L_{p} Blaschke-Minkowski homomorphisms

Wei Wang*

"Correspondence
wangtou1010@163.com School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan, 411201, P.R. China

```
Abstract
In this paper, we introduce the concept of L L Blaschke-Minkowski homomorphisms
and show that those maps are represented by a spherical convolution operator. And
then we consider the Busemann-Petty type problem for L}\mp@subsup{L}{p}{}\mathrm{ Blaschke-Minkowski
homomorphisms.
MSC: 52A40; 52A20
Keywords: valuation; L 
```


1 Introduction

The theory of real valued valuations is at the center of convex geometry. Blaschke started a systematic investigation in the 1930s, and then Hadwiger [1] focused on classifying valuations on compact convex sets in \mathbb{R}^{n} and obtained the famous Hadwiger's characterization theorem. Schneider [2] obtained first results on convex body valued valuations with Minkowski addition in 1970s. The survey [3] and the book [4] are an excellent source for the classical theory of valuations. Some more recent results can see [1,5-20].

An operator $Z: \mathcal{K}^{n} \rightarrow \mathcal{K}^{n}$ is called a Minkowski valuation if

$$
\begin{equation*}
Z(K \cup L)+Z(K \cap L)=Z K+Z L, \tag{1.1}
\end{equation*}
$$

whenever $K, L, K \cup L \in \mathcal{K}^{n}$, and here + is the Minkowski addition.
A Minkowski valuation Z is called $\mathrm{SO}(n)$ equivariant, if for all $\vartheta \in \mathrm{SO}(n)$ and all $K \in \mathcal{K}^{n}$,

$$
\begin{equation*}
Z(\vartheta K)=\vartheta Z K . \tag{1.2}
\end{equation*}
$$

A Minkowski valuation Z is called homogeneity of degree p, if for all $K \in \mathcal{K}^{n}$ and all $\lambda \geq 0$,

$$
\begin{equation*}
Z(\lambda K)=\lambda^{p} Z K . \tag{1.3}
\end{equation*}
$$

A map $\Phi: \mathcal{K}^{n} \rightarrow \mathcal{K}^{n}$ is called a Blaschke-Minkowski homomorphism if it is continuous, $\mathrm{SO}(n)$ equivariant and satisfies $\Phi(K \# L)=\Phi K+\Phi L$, where \# denotes the Blaschke addition, i.e., $S(K \# L, \cdot)=S(K, \cdot)+S(L, \cdot)$.

Obviously, a Blaschke-Minkowski homomorphism is a continuous Minkowski valuation which is $\mathrm{SO}(n)$ equivariant and ($n-1$)-homogeneous. Schuster introduced BlaschkeMinkowski homomorphisms and studied the Busemann-Petty type problem for them.

[^0]Theorem A [15] If $\Phi: \mathcal{K}^{n} \rightarrow \mathcal{K}^{n}$ be a Blaschke-Minkowski homomorphism, then there is a weakly positive $g \in \mathcal{C}\left(S^{n-1}, \widehat{e}\right)$, unique up to a linear function, such that

$$
h(\Phi K, \cdot)=S(K, \cdot) * g .
$$

Theorem B [16] Let $\Phi: \mathcal{K}^{n} \rightarrow \mathcal{K}^{n}$ be a Blaschke-Minkowski homomorphism. If $K \in \Phi \mathcal{K}^{n}$ and $L \in \mathcal{K}^{n}$, then

$$
\Phi K \subseteq \Phi L \quad \Rightarrow \quad V(K) \leq V(L),
$$

and $V(K)=V(L)$ if and only if $K=L$.

Recently, the investigations of convex body and star body valued valuations have received great attention from a series of articles by Ludwig [10-13]; see also [8]. She started systematic studies and established complete classifications of convex and star body valued valuations with respect to L_{p} Minkowski addition and L_{p} radial which are compatible with the action of the group $G L(n)$. Based on these results, in this article we study L_{p} Blaschke-Minkowski homomorphisms which are continuous, ($\frac{n}{p}-1$)-homogeneous and $\mathrm{SO}(n)$ equivariant.

Theorem 1.1 Let $p>1$ and $p \neq n$. If $\Phi_{p}: \mathcal{K}_{e}^{n} \rightarrow \mathcal{K}_{e}^{n}$ be an L_{p} Blaschke-Minkowski homomorphism, then there is a nonnegative function $g \in \mathcal{C}\left(S^{n-1}, \widehat{e}\right)$, such that

$$
\begin{equation*}
h^{p}\left(\Phi_{p} K, \cdot\right)=S_{p}(K, \cdot) * g . \tag{1.4}
\end{equation*}
$$

Theorem 1.2 Let $1<p<n$ and p is not an even integer, and let $\Phi_{p}: \mathcal{K}_{e}^{n} \rightarrow \mathcal{K}_{e}^{n}$ be an L_{p} Blaschke-Minkowski homomorphism. If $K \in \mathcal{K}_{e}^{n}$ and $L \in \Phi_{p} \mathcal{K}_{e}^{n}$, then

$$
\begin{equation*}
\Phi_{p} K \subseteq \Phi_{p} L \quad \Rightarrow \quad V(K) \leq V(L) . \tag{1.5}
\end{equation*}
$$

If $p>n$ and p is not an even integer, then

$$
\begin{equation*}
\Phi_{p} K \subseteq \Phi_{p} L \quad \Rightarrow \quad V(K) \geq V(L) \tag{1.6}
\end{equation*}
$$

and $V(K)=V(L)$, if and only if $K=L$.

