RESEARCH

Open Access

L_p Blaschke-Minkowski homomorphisms

Wei Wang*

*Correspondence: wangtou1010@163.com School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan, 411201, P.R. China

Abstract

In this paper, we introduce the concept of L_p Blaschke-Minkowski homomorphisms and show that those maps are represented by a spherical convolution operator. And then we consider the Busemann-Petty type problem for L_p Blaschke-Minkowski homomorphisms.

MSC: 52A40; 52A20

Keywords: valuation; L_p Blaschke addition; convolution

1 Introduction

The theory of real valued valuations is at the center of convex geometry. Blaschke started a systematic investigation in the 1930s, and then Hadwiger [1] focused on classifying valuations on compact convex sets in \mathbb{R}^n and obtained the famous Hadwiger's characterization theorem. Schneider [2] obtained first results on convex body valued valuations with Minkowski addition in 1970s. The survey [3] and the book [4] are an excellent source for the classical theory of valuations. Some more recent results can see [1, 5–20].

An operator $Z: \mathcal{K}^n \to \mathcal{K}^n$ is called a Minkowski valuation if

$$Z(K \cup L) + Z(K \cap L) = ZK + ZL, \tag{1.1}$$

whenever $K, L, K \cup L \in \mathcal{K}^n$, and here + is the Minkowski addition.

A Minkowski valuation Z is called SO(n) equivariant, if for all $\vartheta \in$ SO(n) and all $K \in \mathcal{K}^n$,

$$Z(\vartheta K) = \vartheta Z K. \tag{1.2}$$

A Minkowski valuation *Z* is called homogeneity of degree *p*, if for all $K \in \mathcal{K}^n$ and all $\lambda \ge 0$,

$$Z(\lambda K) = \lambda^p Z K. \tag{1.3}$$

A map $\Phi : \mathcal{K}^n \to \mathcal{K}^n$ is called a Blaschke-Minkowski homomorphism if it is continuous, SO(*n*) equivariant and satisfies $\Phi(K \# L) = \Phi K + \Phi L$, where # denotes the Blaschke addition, *i.e.*, $S(K \# L, \cdot) = S(K, \cdot) + S(L, \cdot)$.

Obviously, a Blaschke-Minkowski homomorphism is a continuous Minkowski valuation which is SO(n) equivariant and (n-1)-homogeneous. Schuster introduced Blaschke-Minkowski homomorphisms and studied the Busemann-Petty type problem for them.

© 2013 Wang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. **Theorem A** [15] If $\Phi : \mathcal{K}^n \to \mathcal{K}^n$ be a Blaschke-Minkowski homomorphism, then there is a weakly positive $g \in \mathcal{C}(S^{n-1}, \widehat{e})$, unique up to a linear function, such that

$$h(\Phi K, \cdot) = S(K, \cdot) * g.$$

Theorem B [16] Let $\Phi : \mathcal{K}^n \to \mathcal{K}^n$ be a Blaschke-Minkowski homomorphism. If $K \in \Phi \mathcal{K}^n$ and $L \in \mathcal{K}^n$, then

$$\Phi K \subseteq \Phi L \quad \Rightarrow \quad V(K) \le V(L),$$

and V(K) = V(L) if and only if K = L.

Recently, the investigations of convex body and star body valued valuations have received great attention from a series of articles by Ludwig [10–13]; see also [8]. She started systematic studies and established complete classifications of convex and star body valued valuations with respect to L_p Minkowski addition and L_p radial which are compatible with the action of the group GL(n). Based on these results, in this article we study L_p Blaschke-Minkowski homomorphisms which are continuous, $(\frac{n}{p} - 1)$ -homogeneous and SO(n) equivariant.

Theorem 1.1 Let p > 1 and $p \neq n$. If $\Phi_p : \mathcal{K}_e^n \to \mathcal{K}_e^n$ be an L_p Blaschke-Minkowski homomorphism, then there is a nonnegative function $g \in \mathcal{C}(S^{n-1}, \widehat{e})$, such that

$$h^p(\Phi_pK,\cdot) = S_p(K,\cdot) * g. \tag{1.4}$$

Theorem 1.2 Let 1 and <math>p is not an even integer, and let $\Phi_p : \mathcal{K}_e^n \to \mathcal{K}_e^n$ be an L_p Blaschke-Minkowski homomorphism. If $K \in \mathcal{K}_e^n$ and $L \in \Phi_p \mathcal{K}_e^n$, then

$$\Phi_p K \subseteq \Phi_p L \quad \Rightarrow \quad V(K) \le V(L). \tag{1.5}$$

If p > n and p is not an even integer, then

$$\Phi_p K \subseteq \Phi_p L \quad \Rightarrow \quad V(K) \ge V(L), \tag{1.6}$$

and V(K) = V(L), if and only if K = L.

2 Notation and background material

Let \mathcal{K}_0^n denote the set of convex bodies containing the origin in their interiors, and let \mathcal{K}_e^n denote origin-symmetric convex bodies. In this paper, we restrict the dimension of \mathbb{R}^n to $n \ge 3$. A convex body $K \in \mathcal{K}^n$ is uniquely determined by its support function, $h(K, \cdot)$. From the definition of $h(K, \cdot)$, it follows immediately that for $\lambda > 0$ and $\vartheta \in SO(n)$,

$$h(\lambda K, u) = \lambda h(K, u)$$
 and $h(\vartheta K, u) = h(K, \vartheta^{-1}u)$, (2.1)

where ϑ^{-1} is the inverse of ϑ .

