose that all the hypotheses of Theorem . hold. Further, if the maps
f and T commute weakly and satisfy the condition that f (x) �= f (x), which implies f (x) /∈
T(x), then f and T have a common fixed point.
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Proof From Theorem . we have f (y) ∈ T(y), and thus we get f (y) = f (y). Note that

f (y) = f
(
f (y)

) ∈ f
(
T(y)

) ⊆ T
(
f (y)

)
,

that is, f (y) is a fixed point of T . Also note that f (y) is a fixed point of f and thus f (y) is a
common fixed point of T and f . �
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