2 Notation and background material

Let \mathcal{K}_{0}^{n} denote the set of convex bodies containing the origin in their interiors, and let \mathcal{K}_{e}^{n} denote origin-symmetric convex bodies. In this paper, we restrict the dimension of \mathbb{R}^{n} to $n \geq 3$. A convex body $K \in \mathcal{K}^{n}$ is uniquely determined by its support function, $h(K, \cdot)$. From the definition of $h(K, \cdot)$, it follows immediately that for $\lambda>0$ and $\vartheta \in \mathrm{SO}(n)$,

$$
\begin{equation*}
h(\lambda K, u)=\lambda h(K, u) \quad \text { and } \quad h(\vartheta K, u)=h\left(K, \vartheta^{-1} u\right) \tag{2.1}
\end{equation*}
$$

where ϑ^{-1} is the inverse of ϑ.

For $K, L \in \mathcal{K}_{0}^{n}, p \geq 1$, and $\varepsilon>0$, the L_{p} Minkowski addition $K{ }_{p} \varepsilon \cdot L \in \mathcal{K}_{0}^{n}$ is defined by (see [21])

$$
\begin{equation*}
h\left(K+{ }_{p} \varepsilon \cdot L, \cdot\right)^{p}=h(K, \cdot)^{p}+\varepsilon h(L, \cdot)^{p}, \tag{2.2}
\end{equation*}
$$

where '.' in $\varepsilon \cdot L$ denotes the Firey scalar multiplication, i.e., $\varepsilon \cdot L=\varepsilon^{\frac{1}{p}} L$.
If $K, L \in \mathcal{K}_{0}^{n}$, then for $p \geq 1$, the L_{p} mixed volume, $V_{p}(K, L)$, of K and L is defined by (see [21])

$$
V_{p}(K, L)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{V\left(K+_{p} \varepsilon \cdot L\right)-V(K)}{\varepsilon} .
$$

Corresponding to each $K \in \mathcal{K}_{0}^{n}$, there is a positive Borel measure, $S_{p}(K, \cdot)$, on S^{n-1} such that (see [21])

$$
\begin{equation*}
V_{p}(K, L)=\frac{1}{n} \int_{S^{n-1}} h(L, u)^{p} d S_{p}(K, u) \tag{2.3}
\end{equation*}
$$

for each $L \in \mathcal{K}_{0}^{n}$. The measure $S_{p}(K, \cdot)$ is just the L_{p} surface area measure of K, which is absolutely continuous with respect to classical surface area measure $S(K, \cdot)$, and has a Radon-Nikodym derivative

$$
\begin{equation*}
\frac{d S_{p}(K, \cdot)}{d S(K, \cdot)}=h(K, \cdot \cdot)^{1-p} . \tag{2.4}
\end{equation*}
$$

A convex body $K \in \mathcal{K}_{0}^{n}$ is said to have a p-curvature function (see [21]) $f_{p}(K, \cdot): S^{n-1} \rightarrow \mathbb{R}$, if its L_{p} surface area measure $S_{p}(K, \cdot)$ is absolutely continuous with respect to spherical Lebesgue measure S and the Radon-Nikodym derivative

$$
\begin{equation*}
\frac{d S_{p}(K, \cdot)}{d S}=f_{p}(K, \cdot) \tag{2.5}
\end{equation*}
$$

From the formula (2.3), it follows immediately that for each $K \in K_{0}^{n}$,

$$
V_{p}(K, K)=V(K) .
$$

The Minkowski inequality for the L_{p} mixed volume states that (see [21]): For $K, L \in \mathcal{K}_{0}^{n}$, if $p \geq 1$, then

$$
\begin{equation*}
V_{p}(K, L) \geq V(K)^{\frac{n-p}{n}} V(L)^{\frac{p}{n}} \tag{2.6}
\end{equation*}
$$

if $p>1$, equality holds if and only if K and L are dilates; if $p=1$, equality holds if and only if K and L are homothetic.

The L_{p} Minkowski problem asks for necessary and sufficient conditions for a Borel measure μ on S^{n-1} to be the L_{p} surface area measure of a convex body. Lutwak [22] gave a weak solution to the L_{p} Minkowski problem as follows.

Theorem C If μ is an even position Borel measure on S^{n-1}, which is not concentrated on any great subsphere, then for any $p>1$ and $p \neq n$, there exists a unique origin-symmetric
convex bodies $K \in \mathcal{K}_{e}^{n}$, such that

$$
S_{p}(K, \cdot)=\mu .
$$

From (2.4), for $\lambda>0$, we have

$$
\begin{equation*}
S_{p}(\lambda K, \cdot)=\lambda^{n-p} S_{p}(K, \cdot) . \tag{2.7}
\end{equation*}
$$

Noting the fact $S(\vartheta K, \cdot)=\vartheta S(K, \cdot)$ for $\vartheta \in \mathrm{SO}(n)$ and (2.1), one can obtain

$$
\begin{equation*}
S_{p}(\vartheta K, \cdot)=\vartheta S_{p}(K, \cdot), \tag{2.8}
\end{equation*}
$$

where $\vartheta S_{p}(K, \cdot)$ is the image measure of $S_{p}(K, \cdot)$ under the rotation ϑ. Obviously, $S_{1}(K, \cdot)$ is just $S(K, \cdot)$.

The L_{p} Blaschke addition $K \#_{p} L$ of $K, L \in \mathcal{K}_{0}^{n}$ is the convex body with

$$
\begin{equation*}
S_{p}\left(K \#_{p} L, \cdot\right)=S_{p}(K, \cdot)+S_{p}(L, \cdot) . \tag{2.9}
\end{equation*}
$$

