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Abstract
In this paper, we introduce the concept of Lp Blaschke-Minkowski homomorphisms
and show that those maps are represented by a spherical convolution operator. And
then we consider the Busemann-Petty type problem for Lp Blaschke-Minkowski
homomorphisms.
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1 Introduction
The theory of real valued valuations is at the center of convex geometry. Blaschke started
a systematic investigation in the s, and then Hadwiger [] focused on classifying val-
uations on compact convex sets in R

n and obtained the famous Hadwiger’s characteriza-
tion theorem. Schneider [] obtained first results on convex body valued valuations with
Minkowski addition in s. The survey [] and the book [] are an excellent source for
the classical theory of valuations. Some more recent results can see [, –].
An operator Z :Kn →Kn is called a Minkowski valuation if

Z(K ∪ L) + Z(K ∩ L) = ZK + ZL, (.)

whenever K ,L,K ∪ L ∈Kn, and here + is the Minkowski addition.
AMinkowski valuation Z is called SO(n) equivariant, if for all ϑ ∈ SO(n) and all K ∈Kn,

Z(ϑK) = ϑZK . (.)

A Minkowski valuation Z is called homogeneity of degree p, if for all K ∈ Kn and all
λ ≥ ,

Z(λK) = λpZK . (.)

A map � : Kn → Kn is called a Blaschke-Minkowski homomorphism if it is continu-
ous, SO(n) equivariant and satisfies �(K #L) = �K + �L, where # denotes the Blaschke
addition, i.e., S(K #L, ·) = S(K , ·) + S(L, ·).
Obviously, a Blaschke-Minkowski homomorphism is a continuous Minkowski valua-

tion which is SO(n) equivariant and (n– )-homogeneous. Schuster introduced Blaschke-
Minkowski homomorphisms and studied the Busemann-Petty type problem for them.
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Theorem A [] If � :Kn → Kn be a Blaschke-Minkowski homomorphism, then there is
a weakly positive g ∈ C(Sn–, ê), unique up to a linear function, such that

h(�K , ·) = S(K , ·) ∗ g.

Theorem B [] Let � :Kn → Kn be a Blaschke-Minkowski homomorphism. If K ∈ �Kn

and L ∈Kn, then

�K ⊆ �L ⇒ V (K) ≤ V (L),

and V (K) = V (L) if and only if K = L.

Recently, the investigations of convex body and star body valued valuations have re-
ceived great attention from a series of articles by Ludwig [–]; see also []. She started
systematic studies and established complete classifications of convex and star body val-
ued valuations with respect to Lp Minkowski addition and Lp radial which are compatible
with the action of the group GL(n). Based on these results, in this article we study Lp
Blaschke-Minkowski homomorphisms which are continuous, ( np – )-homogeneous and
SO(n) equivariant.

Theorem . Let p >  and p �= n. If �p : Kn
e → Kn

e be an Lp Blaschke-Minkowski homo-
morphism, then there is a nonnegative function g ∈ C(Sn–, ê), such that

hp(�pK , ·) = Sp(K , ·) ∗ g. (.)

Theorem . Let  < p < n and p is not an even integer, and let �p : Kn
e → Kn

e be an Lp
Blaschke-Minkowski homomorphism. If K ∈Kn

e and L ∈ �pKn
e , then

�pK ⊆ �pL ⇒ V (K) ≤ V (L). (.)

If p > n and p is not an even integer, then

�pK ⊆ �pL ⇒ V (K) ≥ V (L), (.)

and V (K) = V (L), if and only if K = L.

2 Notation and backgroundmaterial
Let Kn

 denote the set of convex bodies containing the origin in their interiors, and let Kn
e

denote origin-symmetric convex bodies. In this paper, we restrict the dimension of Rn to
n≥ . A convex bodyK ∈Kn is uniquely determined by its support function, h(K , ·). From
the definition of h(K , ·), it follows immediately that for λ >  and ϑ ∈ SO(n),

h(λK ,u) = λh(K ,u) and h(ϑK ,u) = h
(
K ,ϑ–u

)
, (.)

where ϑ– is the inverse of ϑ .
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For K ,L ∈ Kn
, p ≥ , and ε > , the Lp Minkowski addition K +p ε · L ∈ Kn

 is defined by
(see [])

h(K +p ε · L, ·)p = h(K , ·)p + εh(L, ·)p, (.)

where ‘ · ’ in ε · L denotes the Firey scalar multiplication, i.e., ε · L = ε

p L.