For $K, L \in \mathcal{K}_0^n$, $p \ge 1$, and $\varepsilon > 0$, the L_p Minkowski addition $K +_p \varepsilon \cdot L \in \mathcal{K}_0^n$ is defined by (see [21])

$$h(K +_p \varepsilon \cdot L, \cdot)^p = h(K, \cdot)^p + \varepsilon h(L, \cdot)^p, \qquad (2.2)$$

where ' · ' in $\varepsilon \cdot L$ denotes the Firey scalar multiplication, *i.e.*, $\varepsilon \cdot L = \varepsilon^{\frac{1}{p}}L$.

If $K, L \in \mathcal{K}_0^n$, then for $p \ge 1$, the L_p mixed volume, $V_p(K, L)$, of K and L is defined by (see [21])

$$V_p(K,L) = \lim_{\varepsilon \to 0^+} \frac{V(K +_p \varepsilon \cdot L) - V(K)}{\varepsilon}.$$

Corresponding to each $K \in \mathcal{K}_0^n$, there is a positive Borel measure, $S_p(K, \cdot)$, on S^{n-1} such that (see [21])

$$V_p(K,L) = \frac{1}{n} \int_{S^{n-1}} h(L,u)^p \, dS_p(K,u), \tag{2.3}$$

for each $L \in \mathcal{K}_0^n$. The measure $S_p(K, \cdot)$ is just the L_p surface area measure of K, which is absolutely continuous with respect to classical surface area measure $S(K, \cdot)$, and has a Radon-Nikodym derivative

$$\frac{dS_p(K,\cdot)}{dS(K,\cdot)} = h(K,\cdot)^{1-p}.$$
(2.4)

A convex body $K \in \mathcal{K}_0^n$ is said to have a *p*-curvature function (see [21]) $f_p(K, \cdot) : S^{n-1} \to \mathbb{R}$, if its L_p surface area measure $S_p(K, \cdot)$ is absolutely continuous with respect to spherical Lebesgue measure *S* and the Radon-Nikodym derivative

$$\frac{dS_p(K,\cdot)}{dS} = f_p(K,\cdot). \tag{2.5}$$

From the formula (2.3), it follows immediately that for each $K \in K_0^n$,

$$V_p(K,K) = V(K).$$

The Minkowski inequality for the L_p mixed volume states that (see [21]): For $K, L \in \mathcal{K}_0^n$, if $p \ge 1$, then

$$V_p(K,L) \ge V(K)^{\frac{n-p}{n}} V(L)^{\frac{p}{n}},$$
(2.6)

if p > 1, equality holds if and only if K and L are dilates; if p = 1, equality holds if and only if K and L are homothetic.

The L_p Minkowski problem asks for necessary and sufficient conditions for a Borel measure μ on S^{n-1} to be the L_p surface area measure of a convex body. Lutwak [22] gave a weak solution to the L_p Minkowski problem as follows.

Theorem C If μ is an even position Borel measure on S^{n-1} , which is not concentrated on any great subsphere, then for any p > 1 and $p \neq n$, there exists a unique origin-symmetric

convex bodies $K \in \mathcal{K}_e^n$, such that

$$S_p(K, \cdot) = \mu.$$

From (2.4), for $\lambda > 0$, we have

$$S_p(\lambda K, \cdot) = \lambda^{n-p} S_p(K, \cdot).$$
(2.7)

Noting the fact $S(\vartheta K, \cdot) = \vartheta S(K, \cdot)$ for $\vartheta \in SO(n)$ and (2.1), one can obtain

$$S_p(\vartheta K, \cdot) = \vartheta S_p(K, \cdot), \tag{2.8}$$

where $\vartheta S_p(K, \cdot)$ is the image measure of $S_p(K, \cdot)$ under the rotation ϑ . Obviously, $S_1(K, \cdot)$ is just $S(K, \cdot)$.

The L_p Blaschke addition $K \#_p L$ of $K, L \in \mathcal{K}_0^n$ is the convex body with

$$S_p(K \#_p L, \cdot) = S_p(K, \cdot) + S_p(L, \cdot).$$
 (2.9)

Some basic notions on spherical harmonics will be required. The article by Grinberg and Zhang [23] and the article by Schuster [16] are excellent general references on spherical harmonics. As usual, SO(*n*) and S^{n-1} will be equipped with the invariant probability measures. Let C(SO(n)), $C(S^{n-1})$ be the spaces of continuous functions on SO(*n*) and S^{n-1} with uniform topology and $\mathcal{M}(SO(n))$, $\mathcal{M}(S^{n-1})$ their dual spaces of signed finite Borel measures with weak* topology. The group SO(*n*) acts on these spaces by left translation, *i.e.*, for $f \in C(S^{n-1})$ and $\mu \in \mathcal{M}(S^{n-1})$, we have $\vartheta f(u) = f(\vartheta^{-1}u)$, $\vartheta \in SO(n)$, and $\vartheta \mu$ is the image measure of μ under the rotation ϑ .

The sphere S^{n-1} is identified with the homogeneous space SO(n)/SO(n-1), where SO(n-1) denotes the subgroup of rotations leaving the pole \hat{e} of S^{n-1} fixed. The projection from SO(n) onto S^{n-1} is $\vartheta \mapsto \hat{\vartheta} := \vartheta \hat{e}$. Functions on S^{n-1} can be identified with right SO(n-1)-invariant functions on SO(n), by $\check{f}(\vartheta) = f(\hat{\vartheta})$, for $f \in C(S^{n-1})$. In fact, $C(S^{n-1})$ is isomorphic to the subspace of right SO(n-1)-invariant functions in C(SO(n)).