Some basic notions on spherical harmonics will be required. The article by Grinberg and Zhang [23] and the article by Schuster [16] are excellent general references on spherical harmonics. As usual, $\mathrm{SO}(n)$ and S^{n-1} will be equipped with the invariant probability measures. Let $\mathcal{C}(\mathrm{SO}(n)), \mathcal{C}\left(S^{n-1}\right)$ be the spaces of continuous functions on $\mathrm{SO}(n)$ and S^{n-1} with uniform topology and $\mathcal{M}(\mathrm{SO}(n)), \mathcal{M}\left(S^{n-1}\right)$ their dual spaces of signed finite Borel measures with weak ${ }^{*}$ topology. The group $\mathrm{SO}(n)$ acts on these spaces by left translation, i.e., for $f \in \mathcal{C}\left(S^{n-1}\right)$ and $\mu \in \mathcal{M}\left(S^{n-1}\right)$, we have $\vartheta f(u)=f\left(\vartheta^{-1} u\right)$, $\vartheta \in \mathrm{SO}(n)$, and $\vartheta \mu$ is the image measure of μ under the rotation ϑ.
The sphere S^{n-1} is identified with the homogeneous space $\operatorname{SO}(n) / \operatorname{SO}(n-1)$, where $\mathrm{SO}(n-1)$ denotes the subgroup of rotations leaving the pole \widehat{e} of S^{n-1} fixed. The projection from $\operatorname{SO}(n)$ onto S^{n-1} is $\vartheta \mapsto \widehat{\vartheta}:=\vartheta \widehat{e}$. Functions on S^{n-1} can be identified with right $\mathrm{SO}(n-1)$-invariant functions on $\mathrm{SO}(n)$, by $\check{f}(\vartheta)=f(\widehat{\vartheta})$, for $f \in \mathcal{C}\left(S^{n-1}\right)$. In fact, $\mathcal{C}\left(S^{n-1}\right)$ is isomorphic to the subspace of right $\mathrm{SO}(n-1)$-invariant functions in $\mathcal{C}(\mathrm{SO}(n))$.
The convolution $\mu * f \in \mathcal{C}\left(S^{n-1}\right)$ of a measure $\mu \in \mathcal{M}(\mathrm{SO}(n))$ and a function $f \in \mathcal{C}\left(S^{n-1}\right)$ is defined by

$$
\begin{equation*}
(\mu * f)(u)=\int_{\mathrm{SO}(n)} \vartheta f(u) d \mu(\vartheta) . \tag{2.10}
\end{equation*}
$$

The canonical pairing of $f \in \mathcal{C}\left(S^{n-1}\right)$ and $\mu \in \mathcal{M}\left(S^{n-1}\right)$ is defined by

$$
\begin{equation*}
\langle\mu, f\rangle=\langle f, \mu\rangle=\int_{S^{n-1}} f(u) d \mu(u) . \tag{2.11}
\end{equation*}
$$

A function $f \in \mathcal{C}\left(S^{n-1}\right)$ is called zonal, if $\vartheta f=f$ for every $\vartheta \in \mathrm{SO}(n-1)$. Zonal functions depend only on the value $u \cdot \widehat{e}$. The set of continuous zonal functions on S^{n-1} will be denoted by $\mathcal{C}\left(S^{n-1}, \widehat{e}\right)$ and the definition of $\mathcal{M}\left(S^{n-1}, \widehat{e}\right)$ is analogous. A map $\Lambda: \mathcal{C}[-1,1] \rightarrow$ $\mathcal{C}\left(S^{n-1}, \widehat{e}\right)$ is defined by

$$
\begin{equation*}
\Lambda f(u)=f(u \cdot \widehat{e}), \quad u \in S^{n-1} \tag{2.12}
\end{equation*}
$$

The map Λ is also an isomorphism between functions on $[-1,1]$ and zonal functions on S^{n-1}. If $f \in \mathcal{C}\left(S^{n-1}\right), \mu \in \mathcal{M}\left(S^{n-1}, \widehat{e}\right)$ and $\eta \in \mathrm{SO}(n)$, then

$$
\begin{equation*}
(f * \mu)(\widehat{\eta})=\int_{S^{n-1}} f(\eta u) d \mu(u) \tag{2.13}
\end{equation*}
$$

If $\mu \in \mathcal{M}\left(S^{n-1}, \widehat{e}\right)$, for each $f \in \mathcal{C}\left(S^{n-1}\right)$ and every $\vartheta \in \mathrm{SO}(n)$, then

$$
\begin{equation*}
(\vartheta f) * \mu=\vartheta(f * \mu) . \tag{2.14}
\end{equation*}
$$

We denote \mathcal{H}_{k}^{n} by the finite dimensional vector space of spherical harmonics of dimension n and order k, and let $N(n, k)$ be the dimension of \mathcal{H}_{k}^{n}. The space of all finite sums of spherical harmonics of dimension n is denoted by \mathcal{H}^{n}. The spaces \mathcal{H}_{k}^{n} are pairwise orthogonal with respect to the usual inner product on $\mathcal{C}\left(S^{n-1}\right)$. Clearly, \mathcal{H}_{k}^{n} is invariant with respect to rotations.

Let $P_{k}^{n} \in \mathcal{C}[-1,1]$ denote the Legendre polynomial of dimension n and order k. The zonal function ΛP_{k}^{n} is up to a multiplicative constant the unique zonal spherical harmonic in \mathcal{H}_{k}^{n}. In each space \mathcal{H}_{k}^{n} we choose an orthonormal basis $H_{k 1}, \ldots, H_{k N(n, k)}$. The collection $\left\{H_{k 1}, \ldots, H_{k N(n, k)}: k \in \mathbb{N}\right\}$ forms a complete orthogonal system in $\mathcal{L}^{2}\left(S^{n-1}\right)$. In particular, for every $f \in \mathcal{L}^{2}\left(S^{n-1}\right)$, the series

$$
f \sim \sum_{k=0}^{\infty} \pi_{k} f
$$

converges to f in the $\mathcal{L}^{2}\left(S^{n-1}\right)$-norm, where $\pi_{k} f \in \mathcal{H}_{k}^{n}$ is the orthogonal projection of f on the space \mathcal{H}_{k}^{n}. Using well-known properties of the Legendre polynomials, it is not hard to show that

$$
\begin{equation*}
\pi_{k} f=N(n, k)\left(f * \Lambda P_{k}^{n}\right) \tag{2.15}
\end{equation*}
$$