If K ,L ∈Kn
, then for p ≥ , the Lp mixed volume, Vp(K ,L), of K and L is defined by (see

[])

Vp(K ,L) = lim
ε→+

V (K +p ε · L) –V (K)
ε

.

Corresponding to each K ∈ Kn
, there is a positive Borel measure, Sp(K , ·), on Sn– such

that (see [])

Vp(K ,L) =

n

∫
Sn–

h(L,u)p dSp(K ,u), (.)

for each L ∈ Kn
. The measure Sp(K , ·) is just the Lp surface area measure of K , which

is absolutely continuous with respect to classical surface area measure S(K , ·), and has a
Radon-Nikodym derivative

dSp(K , ·)
dS(K , ·) = h(K , ·)–p. (.)

A convex bodyK ∈Kn
 is said to have a p-curvature function (see []) fp(K , ·) : Sn– →R,

if its Lp surface area measure Sp(K , ·) is absolutely continuous with respect to spherical
Lebesgue measure S and the Radon-Nikodym derivative

dSp(K , ·)
dS

= fp(K , ·). (.)

From the formula (.), it follows immediately that for each K ∈ Kn
 ,

Vp(K ,K) = V (K).

The Minkowski inequality for the Lp mixed volume states that (see []): For K ,L ∈Kn
,

if p ≥ , then

Vp(K ,L)≥ V (K)
n–p
n V (L)

p
n , (.)

if p > , equality holds if and only if K and L are dilates; if p = , equality holds if and only
if K and L are homothetic.
The Lp Minkowski problem asks for necessary and sufficient conditions for a Borel mea-

sureμ on Sn– to be the Lp surface areameasure of a convex body. Lutwak [] gave a weak
solution to the Lp Minkowski problem as follows.

Theorem C If μ is an even position Borel measure on Sn–, which is not concentrated on
any great subsphere, then for any p >  and p �= n, there exists a unique origin-symmetric
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convex bodies K ∈Kn
e , such that

Sp(K , ·) = μ.

From (.), for λ > , we have

Sp(λK , ·) = λn–pSp(K , ·). (.)

Noting the fact S(ϑK , ·) = ϑS(K , ·) for ϑ ∈ SO(n) and (.), one can obtain

Sp(ϑK , ·) = ϑSp(K , ·), (.)

where ϑSp(K , ·) is the image measure of Sp(K , ·) under the rotation ϑ . Obviously, S(K , ·)
is just S(K , ·).
The Lp Blaschke addition K #p L of K ,L ∈Kn

 is the convex body with

Sp(K #p L, ·) = Sp(K , ·) + Sp(L, ·). (.)

Some basic notions on spherical harmonics will be required. The article by Grinberg
and Zhang [] and the article by Schuster [] are excellent general references on spher-
ical harmonics. As usual, SO(n) and Sn– will be equipped with the invariant probability
measures. Let C(SO(n)), C(Sn–) be the spaces of continuous functions on SO(n) and Sn–

with uniform topology and M(SO(n)), M(Sn–) their dual spaces of signed finite Borel
measures with weak∗ topology. The group SO(n) acts on these spaces by left translation,
i.e., for f ∈ C(Sn–) and μ ∈ M(Sn–), we have ϑ f (u) = f (ϑ–u), ϑ ∈ SO(n), and ϑμ is the
image measure of μ under the rotation ϑ .
The sphere Sn– is identified with the homogeneous space SO(n)/SO(n – ), where

SO(n – ) denotes the subgroup of rotations leaving the pole ê of Sn– fixed. The projec-
tion from SO(n) onto Sn– is ϑ �→ ϑ̂ := ϑ ê. Functions on Sn– can be identified with right
SO(n – )-invariant functions on SO(n), by f̌ (ϑ) = f (ϑ̂), for f ∈ C(Sn–). In fact, C(Sn–) is
isomorphic to the subspace of right SO(n – )-invariant functions in C(SO(n)).
The convolution μ ∗ f ∈ C(Sn–) of a measure μ ∈ M(SO(n)) and a function f ∈ C(Sn–)

is defined by

(μ ∗ f )(u) =
∫
SO(n)

ϑ f (u)dμ(ϑ). (.)