The convolution $\mu * f \in \mathcal{C}(S^{n-1})$ of a measure $\mu \in \mathcal{M}(SO(n))$ and a function $f \in \mathcal{C}(S^{n-1})$ is defined by

$$(\mu * f)(u) = \int_{SO(n)} \vartheta f(u) \, d\mu(\vartheta). \tag{2.10}$$

The canonical pairing of $f \in C(S^{n-1})$ and $\mu \in \mathcal{M}(S^{n-1})$ is defined by

$$\langle \mu, f \rangle = \langle f, \mu \rangle = \int_{S^{n-1}} f(u) \, d\mu(u). \tag{2.11}$$

A function $f \in \mathcal{C}(S^{n-1})$ is called zonal, if $\vartheta f = f$ for every $\vartheta \in SO(n-1)$. Zonal functions depend only on the value $u \cdot \hat{e}$. The set of continuous zonal functions on S^{n-1} will be denoted by $\mathcal{C}(S^{n-1}, \hat{e})$ and the definition of $\mathcal{M}(S^{n-1}, \hat{e})$ is analogous. A map $\Lambda : \mathcal{C}[-1, 1] \rightarrow \mathcal{C}(S^{n-1}, \hat{e})$ is defined by

$$\Lambda f(u) = f(u \cdot \widehat{e}), \quad u \in S^{n-1}.$$
(2.12)

The map Λ is also an isomorphism between functions on [-1,1] and zonal functions on S^{n-1} . If $f \in \mathcal{C}(S^{n-1})$, $\mu \in \mathcal{M}(S^{n-1}, \widehat{e})$ and $\eta \in SO(n)$, then

$$(f * \mu)(\widehat{\eta}) = \int_{S^{n-1}} f(\eta u) \, d\mu(u).$$
 (2.13)

If $\mu \in \mathcal{M}(S^{n-1}, \widehat{e})$, for each $f \in \mathcal{C}(S^{n-1})$ and every $\vartheta \in SO(n)$, then

$$(\vartheta f) * \mu = \vartheta (f * \mu). \tag{2.14}$$

We denote \mathcal{H}_k^n by the finite dimensional vector space of spherical harmonics of dimension n and order k, and let N(n, k) be the dimension of \mathcal{H}_k^n . The space of all finite sums of spherical harmonics of dimension n is denoted by \mathcal{H}^n . The spaces \mathcal{H}_k^n are pairwise orthogonal with respect to the usual inner product on $\mathcal{C}(S^{n-1})$. Clearly, \mathcal{H}_k^n is invariant with respect to rotations.

Let $P_k^n \in C[-1,1]$ denote the Legendre polynomial of dimension *n* and order *k*. The zonal function ΛP_k^n is up to a multiplicative constant the unique zonal spherical harmonic in \mathcal{H}_k^n . In each space \mathcal{H}_k^n we choose an orthonormal basis $H_{k1}, \ldots, H_{kN(n,k)}$. The collection $\{H_{k1}, \ldots, H_{kN(n,k)} : k \in \mathbb{N}\}$ forms a complete orthogonal system in $\mathcal{L}^2(S^{n-1})$. In particular, for every $f \in \mathcal{L}^2(S^{n-1})$, the series

$$f \sim \sum_{k=0}^{\infty} \pi_k f$$

converges to f in the $\mathcal{L}^2(S^{n-1})$ -norm, where $\pi_k f \in \mathcal{H}_k^n$ is the orthogonal projection of f on the space \mathcal{H}_k^n . Using well-known properties of the Legendre polynomials, it is not hard to show that

$$\pi_k f = N(n,k) \left(f * \Lambda P_k^n \right). \tag{2.15}$$

This leads to the spherical expansion of a measure $\mu \in \mathcal{M}(S^{n-1})$,

$$\mu \sim \sum_{k=0}^{\infty} \pi_k \mu, \tag{2.16}$$

where $\pi_k \mu \in \mathcal{H}_k^n$ is defined by

$$\pi_k \mu = N(n,k) \left(\mu * \Lambda P_k^n \right). \tag{2.17}$$

From $P_0^n(t) = 1$, N(n, 0) = 1 and $P_1^n(t) = t$, N(n, 1) = n, we obtain, for $\mu \in \mathcal{M}(S^{n-1})$, the following special cases of (2.18):

$$\pi_0 \mu = \mu(S^{n-1})$$
 and $(\pi_1 \mu)(u) = n \int_{S^{n-1}} u \cdot v \, d\mu(v).$ (2.18)

Let κ_n denote the volume of the Euclidean unit ball *B*. By (2.3) and (2.19), for every convex body $K \in \mathcal{K}_0^n$, it follows that

$$\kappa_n \pi_0 h(K, \cdot)^p = V_p(B, K) \text{ and } \pi_0 S_p(K, \cdot) = n V_p(K, B).$$
 (2.19)

A measure $\mu \in \mathcal{M}(S^{n-1})$ is uniquely determined by its series expansion (2.19). Using the fact that ΛP_k^n is (essentially) the unique zonal function in \mathcal{H}_k^n , a simple calculation shows that for $\mu \in \mathcal{M}(S^{n-1}, \widehat{e})$, formula (2.18) becomes

$$\pi_k \mu = N(n,k) \langle \mu, \Lambda P_k^n \rangle \Lambda P_k^n.$$
(2.20)

A zonal measure $\mu \in \mathcal{M}(S^{n-1}, \widehat{e})$ is defined by its so-called Legendre coefficients $\mu_k := \langle \mu, \Lambda P_k^n \rangle$. Using $\pi_k H = H$ for every $H \in \mathcal{H}_k^n$ and the fact that spherical convolution of zonal measures is commutative, we have the Funk-Hecke theorem: If $\mu \in \mathcal{M}(S^{n-1}, \widehat{e})$ and $H \in \mathcal{H}_k^n$, then $H * \mu = \mu_k H$.