This leads to the spherical expansion of a measure $\mu \in \mathcal{M}\left(S^{n-1}\right)$,

$$
\begin{equation*}
\mu \sim \sum_{k=0}^{\infty} \pi_{k} \mu \tag{2.16}
\end{equation*}
$$

where $\pi_{k} \mu \in \mathcal{H}_{k}^{n}$ is defined by

$$
\begin{equation*}
\pi_{k} \mu=N(n, k)\left(\mu * \Lambda P_{k}^{n}\right) . \tag{2.17}
\end{equation*}
$$

From $P_{0}^{n}(t)=1, N(n, 0)=1$ and $P_{1}^{n}(t)=t, N(n, 1)=n$, we obtain, for $\mu \in \mathcal{M}\left(S^{n-1}\right)$, the following special cases of (2.18):

$$
\begin{equation*}
\pi_{0} \mu=\mu\left(S^{n-1}\right) \quad \text { and } \quad\left(\pi_{1} \mu\right)(u)=n \int_{S^{n-1}} u \cdot v d \mu(v) \tag{2.18}
\end{equation*}
$$

Let κ_{n} denote the volume of the Euclidean unit ball B. By (2.3) and (2.19), for every convex body $K \in \mathcal{K}_{0}^{n}$, it follows that

$$
\begin{equation*}
\kappa_{n} \pi_{0} h(K, \cdot)^{p}=V_{p}(B, K) \quad \text { and } \quad \pi_{0} S_{p}(K, \cdot)=n V_{p}(K, B) . \tag{2.19}
\end{equation*}
$$

A measure $\mu \in \mathcal{M}\left(S^{n-1}\right)$ is uniquely determined by its series expansion (2.19). Using the fact that ΛP_{k}^{n} is (essentially) the unique zonal function in \mathcal{H}_{k}^{n}, a simple calculation shows that for $\mu \in \mathcal{M}\left(S^{n-1}, \widehat{e}\right)$, formula (2.18) becomes

$$
\begin{equation*}
\pi_{k} \mu=N(n, k)\left\langle\mu, \Lambda P_{k}^{n}\right\rangle \Lambda P_{k}^{n} \tag{2.20}
\end{equation*}
$$

A zonal measure $\mu \in \mathcal{M}\left(S^{n-1}, \widehat{e}\right)$ is defined by its so-called Legendre coefficients $\mu_{k}:=$ $\left\langle\mu, \Lambda P_{k}^{n}\right\rangle$. Using $\pi_{k} H=H$ for every $H \in \mathcal{H}_{k}^{n}$ and the fact that spherical convolution of zonal measures is commutative, we have the Funk-Hecke theorem: If $\mu \in \mathcal{M}\left(S^{n-1}, \widehat{e}\right)$ and $H \in$ \mathcal{H}_{k}^{n}, then $H * \mu=\mu_{k} H$.
A map $\Phi: \mathcal{D} \subseteq \mathcal{M}\left(S^{n-1}\right) \rightarrow \mathcal{M}\left(S^{n-1}\right)$ is called a multiplier transformation [16] if there exist real numbers c_{k}, the multipliers of Φ, such that, for every $k \in \mathbb{N}$,

$$
\begin{equation*}
\pi_{k} \Phi \mu=c_{k} \pi_{k} \mu, \quad \forall \mu \in \mathcal{D} . \tag{2.21}
\end{equation*}
$$

From the Funk-Hecke theorem and the fact that the spherical convolution of zonal measures is commutative, it follows that, for $\mu \in \mathcal{M}\left(S^{n-1}, \widehat{e}\right)$, the map $\Phi_{\mu}: \mathcal{M}\left(S^{n-1}\right) \rightarrow$ $\mathcal{M}\left(S^{n-1}\right)$, defined by $\Phi_{\mu}=\nu * \mu$, is a multiplier transformation. The multipliers of this convolution operator are just the Legendre coefficients of the measure μ.

$3 L_{p}$ Blaschke-Minkowski homomorphisms and convolutions

The L_{p} Minkowski valuation was introduced by Ludwig [11]. A function $\Psi: \mathcal{K}_{0}^{n} \rightarrow \mathcal{K}_{0}^{n}$ is called an L_{p} Minkowski valuation if

$$
\begin{equation*}
\Psi(K \cup L)+_{p} \Psi(K \cap L)=\Psi K+_{p} \Psi L, \tag{3.1}
\end{equation*}
$$

whenever $K, L, K \cup L \in \mathcal{K}_{0}^{n}$, and here ' ${ }_{p}$ ' is L_{p} Minkowski addition.

Definition 3.1 A map $\Phi_{p}: \mathcal{K}_{e}^{n} \rightarrow \mathcal{K}_{e}^{n}$ satisfying the following properties (a), (b) and (c) is called an L_{p} Blaschke-Minkowski homomorphism.
(a) Φ_{p} is continuous with respect to Hausdorff metric.
(b) $\Phi_{p}\left(K \#_{p} L\right)=\Phi_{p} K+{ }_{p} \Phi_{p} L$ for all $K, L \in \mathcal{K}_{e}^{n}$.
(c) Φ_{p} is $\mathrm{SO}(n)$ equivariant, i.e., $\Phi_{p}(\vartheta K)=\vartheta \Phi_{p} K$ for all $\vartheta \in \mathrm{SO}(n)$ and all $K \in \mathcal{K}_{e}^{n}$.

It is easy to verify that an L_{p} Blaschke-Minkowski homomorphism is an L_{p} Minkowski valuation.

In order to prove our results, we need to quote some lemmas. We call a map Φ : $\mathcal{M}\left(S^{n-1}\right) \rightarrow \mathcal{C}\left(S^{n-1}\right)$ monotone, if non-negative measures are mapped to non-negative functions.