The canonical pairing of f ∈ C(Sn–) and μ ∈M(Sn–) is defined by

〈μ, f 〉 = 〈f ,μ〉 =
∫
Sn–

f (u)dμ(u). (.)

A function f ∈ C(Sn–) is called zonal, if ϑ f = f for every ϑ ∈ SO(n – ). Zonal functions
depend only on the value u · ê. The set of continuous zonal functions on Sn– will be de-
noted by C(Sn–, ê) and the definition of M(Sn–, ê) is analogous. A map � : C[–, ] →
C(Sn–, ê) is defined by

�f (u) = f (u · ê), u ∈ Sn–. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/140
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The map � is also an isomorphism between functions on [–, ] and zonal functions on
Sn–. If f ∈ C(Sn–), μ ∈M(Sn–, ê) and η ∈ SO(n), then

(f ∗ μ)(̂η) =
∫
Sn–

f (ηu)dμ(u). (.)

If μ ∈M(Sn–, ê), for each f ∈ C(Sn–) and every ϑ ∈ SO(n), then

(ϑ f ) ∗ μ = ϑ(f ∗ μ). (.)

We denoteHn
k by the finite dimensional vector space of spherical harmonics of dimen-

sion n and order k, and let N(n,k) be the dimension of Hn
k . The space of all finite sums

of spherical harmonics of dimension n is denoted by Hn. The spaces Hn
k are pairwise or-

thogonal with respect to the usual inner product on C(Sn–). Clearly,Hn
k is invariant with

respect to rotations.
Let Pn

k ∈ C[–, ] denote the Legendre polynomial of dimension n and order k. The zonal
function �Pn

k is up to a multiplicative constant the unique zonal spherical harmonic in
Hn

k . In each space Hn
k we choose an orthonormal basis Hk, . . . ,HkN(n,k). The collection

{Hk, . . . ,HkN(n,k) : k ∈ N} forms a complete orthogonal system in L(Sn–). In particular,
for every f ∈L(Sn–), the series

f ∼
∞∑
k=

πkf

converges to f in the L(Sn–)-norm, where πkf ∈Hn
k is the orthogonal projection of f on

the spaceHn
k . Using well-known properties of the Legendre polynomials, it is not hard to

show that

πkf =N(n,k)
(
f ∗ �Pn

k
)
. (.)

This leads to the spherical expansion of a measure μ ∈M(Sn–),

μ ∼
∞∑
k=

πkμ, (.)

where πkμ ∈Hn
k is defined by

πkμ =N(n,k)
(
μ ∗ �Pn

k
)
. (.)

From Pn
(t) = , N(n, ) =  and Pn

 (t) = t, N(n, ) = n, we obtain, for μ ∈ M(Sn–), the fol-
lowing special cases of (.):

πμ = μ
(
Sn–

)
and (πμ)(u) = n

∫
Sn–

u · vdμ(v). (.)

Let κn denote the volume of the Euclidean unit ball B. By (.) and (.), for every convex
body K ∈Kn

, it follows that

κnπh(K , ·)p = Vp(B,K) and πSp(K , ·) = nVp(K ,B). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/140
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A measure μ ∈ M(Sn–) is uniquely determined by its series expansion (.). Using the
fact that �Pn

k is (essentially) the unique zonal function in Hn
k , a simple calculation shows

that for μ ∈M(Sn–, ê), formula (.) becomes

πkμ =N(n,k)
〈
μ,�Pn

k
〉
�Pn

k . (.)

A zonal measure μ ∈ M(Sn–, ê) is defined by its so-called Legendre coefficients μk :=
〈μ,�Pn

k 〉. Using πkH =H for everyH ∈Hn
k and the fact that spherical convolution of zonal

measures is commutative, we have the Funk-Hecke theorem: If μ ∈ M(Sn–, ê) and H ∈
Hn

k , then H ∗ μ = μkH .
A map � : D ⊆ M(Sn–) → M(Sn–) is called a multiplier transformation [] if there

exist real numbers ck , the multipliers of �, such that, for every k ∈ N,

πk�μ = ckπkμ, ∀μ ∈D. (.)