A map $\Phi : \mathcal{D} \subseteq \mathcal{M}(S^{n-1}) \to \mathcal{M}(S^{n-1})$ is called a multiplier transformation [16] if there exist real numbers c_k , the multipliers of Φ , such that, for every $k \in \mathbb{N}$,

$$\pi_k \Phi \mu = c_k \pi_k \mu, \quad \forall \mu \in \mathcal{D}.$$
(2.21)

From the Funk-Hecke theorem and the fact that the spherical convolution of zonal measures is commutative, it follows that, for $\mu \in \mathcal{M}(S^{n-1}, \widehat{e})$, the map $\Phi_{\mu} : \mathcal{M}(S^{n-1}) \to \mathcal{M}(S^{n-1})$, defined by $\Phi_{\mu} = \nu * \mu$, is a multiplier transformation. The multipliers of this convolution operator are just the Legendre coefficients of the measure μ .

3 L_p Blaschke-Minkowski homomorphisms and convolutions

The L_p Minkowski valuation was introduced by Ludwig [11]. A function $\Psi : \mathcal{K}_0^n \to \mathcal{K}_0^n$ is called an L_p Minkowski valuation if

$$\Psi(K \cup L) +_p \Psi(K \cap L) = \Psi K +_p \Psi L, \tag{3.1}$$

whenever $K, L, K \cup L \in \mathcal{K}_0^n$, and here '+_p' is L_p Minkowski addition.

Definition 3.1 A map $\Phi_p : \mathcal{K}_e^n \to \mathcal{K}_e^n$ satisfying the following properties (a), (b) and (c) is called an L_n Blaschke-Minkowski homomorphism.

- (a) Φ_p is continuous with respect to Hausdorff metric.
- (b) $\Phi_p(K \#_p L) = \Phi_p K +_p \Phi_p L$ for all $K, L \in \mathcal{K}_e^n$.
- (c) Φ_p is SO(*n*) equivariant, *i.e.*, $\Phi_p(\vartheta K) = \vartheta \Phi_p K$ for all $\vartheta \in$ SO(*n*) and all $K \in \mathcal{K}_e^n$.

It is easy to verify that an L_p Blaschke-Minkowski homomorphism is an L_p Minkowski valuation.

In order to prove our results, we need to quote some lemmas. We call a map Φ : $\mathcal{M}(S^{n-1}) \to \mathcal{C}(S^{n-1})$ monotone, if non-negative measures are mapped to non-negative functions.

Lemma 3.1 A map $\Phi : \mathcal{M}(S^{n-1}) \to \mathcal{C}(S^{n-1})$ is a monotone, linear map that is intertwines rotations if and only if there is a function $f \in \mathcal{C}(S^{n-1}, \widehat{e})$, such that

$$\Phi\mu = f * \mu. \tag{3.2}$$

Proof From the definition of spherical convolution and (2.15), it follows that mapping of form (3.2) has the desired properties. This proves the sufficiency.

Let Φ be monotone, linear and intertwines rotations. Consider the map $\phi : \mathcal{M}(S^{n-1}) \to \mathbb{R}, \mu \to \Phi \mu(\widehat{e})$. By the properties of Φ , the functional ϕ is positive and linear on $\mathcal{M}(S^{n-1})$, thus, by the Riesz representation theorem, there is a function $f \in \mathcal{M}_+(S^{n-1})$ such that

$$\phi(\mu) = \int_{S^{n-1}} f(u) \, d\mu(u).$$

Since ϕ is SO(n - 1) invariant, the function f is zonal. Thus, we have for $\eta \in$ SO(n)

$$\Phi\mu(\eta\widehat{e}) = \Phi(\eta^{-1}\mu)(\widehat{e}) = \phi(\eta^{-1}\mu) = \int_{S^{n-1}} f(\eta u) \, d\mu(u).$$

Lemma 3.1 follows now from (2.14).

Proof of Theorem 1.1 Suppose that a map $\Phi_p : \mathcal{K}_0^n \to \mathcal{K}_0^n$ satisfies $h(\Phi_p K, \cdot)^p = S_p(K, \cdot) * g$, where $g \in \mathcal{C}(S^{n-1}, \widehat{e})$ is a nonnegative measure. The continuity of Φ_p follows from the fact that the support function $h(K, \cdot)$ is continuous with respect to Hausdorff metric. From (2.9) and (2.1), for $\vartheta \in SO(n)$, we obtain

$$h(\Phi_p \vartheta K, \cdot)^p = S_p(\vartheta K, \cdot) * g = S_p(K, \vartheta^{-1} \cdot) * g = h(\Phi_p K, \vartheta^{-1} \cdot)^p = h(\vartheta \Phi_p K, \cdot)^p.$$

Taking K = L in (1.4), we have

$$h(\Phi_p L, \cdot)^p = S_p(L, \cdot) * g.$$
(3.3)

Combining with (2.2), (1.4) and (3.3), we obtain

$$h(\Phi_p K +_p \Phi_p L, \cdot)^p = h(\Phi_p K, \cdot)^p + h(\Phi_p L, \cdot)^p$$

$$= S_p(K, \cdot) * g + S_p(L, \cdot) * g$$

$$= (S_p(K, \cdot) + S_p(L, \cdot)) * g$$

$$= S_p(K \#_p L, \cdot) * g$$

$$= h(\Phi_p(K \#_p L), \cdot)^p.$$
(3.4)

Thus maps of the form of (1.4) are L_p Blaschke-Minkowski homomorphisms (satisfy the properties (a), (b) and (c) from Definition 3.1). Thus, we have to show that for every such operator Φ_p , there is a function $g \in \mathcal{C}(S^{n-1}, \widehat{e})$ such that (1.4) holds.