Lemma 3.1 A map $\Phi: \mathcal{M}\left(S^{n-1}\right) \rightarrow \mathcal{C}\left(S^{n-1}\right)$ is a monotone, linear map that is intertwines rotations if and only if there is a function $f \in \mathcal{C}\left(S^{n-1}, \widehat{e}\right)$, such that

$$
\begin{equation*}
\Phi \mu=f * \mu \tag{3.2}
\end{equation*}
$$

Proof From the definition of spherical convolution and (2.15), it follows that mapping of form (3.2) has the desired properties. This proves the sufficiency.

Next, we prove the necessity.
Let Φ be monotone, linear and intertwines rotations. Consider the map $\phi: \mathcal{M}\left(S^{n-1}\right) \rightarrow$ $\mathbb{R}, \mu \rightarrow \Phi \mu(\hat{e})$. By the properties of Φ, the functional ϕ is positive and linear on $\mathcal{M}\left(S^{n-1}\right)$, thus, by the Riesz representation theorem, there is a function $f \in \mathcal{M}_{+}\left(S^{n-1}\right)$ such that

$$
\phi(\mu)=\int_{S^{n-1}} f(u) d \mu(u) .
$$

Since ϕ is $\operatorname{SO}(n-1)$ invariant, the function f is zonal. Thus, we have for $\eta \in \operatorname{SO}(n)$

$$
\Phi \mu(\eta \widehat{e})=\Phi\left(\eta^{-1} \mu\right)(\widehat{e})=\phi\left(\eta^{-1} \mu\right)=\int_{S^{n-1}} f(\eta u) d \mu(u) .
$$

Lemma 3.1 follows now from (2.14).

Proof of Theorem 1.1 Suppose that a map $\Phi_{p}: \mathcal{K}_{0}^{n} \rightarrow \mathcal{K}_{0}^{n}$ satisfies $h\left(\Phi_{p} K, \cdot\right)^{p}=S_{p}(K, \cdot) * g$, where $g \in \mathcal{C}\left(S^{n-1}, \widehat{e}\right)$ is a nonnegative measure. The continuity of Φ_{p} follows from the fact that the support function $h(K, \cdot)$ is continuous with respect to Hausdorff metric. From (2.9) and (2.1), for $\vartheta \in \mathrm{SO}(n)$, we obtain

$$
h\left(\Phi_{p} \vartheta K, \cdot\right)^{p}=S_{p}(\vartheta K, \cdot) * g=S_{p}\left(K, \vartheta^{-1} \cdot\right) * g=h\left(\Phi_{p} K, \vartheta^{-1} \cdot\right)^{p}=h\left(\vartheta \Phi_{p} K, \cdot\right)^{p} .
$$

Taking $K=L$ in (1.4), we have

$$
\begin{equation*}
h\left(\Phi_{p} L, \cdot\right)^{p}=S_{p}(L, \cdot) * g . \tag{3.3}
\end{equation*}
$$

Combining with (2.2), (1.4) and (3.3), we obtain

$$
\begin{align*}
h\left(\Phi_{p} K+p \Phi_{p} L, \cdot \cdot\right)^{p} & =h\left(\Phi_{p} K, \cdot\right)^{p}+h\left(\Phi_{p} L, \cdot\right)^{p} \\
& =S_{p}(K, \cdot) * g+S_{p}(L, \cdot) * g \\
& =\left(S_{p}(K, \cdot)+S_{p}(L, \cdot)\right) * g \\
& =S_{p}\left(K \#_{p} L, \cdot\right) * g \\
& =h\left(\Phi_{p}\left(K \#_{p} L\right), \cdot\right)^{p} . \tag{3.4}
\end{align*}
$$

Thus maps of the form of (1.4) are L_{p} Blaschke-Minkowski homomorphisms (satisfy the properties (a), (b) and (c) from Definition 3.1). Thus, we have to show that for every such operator Φ_{p}, there is a function $g \in \mathcal{C}\left(S^{n-1}, \widehat{e}\right)$ such that (1.4) holds.
Since every positive continuous even measure on S^{n-1} can be the L_{p} surface area measure of some convex body, the set $\left\{S_{p}(K, \cdot)-S_{p}(L, \cdot), K, L \in \mathcal{K}_{e}^{n}\right\}$ coincides with $\mathcal{M}_{e}\left(S^{n-1}\right)$. The operator $\bar{\Phi}: \mathcal{M}\left(S^{n-1}\right) \rightarrow \mathcal{C}\left(S^{n-1}\right)$ is defined by

$$
\begin{equation*}
\bar{\Phi} \mu_{1}=h\left(\Phi_{p} K_{1}, \cdot\right)^{p}-h\left(\Phi_{p} K_{2}, \cdot\right)^{p}, \tag{3.5}
\end{equation*}
$$

where $\mu_{1}=S_{p}\left(K_{1}, \cdot\right)-S_{p}\left(K_{2}, \cdot\right)$.
The operator $\bar{\Phi}$ for $\mu_{2}=S_{p}\left(L_{1}, \cdot\right)-S_{p}\left(L_{2}, \cdot\right)$ immediately yields:

$$
\begin{equation*}
\bar{\Phi} \mu_{2}=h\left(\Phi_{p} L_{1}, \cdot\right)^{p}-h\left(\Phi_{p} L_{2}, \cdot\right)^{p} . \tag{3.6}
\end{equation*}
$$