From the Funk-Hecke theorem and the fact that the spherical convolution of zonal
measures is commutative, it follows that, for μ ∈ M(Sn–, ê), the map �μ : M(Sn–) →
M(Sn–), defined by �μ = ν ∗ μ, is a multiplier transformation. The multipliers of this
convolution operator are just the Legendre coefficients of the measure μ.

3 Lp Blaschke-Minkowski homomorphisms and convolutions
The Lp Minkowski valuation was introduced by Ludwig []. A function � :Kn

 → Kn
 is

called an Lp Minkowski valuation if

�(K ∪ L) +p �(K ∩ L) = �K +p �L, (.)

whenever K ,L,K ∪ L ∈Kn
, and here ‘+p’ is Lp Minkowski addition.

Definition . A map �p :Kn
e → Kn

e satisfying the following properties (a), (b) and (c) is
called an Lp Blaschke-Minkowski homomorphism.
(a) �p is continuous with respect to Hausdorff metric.
(b) �p(K #p L) = �pK +p �pL for all K ,L ∈Kn

e .
(c) �p is SO(n) equivariant, i.e., �p(ϑK) = ϑ�pK for all ϑ ∈ SO(n) and all K ∈Kn

e .

It is easy to verify that an Lp Blaschke-Minkowski homomorphism is an Lp Minkowski
valuation.
In order to prove our results, we need to quote some lemmas. We call a map � :

M(Sn–) → C(Sn–) monotone, if non-negative measures are mapped to non-negative
functions.

Lemma . A map � :M(Sn–) → C(Sn–) is a monotone, linear map that is intertwines
rotations if and only if there is a function f ∈ C(Sn–, ê), such that

�μ = f ∗ μ. (.)

Proof From the definition of spherical convolution and (.), it follows that mapping of
form (.) has the desired properties. This proves the sufficiency.

http://www.journalofinequalitiesandapplications.com/content/2013/1/140
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Next, we prove the necessity.
Let � be monotone, linear and intertwines rotations. Consider the map φ :M(Sn–) →

R, μ → �μ(̂e). By the properties of �, the functional φ is positive and linear onM(Sn–),
thus, by the Riesz representation theorem, there is a function f ∈M+(Sn–) such that

φ(μ) =
∫
Sn–

f (u)dμ(u).

Since φ is SO(n – ) invariant, the function f is zonal. Thus, we have for η ∈ SO(n)

�μ(η̂e) = �
(
η–μ

)
(̂e) = φ

(
η–μ

)
=

∫
Sn–

f (ηu)dμ(u).

Lemma . follows now from (.). �

Proof of Theorem . Suppose that a map �p :Kn
 → Kn

 satisfies h(�pK , ·)p = Sp(K , ·) ∗ g ,
where g ∈ C(Sn–, ê) is a nonnegative measure. The continuity of �p follows from the fact
that the support function h(K , ·) is continuous with respect to Hausdorff metric. From
(.) and (.), for ϑ ∈ SO(n), we obtain

h(�pϑK , ·)p = Sp(ϑK , ·) ∗ g = Sp
(
K ,ϑ–·) ∗ g = h

(
�pK ,ϑ–·)p = h

(
ϑ�pK , ·)p.

Taking K = L in (.), we have

h(�pL, ·)p = Sp(L, ·) ∗ g. (.)

Combining with (.), (.) and (.), we obtain

h(�pK +p �pL, ·)p = h(�pK , ·)p + h(�pL, ·)p

= Sp(K , ·) ∗ g + Sp(L, ·) ∗ g

=
(
Sp(K , ·) + Sp(L, ·)

) ∗ g

= Sp
(
K #p L, ·

) ∗ g

= h
(
�p(K #p L), ·

)p. (.)