Since every positive continuous even measure on S^{n-1} can be the L_p surface area measure of some convex body, the set $\{S_p(K, \cdot) - S_p(L, \cdot), K, L \in \mathcal{K}_e^n\}$ coincides with $\mathcal{M}_e(S^{n-1})$. The operator $\bar{\Phi} : \mathcal{M}(S^{n-1}) \to \mathcal{C}(S^{n-1})$ is defined by

$$\bar{\Phi}\mu_1 = h(\Phi_p K_1, \cdot)^p - h(\Phi_p K_2, \cdot)^p,$$
(3.5)

where $\mu_1 = S_p(K_1, \cdot) - S_p(K_2, \cdot)$.

The operator $\overline{\Phi}$ for $\mu_2 = S_p(L_1, \cdot) - S_p(L_2, \cdot)$ immediately yields:

$$\bar{\Phi}\mu_2 = h(\Phi_p L_1, \cdot)^p - h(\Phi_p L_2, \cdot)^p.$$
(3.6)

$$\begin{split} \bar{\Phi}\mu_1 + \bar{\Phi}\mu_2 &= h(\Phi_p K_1, \cdot)^p - h(\Phi_p K_2, \cdot)^p + h(\Phi_p L_1, \cdot)^p - h(\Phi_p L_2, \cdot)^p \\ &= h(\Phi_p K_1 +_p \Phi_p L_1, \cdot)^p - h(\Phi_p K_2 +_p \Phi_p L_2, \cdot)^p \\ &= h(\Phi_p (K_1 \#_p L_1), \cdot)^p - h(\Phi_p (K_2 \#_p L_2), \cdot)^p \\ &= \bar{\Phi} \left(S_p (K_1 \#_p L_1, \cdot) - S_p (K_2 \#_p L_2, \cdot) \right) \\ &= \bar{\Phi} \left(S_p (K_1, \cdot) + S_p (L_1, \cdot) - S_p (K_2, \cdot) - S_p (L_2, \cdot) \right) \\ &= \bar{\Phi} (\mu_1 + \mu_2). \end{split}$$

So, the operator $\overline{\Phi}$ is linear.

Noting that Φ_p is an L_p Minkowski homomorphism and $S_p(\vartheta K, \cdot) = \vartheta S_p(K, \cdot)$, we obtain that the operator $\overline{\Phi}$ is SO(*n*) equivariant.

Since the cone of the L_p surface area measures of origin symmetric convex bodies is invariant under $\overline{\Phi}$, it is also monotone. Hence, by Lemma 3.1, there is a non-negative function $g \in C(S^{n-1}, \widehat{e})$ such that $\overline{\Phi}\mu = \mu * g$. The statement now follows from

$$\bar{\Phi}S_p(K,\cdot) = S_p(K,\cdot) * g = h(\Phi_pK,\cdot)^p.$$

Hence, it is to complete the proof.

Lutwak, Yang and Zhang first introduced the notion of L_p -projection body (see [24]). Let $\Pi_p K$, $p \ge 1$ denote the compact convex symmetric set whose support function is given by

$$h(\Pi_p K, \theta)^p = \frac{1}{n\omega_n c_{n-2,p}} S_p(K, \cdot) * \left| \langle \theta, \cdot \rangle \right|^p,$$
(3.7)

where

$$c_{n,p} = \frac{\omega_{n+p}}{\omega_2 \omega_n \omega_{p-1}}.$$

Obviously, $\Pi_p : \mathcal{K}_e^n \to \mathcal{K}_e^n$ is an L_p Blaschke-Minkowski homomorphism.

Lemma 3.2 [23] *If* $\mu, \nu \in \mathcal{M}(S^{n-1})$ *and* $f \in \mathcal{C}(S^{n-1})$ *, then*

$$\langle \mu * \nu, f \rangle = \langle \mu, f * \nu \rangle.$$

Theorem 3.3 If $\Phi_p : \mathcal{K}_e^n \to \mathcal{K}_e^n$ is an L_p Blaschke-Minkowski homomorphism, then for $K, L \in \mathcal{K}_e^n$,

$$V_p(K, \Phi_p L) = V_p(L, \Phi_p K).$$
(3.8)

Proof Let $g \in C(S^{n-1}, \hat{e})$ be the generating function of Φ_p . Using (2.3), Theorem 1.1 and

Lemma 3.2, it follows that

$$nV_{p}(K, \Phi_{p}L) = \langle h(\Phi_{p}L, \cdot)^{p}, S_{p}(K, \cdot) \rangle$$

$$= \langle S_{p}(L, \cdot) * g, S_{p}(K, \cdot) \rangle$$

$$= \langle S_{p}(L, \cdot), S_{p}(K, \cdot) * g \rangle$$

$$= \langle S_{p}(L, \cdot), h(\Phi_{p}K, \cdot)^{p} \rangle$$

$$= nV_{p}(L, \Phi_{p}K).$$
(3.9)

Using Theorem 1.1 and the fact that spherical convolution operators are multiplier transformations, one obtains the following lemma.