Combining with (3.5), (3.6), (2.2) and (3.4), we obtain

$$
\begin{aligned}
\bar{\Phi} \mu_{1}+\bar{\Phi} \mu_{2} & =h\left(\Phi_{p} K_{1}, \cdot\right)^{p}-h\left(\Phi_{p} K_{2}, \cdot\right)^{p}+h\left(\Phi_{p} L_{1}, \cdot\right)^{p}-h\left(\Phi_{p} L_{2}, \cdot \cdot\right)^{p} \\
& =h\left(\Phi_{p} K_{1}+{ }_{p} \Phi_{p} L_{1}, \cdot\right)^{p}-h\left(\Phi_{p} K_{2}+_{p} \Phi_{p} L_{2}, \cdot \cdot\right)^{p} \\
& =h\left(\Phi_{p}\left(K_{1} \#_{p} L_{1}\right), \cdot \cdot\right)^{p}-h\left(\Phi_{p}\left(K_{2} \#_{p} L_{2}\right), \cdot\right)^{p} \\
& =\bar{\Phi}\left(S_{p}\left(K_{1} \#_{p} L_{1}, \cdot\right)-S_{p}\left(K_{2} \#_{p} L_{2}, \cdot\right)\right) \\
& =\bar{\Phi}\left(S_{p}\left(K_{1}, \cdot\right)+S_{p}\left(L_{1}, \cdot\right)-S_{p}\left(K_{2}, \cdot\right)-S_{p}\left(L_{2}, \cdot\right)\right) \\
& =\bar{\Phi}\left(\mu_{1}+\mu_{2}\right) .
\end{aligned}
$$

So, the operator $\bar{\Phi}$ is linear.
Noting that Φ_{p} is an L_{p} Minkowski homomorphism and $S_{p}(\vartheta K, \cdot)=\vartheta S_{p}(K, \cdot)$, we obtain that the operator $\bar{\Phi}$ is $\mathrm{SO}(n)$ equivariant.
Since the cone of the L_{p} surface area measures of origin symmetric convex bodies is invariant under $\bar{\Phi}$, it is also monotone. Hence, by Lemma 3.1, there is a non-negative function $g \in \mathcal{C}\left(S^{n-1}, \widehat{e}\right)$ such that $\bar{\Phi} \mu=\mu * g$. The statement now follows from

$$
\bar{\Phi} S_{p}(K, \cdot)=S_{p}(K, \cdot) * g=h\left(\Phi_{p} K, \cdot\right)^{p} .
$$

Hence, it is to complete the proof.

Lutwak, Yang and Zhang first introduced the notion of L_{p}-projection body (see [24]). Let $\Pi_{p} K, p \geq 1$ denote the compact convex symmetric set whose support function is given by

$$
\begin{equation*}
h\left(\Pi_{p} K, \theta\right)^{p}=\frac{1}{n \omega_{n} c_{n-2, p}} S_{p}(K, \cdot) *|\langle\theta, \cdot\rangle|^{p}, \tag{3.7}
\end{equation*}
$$

where

$$
c_{n, p}=\frac{\omega_{n+p}}{\omega_{2} \omega_{n} \omega_{p-1}} .
$$

Obviously, $\Pi_{p}: \mathcal{K}_{e}^{n} \rightarrow \mathcal{K}_{e}^{n}$ is an L_{p} Blaschke-Minkowski homomorphism.

Lemma 3.2 [23] If $\mu, v \in \mathcal{M}\left(S^{n-1}\right)$ and $f \in \mathcal{C}\left(S^{n-1}\right)$, then

$$
\langle\mu * \nu, f\rangle=\langle\mu, f * v\rangle .
$$

Theorem 3.3 If $\Phi_{p}: \mathcal{K}_{e}^{n} \rightarrow \mathcal{K}_{e}^{n}$ is an L_{p} Blaschke-Minkowski homomorphism, then for $K, L \in \mathcal{K}_{e}^{n}$,

$$
\begin{equation*}
V_{p}\left(K, \Phi_{p} L\right)=V_{p}\left(L, \Phi_{p} K\right) . \tag{3.8}
\end{equation*}
$$

Proof Let $g \in \mathcal{C}\left(S^{n-1}, \widehat{e}\right)$ be the generating function of Φ_{p}. Using (2.3), Theorem 1.1 and

Lemma 3.2, it follows that

$$
\begin{align*}
n V_{p}\left(K, \Phi_{p} L\right) & =\left\langle h\left(\Phi_{p} L, \cdot\right)^{p}, S_{p}(K, \cdot)\right\rangle \\
& =\left\langle S_{p}(L, \cdot) * g, S_{p}(K, \cdot)\right\rangle \\
& =\left\langle S_{p}(L, \cdot), S_{p}(K, \cdot) * g\right\rangle \\
& =\left\langle S_{p}(L, \cdot), h\left(\Phi_{p} K, \cdot\right)^{p}\right\rangle \\
& =n V_{p}\left(L, \Phi_{p} K\right) . \tag{3.9}
\end{align*}
$$

Using Theorem 1.1 and the fact that spherical convolution operators are multiplier transformations, one obtains the following lemma.

Lemma 3.4 If Φ_{p} is an L_{p} Blaschke-Minkowski homomorphism, which is generated by the zonal function g, then for every origin symmetric convex body $K \in \mathcal{K}_{e}^{n}$,

$$
\begin{equation*}
\pi_{k} h\left(\Phi_{p} K, \cdot\right)^{p}=g_{k} \pi_{k} S_{p}(K, \cdot), \quad k \in \mathbb{N}, \tag{3.10}
\end{equation*}
$$

where the numbers g_{k} are the Legendre coefficients of g, i.e., $g_{k}=\left\langle g, \Lambda P_{k}^{n}\right\rangle$.
Proof By (2.18) and Theorem 1.1, we have

$$
\pi_{k} h\left(\Phi_{p} K, \cdot\right)^{p}=N(n, k)\left(S_{p}(K, \cdot) * g * \Lambda P_{k}^{n}\right)
$$

Since spherical convolution is associative and g is zonal, we obtain from (2.18):

$$
\pi_{k} h\left(\Phi_{p} K, \cdot\right)^{p}=g_{k} N(n, k)\left(S_{p}(K, \cdot) * \Lambda P_{k}^{n}\right)=g_{k} \pi_{k} S_{p}(K, \cdot)
$$

Definition 3.2 If Φ_{p} is an L_{p} Blaschke-Minkowski homomorphism, generated by the zonal function g, then we call the subset $\mathcal{K}_{e}^{n}\left(\Phi_{p}\right)$ of \mathcal{K}_{e}^{n}, defined by

$$
\mathcal{K}_{e}^{n}\left(\Phi_{p}\right)=\left\{K \in \mathcal{K}_{e}^{n}: \pi_{k} S_{p}(K, \cdot)=0 \text { if } g_{k}=0\right\},
$$

the injectivity set of Φ_{p}.
It is easy to verify that for every L_{p} Blaschke-Minkowski homomorphism, the set is a nonempty rotation and dilatation invariant subset of which is closed under L_{p} Blaschke addition.