Thus maps of the form of (.) are Lp Blaschke-Minkowski homomorphisms (satisfy the
properties (a), (b) and (c) from Definition .). Thus, we have to show that for every such
operator �p, there is a function g ∈ C(Sn–, ê) such that (.) holds.
Since every positive continuous evenmeasure on Sn– can be the Lp surface areameasure

of some convex body, the set {Sp(K , ·) – Sp(L, ·),K ,L ∈ Kn
e } coincides with Me(Sn–). The

operator �̄ :M(Sn–) → C(Sn–) is defined by

�̄μ = h(�pK, ·)p – h(�pK, ·)p, (.)

where μ = Sp(K, ·) – Sp(K, ·).
The operator �̄ for μ = Sp(L, ·) – Sp(L, ·) immediately yields:

�̄μ = h(�pL, ·)p – h(�pL, ·)p. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/140
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Combining with (.), (.), (.) and (.), we obtain

�̄μ + �̄μ = h(�pK, ·)p – h(�pK, ·)p + h(�pL, ·)p – h(�pL, ·)p

= h(�pK +p �pL, ·)p – h(�pK +p �pL, ·)p

= h
(
�p(K #p L), ·

)p – h(�p(K #p L), ·)p

= �̄
(
Sp(K#pL, ·) – Sp(K #p L, ·)

)
= �̄

(
Sp(K, ·) + Sp(L, ·) – Sp(K, ·) – Sp(L, ·)

)
= �̄(μ +μ).

So, the operator �̄ is linear.
Noting that�p is an Lp Minkowski homomorphism and Sp(ϑK , ·) = ϑSp(K , ·), we obtain

that the operator �̄ is SO(n) equivariant.
Since the cone of the Lp surface area measures of origin symmetric convex bodies is in-

variant under �̄, it is also monotone. Hence, by Lemma ., there is a non-negative func-
tion g ∈ C(Sn–, ê) such that �̄μ = μ ∗ g . The statement now follows from

�̄Sp(K , ·) = Sp(K , ·) ∗ g = h(�pK , ·)p.

Hence, it is to complete the proof. �

Lutwak, Yang andZhang first introduced the notion of Lp-projection body (see []). Let
pK , p≥  denote the compact convex symmetric set whose support function is given by

h(pK , θ )p =


nωncn–,p
Sp(K , ·) ∗ ∣∣〈θ , ·〉∣∣p, (.)

where

cn,p =
ωn+p

ωωnωp–
.

Obviously, p :Kn
e →Kn

e is an Lp Blaschke-Minkowski homomorphism.

Lemma . [] If μ,ν ∈M(Sn–) and f ∈ C(Sn–), then

〈μ ∗ ν, f 〉 = 〈μ, f ∗ ν〉.

Theorem . If �p : Kn
e → Kn

e is an Lp Blaschke-Minkowski homomorphism, then for
K ,L ∈Kn

e ,

Vp(K ,�pL) = Vp(L,�pK). (.)

Proof Let g ∈ C(Sn–, ê) be the generating function of �p. Using (.), Theorem . and

http://www.journalofinequalitiesandapplications.com/content/2013/1/140
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Lemma ., it follows that

nVp(K ,�pL) =
〈
h(�pL, ·)p,Sp(K , ·)〉

=
〈
Sp(L, ·) ∗ g,Sp(K , ·)〉

=
〈
Sp(L, ·),Sp(K , ·) ∗ g

〉
=

〈
Sp(L, ·),h(�pK , ·)p〉

= nVp(L,�pK). (.)

�

UsingTheorem. and the fact that spherical convolution operators aremultiplier trans-
formations, one obtains the following lemma.

Lemma . If �p is an Lp Blaschke-Minkowski homomorphism, which is generated by the
zonal function g , then for every origin symmetric convex body K ∈Kn

e ,

πkh(�pK , ·)p = gkπkSp(K , ·), k ∈N, (.)

where the numbers gk are the Legendre coefficients of g , i.e., gk = 〈g,�Pn
k 〉.

Proof By (.) and Theorem ., we have

πkh(�pK , ·)p =N(n,k)
(
Sp(K , ·) ∗ g ∗ �Pn

k
)
.

Since spherical convolution is associative and g is zonal, we obtain from (.):

πkh(�pK , ·)p = gkN(n,k)
(
Sp(K , ·) ∗ �Pn

k
)
= gkπkSp(K , ·). �

Definition . If �p is an Lp Blaschke-Minkowski homomorphism, generated by the
zonal function g , then we call the subset Kn

e (�p) of Kn
e , defined by

Kn
e (�p) =

{
K ∈Kn

e : πkSp(K , ·) =  if gk = 
}
,

the injectivity set of �p.