Lemma 3.4 If Φ_p is an L_p Blaschke-Minkowski homomorphism, which is generated by the zonal function g, then for every origin symmetric convex body $K \in \mathcal{K}_e^n$,

$$\pi_k h(\Phi_p K, \cdot)^p = g_k \pi_k S_p(K, \cdot), \quad k \in \mathbb{N},$$
(3.10)

where the numbers g_k are the Legendre coefficients of g, i.e., $g_k = \langle g, \Lambda P_k^n \rangle$.

Proof By (2.18) and Theorem 1.1, we have

$$\pi_k h(\Phi_p K, \cdot)^p = N(n, k) \left(S_p(K, \cdot) * g * \Lambda P_k^n \right).$$

Since spherical convolution is associative and g is zonal, we obtain from (2.18):

$$\pi_k h(\Phi_p K, \cdot)^p = g_k N(n, k) \left(S_p(K, \cdot) * \Lambda P_k^n \right) = g_k \pi_k S_p(K, \cdot).$$

Definition 3.2 If Φ_p is an L_p Blaschke-Minkowski homomorphism, generated by the zonal function g, then we call the subset $\mathcal{K}_e^n(\Phi_p)$ of \mathcal{K}_e^n , defined by

$$\mathcal{K}_e^n(\Phi_p) = \left\{ K \in \mathcal{K}_e^n : \pi_k S_p(K, \cdot) = 0 \text{ if } g_k = 0 \right\},\$$

the injectivity set of Φ_p .

It is easy to verify that for every L_p Blaschke-Minkowski homomorphism, the set is a nonempty rotation and dilatation invariant subset of which is closed under L_p Blaschke addition.

Definition 3.3 An origin-symmetric convex body $K \in \mathcal{K}_e^n p$ -polynomial if $h(K, \cdot)^p \in \mathcal{H}^n$.

Clearly, the set of *p*-polynomial convex bodies is dense in \mathcal{K}_e^n .

Let p > 1 and $p \neq n$ where p is not an even integer. The size of range, $\Phi_p(\mathcal{K}_e^n)$, of the L_p Blaschke-Minkowski homomorphism Φ_p will be critical. The set of origin-symmetric convex bodies whose support functions are elements of the vector space

$$\operatorname{span}\left\{\left(h(\Phi_p K, \cdot)^p - h(\Phi_p L, \cdot)^p\right)^{\frac{1}{p}} : K, L \in \mathcal{K}_e^n\right\}$$
(3.11)

is a large subset of \mathcal{K}_e^n , provided the injectivity set $\mathcal{K}_e^n(\Phi_p)$ is not too small.

Theorem 3.5 Let p > 1 and $p \neq n$ where p is not an even integer. If $\Phi_p : \mathcal{K}_e^n \to \mathcal{K}_e^n$ is an L_p Blaschke-Minkowski homomorphism such that $\mathcal{K}_e^n \subseteq \mathcal{K}_e^n(\Phi_p)$, then for every p-polynomial convex body $K \in \mathcal{K}_e^n$, there exist origin-symmetry convex bodies $K_1, K_2 \in \mathcal{K}_e^n$ such that

$$K +_{p} \Phi_{p} K_{1} = \Phi_{p} K_{2}. \tag{3.12}$$

Proof Let $K \in \mathcal{K}_e^n$ be a *p*-polynomial convex body. From Definition 3.3, we have

$$h(K, \cdot)^{p} = \sum_{k=0}^{m} \pi_{k} h(K, \cdot)^{p}.$$
(3.13)

For $K \in \mathcal{K}_e^n$ and the properties of the orthogonal projection of f on the space \mathcal{H}_k^n , we have $\pi_k h(K, \cdot)^p = 0$ for all odd $k \in \mathbb{N}$. Let $g \in \mathcal{C}(S^{n-1}, \widehat{e})$ denote the generating function of Φ and let g_k denote the Legendre coefficients of g. From $\mathcal{K}_e^n \subseteq \mathcal{K}_e^n(\Phi)$ and Definition 3.2, it follows that $g_k \neq 0$ for every even $k \in \mathbb{N}$. We define

$$f := \sum_{k=0}^{m} c_k \pi_k h(K, \cdot)^p,$$
(3.14)

where $c_k = 0$ for odd and $c_k = g_k^{-1}$ if k is even. Since f is an even continuous function on S^{n-1} and spherical convolution operators are multiplier transformations, we have

$$f * g = \sum_{k=0}^{m} c_k g_k \pi_k h(K, \cdot)^p = \sum_{k=0}^{m} \pi_k h(K, \cdot)^p = h(K, \cdot)^p.$$
(3.15)

Denote by f^+ and f^- the positive and negative parts of f and let K_1 and K_2 be the convex bodies such that $S_p(K_1, \cdot) = f^-$ and $S_p(K_2, \cdot) = f^+$. By Theorem 1.1 and (2.2), it follows that

$$K +_p \Phi_p K_1 = \Phi_p K_2.$$

4 The Shephard-type problem

Let $\Phi_p : \mathcal{K}_e^n \to \mathcal{K}_e^n$ denote a nontrivial L_p Blaschke-Minkowski homomorphism, *i.e.*, Φ_p is continuous and SO(*n*) equivariant map satisfying $\Phi_p(K \#_p L) = \Phi_p K +_p \Phi_p L$ and Φ_p does not map every origin-symmetric convex body to the origin. In this section, we study the Shephard-type problem for L_p Blaschke-Minkowski homomorphisms.