Definition 3.3 An origin-symmetric convex body $K \in \mathcal{K}_{e}^{n} p$-polynomial if $h(K, \cdot)^{p} \in \mathcal{H}^{n}$.

Clearly, the set of p-polynomial convex bodies is dense in \mathcal{K}_{e}^{n}.
Let $p>1$ and $p \neq n$ where p is not an even integer. The size of range, $\Phi_{p}\left(\mathcal{K}_{e}^{n}\right)$, of the L_{p} Blaschke-Minkowski homomorphism Φ_{p} will be critical. The set of origin-symmetric convex bodies whose support functions are elements of the vector space

$$
\begin{equation*}
\operatorname{span}\left\{\left(h\left(\Phi_{p} K, \cdot\right)^{p}-h\left(\Phi_{p} L, \cdot\right)^{p}\right)^{\frac{1}{p}}: K, L \in \mathcal{K}_{e}^{n}\right\} \tag{3.11}
\end{equation*}
$$

is a large subset of \mathcal{K}_{e}^{n}, provided the injectivity set $\mathcal{K}_{e}^{n}\left(\Phi_{p}\right)$ is not too small.

Theorem 3.5 Let $p>1$ and $p \neq n$ where p is not an even integer. If $\Phi_{p}: \mathcal{K}_{e}^{n} \rightarrow \mathcal{K}_{e}^{n}$ is an L_{p} Blaschke-Minkowski homomorphism such that $\mathcal{K}_{e}^{n} \subseteq \mathcal{K}_{e}^{n}\left(\Phi_{p}\right)$, then for every p-polynomial convex body $K \in \mathcal{K}_{e}^{n}$, there exist origin-symmetry convex bodies $K_{1}, K_{2} \in \mathcal{K}_{e}^{n}$ such that

$$
\begin{equation*}
K+_{p} \Phi_{p} K_{1}=\Phi_{p} K_{2} \tag{3.12}
\end{equation*}
$$

Proof Let $K \in \mathcal{K}_{e}^{n}$ be a p-polynomial convex body. From Definition 3.3, we have

$$
\begin{equation*}
h(K, \cdot)^{p}=\sum_{k=0}^{m} \pi_{k} h(K, \cdot)^{p} . \tag{3.13}
\end{equation*}
$$

For $K \in \mathcal{K}_{e}^{n}$ and the properties of the orthogonal projection of f on the space \mathcal{H}_{k}^{n}, we have $\pi_{k} h(K, \cdot)^{p}=0$ for all odd $k \in \mathbb{N}$. Let $g \in \mathcal{C}\left(S^{n-1}, \widehat{e}\right)$ denote the generating function of Φ and let g_{k} denote the Legendre coefficients of g. From $\mathcal{K}_{e}^{n} \subseteq \mathcal{K}_{e}^{n}(\Phi)$ and Definition 3.2, it follows that $g_{k} \neq 0$ for every even $k \in \mathbb{N}$. We define

$$
\begin{equation*}
f:=\sum_{k=0}^{m} c_{k} \pi_{k} h(K, \cdot)^{p}, \tag{3.14}
\end{equation*}
$$

where $c_{k}=0$ for odd and $c_{k}=g_{k}^{-1}$ if k is even. Since f is an even continuous function on S^{n-1} and spherical convolution operators are multiplier transformations, we have

$$
\begin{equation*}
f * g=\sum_{k=0}^{m} c_{k} g_{k} \pi_{k} h(K, \cdot)^{p}=\sum_{k=0}^{m} \pi_{k} h(K, \cdot)^{p}=h(K, \cdot)^{p} . \tag{3.15}
\end{equation*}
$$

Denote by f^{+}and f^{-}the positive and negative parts of f and let K_{1} and K_{2} be the convex bodies such that $S_{p}\left(K_{1}, \cdot\right)=f^{-}$and $S_{p}\left(K_{2}, \cdot\right)=f^{+}$. By Theorem 1.1 and (2.2), it follows that

$$
K+_{p} \Phi_{p} K_{1}=\Phi_{p} K_{2} .
$$

4 The Shephard-type problem

Let $\Phi_{p}: \mathcal{K}_{e}^{n} \rightarrow \mathcal{K}_{e}^{n}$ denote a nontrivial L_{p} Blaschke-Minkowski homomorphism, i.e., Φ_{p} is continuous and $\mathrm{SO}(n)$ equivariant map satisfying $\Phi_{p}\left(K \#_{p} L\right)=\Phi_{p} K+_{p} \Phi_{p} L$ and Φ_{p} does not map every origin-symmetric convex body to the origin. In this section, we study the Shephard-type problem for L_{p} Blaschke-Minkowski homomorphisms.