It is easy to verify that for every Lp Blaschke-Minkowski homomorphism, the set is a
nonempty rotation and dilatation invariant subset of which is closed under Lp Blaschke
addition.

Definition . An origin-symmetric convex body K ∈Kn
e p-polynomial if h(K , ·)p ∈Hn.

Clearly, the set of p-polynomial convex bodies is dense in Kn
e .

Let p >  and p �= n where p is not an even integer. The size of range, �p(Kn
e ), of the

Lp Blaschke-Minkowski homomorphism �p will be critical. The set of origin-symmetric
convex bodies whose support functions are elements of the vector space

span
{(
h(�pK , ·)p – h(�pL, ·)p

) 
p : K ,L ∈Kn

e
}

(.)

is a large subset of Kn
e , provided the injectivity set Kn

e (�p) is not too small.

http://www.journalofinequalitiesandapplications.com/content/2013/1/140
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Theorem . Let p >  and p �= n where p is not an even integer. If �p :Kn
e → Kn

e is an Lp
Blaschke-Minkowski homomorphism such that Kn

e ⊆Kn
e (�p), then for every p-polynomial

convex body K ∈Kn
e , there exist origin-symmetry convex bodies K,K ∈Kn

e such that

K +p �pK = �pK. (.)

Proof Let K ∈Kn
e be a p-polynomial convex body. From Definition ., we have

h(K , ·)p =
m∑
k=

πkh(K , ·)p. (.)

For K ∈ Kn
e and the properties of the orthogonal projection of f on the space Hn

k , we
have πkh(K , ·)p =  for all odd k ∈ N. Let g ∈ C(Sn–, ê) denote the generating function of
� and let gk denote the Legendre coefficients of g . From Kn

e ⊆ Kn
e (�) and Definition .,

it follows that gk �=  for every even k ∈N. We define

f :=
m∑
k=

ckπkh(K , ·)p, (.)

where ck =  for odd and ck = g–k if k is even. Since f is an even continuous function on
Sn– and spherical convolution operators are multiplier transformations, we have

f ∗ g =
m∑
k=

ckgkπkh(K , ·)p =
m∑
k=

πkh(K , ·)p = h(K , ·)p. (.)

Denote by f + and f – the positive and negative parts of f and let K and K be the convex
bodies such that Sp(K, ·) = f – and Sp(K, ·) = f +. By Theorem . and (.), it follows that

K +p �pK = �pK. �

4 The Shephard-type problem
Let �p :Kn

e →Kn
e denote a nontrivial Lp Blaschke-Minkowski homomorphism, i.e., �p is

continuous and SO(n) equivariant map satisfying �p(K #p L) = �pK +p �pL and �p does
not map every origin-symmetric convex body to the origin. In this section, we study the
Shephard-type problem for Lp Blaschke-Minkowski homomorphisms.

Problem . Let p > , p �= n and�p :Kn
 →Kn

e be an Lp Blaschke-Minkowski homomor-
phism. Is there the implication:
If  < p < n, then

�pK ⊆ �pL ⇒ V (K) ≤ V (L)? (.)

If p > n, then

�pK ⊆ �pL ⇒ V (K) ≥ V (L)? (.)
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Proof of Theorem . For L ∈ �pKn
e and p is not an even integer, there exists an origin-

symmetric convex body L such that L = �pL. Using Theorem . and the fact that the
Lp mixed volume Vp is monotone with respect to set inclusion, it follows that

Vp(K ,L) = Vp(K ,�pL) = Vp(L,�pK) ≤ Vp(L,�pL) = Vp(L,�pL) = V (L).

Applying the Lp Minkowski inequality (.), we thus obtain that, if  < p < n, then

V (K) ≤ V (L),

and if p > n, then

V (K) ≥ V (L),

with equality if and only if K and L are dilates. �

An immediate consequence of Theorem . is the following.

Theorem . Let p > , p �= n, where p is not an even integer and �p : Kn
e → Kn

e is an Lp
Blaschke-Minkowski homomorphism. If K ,L ∈ �pKn

e , then

�pK = �pL ⇔ K = L. (.)