Problem 4.1 Let p > 1, $p \neq n$ and $\Phi_p : \mathcal{K}_0^n \to \mathcal{K}_e^n$ be an L_p Blaschke-Minkowski homomorphism. Is there the implication:

If 0 , then

$$\Phi_p K \subseteq \Phi_p L \quad \Rightarrow \quad V(K) \le V(L)? \tag{4.1}$$

If p > n, then

$$\Phi_p K \subseteq \Phi_p L \quad \Rightarrow \quad V(K) \ge V(L)? \tag{4.2}$$

Proof of Theorem 1.2 For $L \in \Phi_p \mathcal{K}_e^n$ and p is not an even integer, there exists an originsymmetric convex body L_0 such that $L = \Phi_p L_0$. Using Theorem 3.3 and the fact that the L_p mixed volume V_p is monotone with respect to set inclusion, it follows that

$$V_p(K,L) = V_p(K,\Phi_pL_0) = V_p(L_0,\Phi_pK) \le V_p(L_0,\Phi_pL) = V_p(L,\Phi_pL_0) = V(L).$$

Applying the L_p Minkowski inequality (2.6), we thus obtain that, if 1 , then

$$V(K) \le V(L),$$

and if p > n, then

$$V(K) > V(L),$$

with equality if and only if *K* and *L* are dilates.

An immediate consequence of Theorem 1.2 is the following.

Theorem 4.1 Let p > 1, $p \neq n$, where p is not an even integer and $\Phi_p : \mathcal{K}_e^n \to \mathcal{K}_e^n$ is an L_p Blaschke-Minkowski homomorphism. If $K, L \in \Phi_p \mathcal{K}_e^n$, then

$$\Phi_p K = \Phi_p L \quad \Leftrightarrow \quad K = L. \tag{4.3}$$

Since the L_p projection body operator Π_p is just an L_p Blaschke-Minkowski homomorphism, the L_p Aleksandrov's projection theorem is a direct corollary of Theorem 4.1.

Corollary 4.2 [25] Let p > 1, $p \neq n$, where p is not an even integer, and K and L are both L_p projection bodies in \mathbb{R}^n . Then

 $\Pi_p K = \Pi_p L \quad \Leftrightarrow \quad K = L.$

Our next result shows that if the injectivity set $\mathcal{K}_e^n(\Phi_p)$ does not exhaust all of \mathcal{K}_e^n , in general the answer to Problem 4.1 is negative.

Theorem 4.3 Let 1 where <math>p is not an even integer. If $\mathcal{K}_e^n(\Phi_p)$ does not coincide with \mathcal{K}_e^n , then there exist origin-symmetric convex bodies $K, L \in \mathcal{K}_e^n$, such that

 $\Phi_p K \subseteq \Phi_p L$,

but

Proof Let $g \in C(S^{n-1}, \hat{e})$ be the generating function of Φ_p and let g_k denote its Legendre coefficients. Since $\mathcal{K}_e^n(\Phi_p) \neq \mathcal{K}_e^n$ and Φ_p is nontrivial, there exists, by Definition 3.2, an integer $k \in \mathbb{N}$, such that $g_k = 0$ and $k \ge 1$. We can choose $\alpha > 0$ such that the function

 $f(u) = 1 + \alpha P_k^n(u \cdot \hat{e}), u \in S^{n-1}$, is positive. According to Theorem C, there exists an originsymmetric convex body $L \in \mathcal{K}_e^n$ with $S_p(L, \cdot) = f$.

Since $\pi_k S_p(L, \cdot) = \pi_k (1 + \alpha P_k^n(u \cdot \widehat{e})) \neq 0$, from Definition 3.2 we have that $L \notin \mathcal{K}_e^n(\Phi_p)$.

From (2.20) and the properties of the orthogonal projection on the space \mathcal{H}_k^n , we have that

$$nV_p(L,B) = \pi_0 S_p(L,\cdot) = 1.$$
 (4.4)

Using the fact that: For 1 where <math>p is not an even integer, an origin-symmetric convex body $L \in \mathcal{K}_e^n(\Phi_p)$ is uniquely determined by its image $\Phi_p L$, we obtain that $\Phi_p L = \Phi_p K$, where K denotes the Euclidean ball centered at the origin with L_p surface area $S_p(K) = 1$. Noting that L is just a perturb body of K, we use (4.4) and (2.6) to conclude

$$V(K)^{n-p} = \frac{1}{n^n V(B)^p} > V(L)^{n-p}.$$

Theorem 4.4 Suppose 1 where <math>p is not an even integer and $\mathcal{K}_e^n \subseteq \mathcal{K}_e^n(\Phi_p)$. If $K \in \mathcal{K}_e^n$ is a p-polynomial convex body which has p-positive curvature function, then if $K \notin \Phi_p \mathcal{K}_e^n$, there exists an origin-symmetric convex body $L \in \mathcal{K}_e^n$, such that

$$\Phi_p K \subseteq \Phi_p L,$$

but

Proof Let $g \in C(S^{n-1}, \hat{e})$ be the generating function of Φ_p . Since $K \in \mathcal{K}_e^n$ is *p*-polynomial, it follows from the proof of Theorem 3.5 that there exists an even function $f \in \mathcal{H}^n$ such that

$$h(K,\cdot)^p = f * g. \tag{4.5}$$

The function must assume negative values, otherwise, by Theorem 1.1 we have $K = \Phi_p K_0$, where K_0 is the convex body with $S_p(K_0, \cdot) = f$. Let $F \in C(S^{n-1})$ be a non-constant even function, such that: $F(u) \ge 0$ if f(u) < 0, and F(u) = 0 if $f(u) \ge 0$. By suitable approximation of the function F with spherical harmonics, we can find a nonnegative even function $G \in$ \mathcal{H}^n and an even function $H \in \mathcal{H}^n$ such that

$$\langle f, G \rangle < 0, \quad \text{and} \quad G = H * g.$$
 (4.6)

Since *K* is a *p*-polynomial and has *p*-positive curvature, the L_p surface area measure of *K* has a positive density $S_p(K, \cdot)$. Thus, we can choose $\alpha > 0$ such that

$$S_p(K,\cdot)+\alpha H>0.$$

By Theorem C, there exists an origin-symmetric convex body L such that

$$S_p(L,\cdot) = S_p(K,\cdot) + \alpha H. \tag{4.7}$$

From (4.6) and Theorem 1.1, we see that $h(\Phi_p L, \cdot)^p = h(\Phi_p K, \cdot)^p + \alpha G$. Since $G \ge 0$, it follows that

$$\Phi_p K \subseteq \Phi_p L. \tag{4.8}$$

Applying with (2.3), (4.5), (4.7), (2.10) and (4.6), we obtain

$$n(V_p(K,L) - V(K)) = \langle h(K, \cdot)^p, S_p(L, \cdot) - S_p(K, \cdot) \rangle$$

= $\langle h(K, \cdot)^p, \alpha H \rangle$
= $\alpha \langle f * g, H \rangle$
= $\alpha \langle f, H * g \rangle$
= $\alpha \langle f, G \rangle < 0.$ (4.9)

To complete the proof, we can use (2.6) to conclude

In particular, we replace Φ_p by Π_p to Theorem 1.2, we have the following corollary, which was proved by Ryabogin and Zvavitch.

Corollary 4.5 [25] *Let K and L be origin-symmetric convex bodies and* $1 \le p < n$ *where p is not an even integer. If L belongs to the class of* L_p *projection bodies, then*

$$\Pi_p K \subseteq \Pi_p L \quad \Rightarrow \quad V(K) \le V(L).$$

Competing interests

The author declares that they have no competing interests.

Acknowledgements

A project supported by Scientific Research Fund of Hunan Provincial Education Department (11C0542).

Received: 25 March 2012 Accepted: 19 March 2013 Published: 2 April 2013

References

- 1. Hadwiger, H: Vorlesungenuber Inhalt, Oberflache und Isoperimetrie. Springer, Berlin (1957)
- 2. Schneider, R: Equivariant endomorphisms of the space of convex bodies. Trans. Am. Math. Soc. 194, 53-78 (1974)
- McMullen, P, Schneider, R: Valuations on convex bodies. In: Gruber, PM, Wills, JM (eds.) Convexity and Its Applications, pp. 170-247. Birkhäuser, Basel (1983)
- 4. Schneider, R: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993)
- 5. Alesker, S: Continuous rotation invariant valuations on convex sets. Ann. Math. 149, 977-1005 (1999)
- 6. Alesker, S: Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture. Geom. Funct. Anal. 11, 244-272 (2001)
- 7. Haberl, C: Star body valued valuations. Indiana Univ. Math. J. 58, 2253-2276 (2009)
- 8. Haberl, C, Ludwig, M: A characterization of L_p intersection bodies. Int. Math. Res. Not. 2006, Article ID 10548 (2006)
- 9. Klain, DA: Star valuations and dual mixed volumes. Adv. Math. 121, 80-101 (1996)
- 10. Ludwig, M: Projection bodies and valuations. Adv. Math. 172(2), 158-168 (2002)
- 11. Ludwig, M: Minkowski valuations. Trans. Am. Math. Soc. 357(10), 4191-4213 (2005)
- 12. Ludwig, M: Intersection bodies and valuations. Am. J. Math. 128(6), 1409-1428 (2006)
- 13. Ludwig, M, Reitzner, M: A classification of *SL*(*n*) invariant valuations. Ann. Math. **172**, 1223-1271 (2010)
- 14. Schneider, R, Schuster, FE: Rotation equivariant Minkowski valuations. Int. Math. Res. Not. 2006, Article ID 72894 (2006)
- Schuster, FE: Convolutions and multiplier transformations of convex bodies. Trans. Am. Math. Soc. 359(11), 5567-5591 (2007)
- 16. Schuster, FE: Valuations and Busemann-Petty type problems. Adv. Math. 219(1), 344-368 (2008)

- 17. Schuster, FE: Crofton measures and Minkowski valuations. Duke Math. J. 154, 1-30 (2010)
- 18. Schuster, FE, Wannerer, T: GL(n) contravariant Minkowski valuations. Trans. Am. Math. Soc. 364, 815-826 (2012)
- 19. Wang, W, Liu, LJ, He, BW: Lp radial Minkowski homomorphisms. Taiwan. J. Math. 15(3), 1183-1199 (2011)
- 20. Wannerer, T: GL(n) equivariant Minkowski valuations. Indiana Univ. Math. J. 60, 1655-1672 (2011)
- 21. Lutwak, E: The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas. Adv. Math. 118, 244-294 (1996)
- Lutwak, E: The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131-150 (1993)
- 23. Grinberg, E, Zhang, G: Convolutions, transforms and convex bodies. Proc. Lond. Math. Soc. 78, 77-115 (1999)
- 24. Lutwak, E, Yang, D, Zhang, G: L_p affine isoperimetric inequalities. J. Differ. Geom. 56, 111-132 (2000)
- Ryabogin, D, Zvavitch, A: The Fourier transform and Firey projections of convex bodies. Indiana Univ. Math. J. 53, 234-241 (2004)

doi:10.1186/1029-242X-2013-140

Cite this article as: Wang: *L_p* **Blaschke-Minkowski homomorphisms.** *Journal of Inequalities and Applications* 2013 **2013**;140.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com