Since the Lp projection body operator p is just an Lp Blaschke-Minkowski homomor-
phism, the Lp Aleksandrov’s projection theorem is a direct corollary of Theorem ..

Corollary . [] Let p > , p �= n, where p is not an even integer, and K and L are both
Lp projection bodies in R

n. Then

pK = pL ⇔ K = L.

Our next result shows that if the injectivity set Kn
e (�p) does not exhaust all of Kn

e , in
general the answer to Problem . is negative.

Theorem . Let  < p < n where p is not an even integer. IfKn
e (�p) does not coincide with

Kn
e , then there exist origin-symmetric convex bodies K ,L ∈Kn

e , such that

�pK ⊆ �pL,

but

V (K) > V (L).

Proof Let g ∈ C(Sn–, ê) be the generating function of �p and let gk denote its Legendre
coefficients. Since Kn

e (�p) �= Kn
e and �p is nontrivial, there exists, by Definition ., an

integer k ∈ N, such that gk =  and k ≥ . We can choose α >  such that the function
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f (u) =  + αPn
k (u · ê), u ∈ Sn–, is positive. According to Theorem C, there exists an origin-

symmetric convex body L ∈Kn
e with Sp(L, ·) = f .

Since πkSp(L, ·) = πk( + αPn
k (u · ê)) �= , from Definition . we have that L /∈Kn

e (�p).
From (.) and the properties of the orthogonal projection on the space Hn

k , we have
that

nVp(L,B) = πSp(L, ·) = . (.)

Using the fact that: For  < p < n where p is not an even integer, an origin-symmetric con-
vex body L ∈Kn

e (�p) is uniquely determined by its image �pL, we obtain that�pL = �pK ,
where K denotes the Euclidean ball centered at the origin with Lp surface area Sp(K) = .
Noting that L is just a perturb body of K , we use (.) and (.) to conclude

V (K)n–p =


nnV (B)p
> V (L)n–p. �

Theorem. Suppose  < p < n where p is not an even integer andKn
e ⊆Kn

e (�p). If K ∈Kn
e

is a p-polynomial convex body which has p-positive curvature function, then if K /∈ �pKn
e ,

there exists an origin-symmetric convex body L ∈Kn
e , such that

�pK ⊆ �pL,

but

V (K) > V (L).

Proof Let g ∈ C(Sn–, ê) be the generating function of �p. Since K ∈Kn
e is p-polynomial, it

follows from the proof of Theorem . that there exists an even function f ∈Hn such that

h(K , ·)p = f ∗ g. (.)

The function must assume negative values, otherwise, by Theorem . we have K = �pK,
where K is the convex body with Sp(K, ·) = f . Let F ∈ C(Sn–) be a non-constant even
function, such that: F(u)≥  if f (u) < , and F(u) =  if f (u) ≥ . By suitable approximation
of the function F with spherical harmonics, we can find a nonnegative even function G ∈
Hn and an even function H ∈Hn such that

〈f ,G〉 < , and G =H ∗ g. (.)

Since K is a p-polynomial and has p-positive curvature, the Lp surface area measure of K
has a positive density Sp(K , ·). Thus, we can choose α >  such that

Sp(K , ·) + αH > .

By Theorem C, there exists an origin-symmetric convex body L such that

Sp(L, ·) = Sp(K , ·) + αH . (.)
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From (.) and Theorem ., we see that h(�pL, ·)p = h(�pK , ·)p + αG.
Since G ≥ , it follows that

�pK ⊆ �pL. (.)

Applying with (.), (.), (.), (.) and (.), we obtain

n
(
Vp(K ,L) –V (K)

)
=

〈
h(K , ·)p,Sp(L, ·) – Sp(K , ·)〉

=
〈
h(K , ·)p,αH〉

= α〈f ∗ g,H〉
= α〈f ,H ∗ g〉
= α〈f ,G〉 < . (.)

To complete the proof, we can use (.) to conclude

V (K) > V (L). �

In particular, we replace�p byp toTheorem., we have the following corollary, which
was proved by Ryabogin and Zvavitch.

Corollary . [] Let K and L be origin-symmetric convex bodies and  ≤ p < n where p
is not an even integer. If L belongs to the class of Lp projection bodies, then

pK ⊆ pL ⇒ V (K) ≤ V (L).
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