Problem 4.1 Let $p>1, p \neq n$ and $\Phi_{p}: \mathcal{K}_{0}^{n} \rightarrow \mathcal{K}_{e}^{n}$ be an L_{p} Blaschke-Minkowski homomorphism. Is there the implication:
If $0<p<n$, then

$$
\begin{equation*}
\Phi_{p} K \subseteq \Phi_{p} L \quad \Rightarrow \quad V(K) \leq V(L) ? \tag{4.1}
\end{equation*}
$$

If $p>n$, then

$$
\begin{equation*}
\Phi_{p} K \subseteq \Phi_{p} L \quad \Rightarrow \quad V(K) \geq V(L) ? \tag{4.2}
\end{equation*}
$$

Proof of Theorem 1.2 For $L \in \Phi_{p} \mathcal{K}_{e}^{n}$ and p is not an even integer, there exists an originsymmetric convex body L_{0} such that $L=\Phi_{p} L_{0}$. Using Theorem 3.3 and the fact that the L_{p} mixed volume V_{p} is monotone with respect to set inclusion, it follows that

$$
V_{p}(K, L)=V_{p}\left(K, \Phi_{p} L_{0}\right)=V_{p}\left(L_{0}, \Phi_{p} K\right) \leq V_{p}\left(L_{0}, \Phi_{p} L\right)=V_{p}\left(L, \Phi_{p} L_{0}\right)=V(L) .
$$

Applying the L_{p} Minkowski inequality (2.6), we thus obtain that, if $1<p<n$, then

$$
V(K) \leq V(L)
$$

and if $p>n$, then

$$
V(K) \geq V(L)
$$

with equality if and only if K and L are dilates.

An immediate consequence of Theorem 1.2 is the following.

Theorem 4.1 Let $p>1, p \neq n$, where p is not an even integer and $\Phi_{p}: \mathcal{K}_{e}^{n} \rightarrow \mathcal{K}_{e}^{n}$ is an L_{p} Blaschke-Minkowski homomorphism. If $K, L \in \Phi_{p} \mathcal{K}_{e}^{n}$, then

$$
\begin{equation*}
\Phi_{p} K=\Phi_{p} L \quad \Leftrightarrow \quad K=L . \tag{4.3}
\end{equation*}
$$

Since the L_{p} projection body operator Π_{p} is just an L_{p} Blaschke-Minkowski homomorphism, the L_{p} Aleksandrov's projection theorem is a direct corollary of Theorem 4.1.

Corollary 4.2 [25] Let $p>1, p \neq n$, where p is not an even integer, and K and L are both L_{p} projection bodies in \mathbb{R}^{n}. Then

$$
\Pi_{p} K=\Pi_{p} L \quad \Leftrightarrow \quad K=L .
$$

Our next result shows that if the injectivity set $\mathcal{K}_{e}^{n}\left(\Phi_{p}\right)$ does not exhaust all of \mathcal{K}_{e}^{n}, in general the answer to Problem 4.1 is negative.

Theorem 4.3 Let $1<p<n$ where p is not an even integer. If $\mathcal{K}_{e}^{n}\left(\Phi_{p}\right)$ does not coincide with \mathcal{K}_{e}^{n}, then there exist origin-symmetric convex bodies $K, L \in \mathcal{K}_{e}^{n}$, such that

$$
\Phi_{p} K \subseteq \Phi_{p} L
$$

but

$$
V(K)>V(L) .
$$

Proof Let $g \in \mathcal{C}\left(S^{n-1}, \widehat{e}\right)$ be the generating function of Φ_{p} and let g_{k} denote its Legendre coefficients. Since $\mathcal{K}_{e}^{n}\left(\Phi_{p}\right) \neq \mathcal{K}_{e}^{n}$ and Φ_{p} is nontrivial, there exists, by Definition 3.2, an integer $k \in \mathbb{N}$, such that $g_{k}=0$ and $k \geq 1$. We can choose $\alpha>0$ such that the function
$f(u)=1+\alpha P_{k}^{n}(u \cdot \hat{e}), u \in S^{n-1}$, is positive. According to Theorem C, there exists an originsymmetric convex body $L \in \mathcal{K}_{e}^{n}$ with $S_{p}(L, \cdot)=f$.
Since $\pi_{k} S_{p}(L, \cdot)=\pi_{k}\left(1+\alpha P_{k}^{n}(u \cdot \widehat{e})\right) \neq 0$, from Definition 3.2 we have that $L \notin \mathcal{K}_{e}^{n}\left(\Phi_{p}\right)$.
From (2.20) and the properties of the orthogonal projection on the space \mathcal{H}_{k}^{n}, we have that

$$
\begin{equation*}
n V_{p}(L, B)=\pi_{0} S_{p}(L, \cdot)=1 \tag{4.4}
\end{equation*}
$$

Using the fact that: For $1<p<n$ where p is not an even integer, an origin-symmetric convex body $L \in \mathcal{K}_{e}^{n}\left(\Phi_{p}\right)$ is uniquely determined by its image $\Phi_{p} L$, we obtain that $\Phi_{p} L=\Phi_{p} K$, where K denotes the Euclidean ball centered at the origin with L_{p} surface area $S_{p}(K)=1$. Noting that L is just a perturb body of K, we use (4.4) and (2.6) to conclude

$$
V(K)^{n-p}=\frac{1}{n^{n} V(B)^{p}}>V(L)^{n-p} .
$$

Theorem 4.4 Suppose $1<p<n$ where p is not an even integer and $\mathcal{K}_{e}^{n} \subseteq \mathcal{K}_{e}^{n}\left(\Phi_{p}\right)$. If $K \in \mathcal{K}_{e}^{n}$ is a p-polynomial convex body which has p-positive curvature function, then if $K \notin \Phi_{p} \mathcal{K}_{e}^{n}$, there exists an origin-symmetric convex body $L \in \mathcal{K}_{e}^{n}$, such that

$$
\Phi_{p} K \subseteq \Phi_{p} L
$$

but

$$
V(K)>V(L) .
$$

Proof Let $g \in \mathcal{C}\left(S^{n-1}, \widehat{e}\right)$ be the generating function of Φ_{p}. Since $K \in \mathcal{K}_{e}^{n}$ is p-polynomial, it follows from the proof of Theorem 3.5 that there exists an even function $f \in \mathcal{H}^{n}$ such that

$$
\begin{equation*}
h(K, \cdot)^{p}=f * g . \tag{4.5}
\end{equation*}
$$

The function must assume negative values, otherwise, by Theorem 1.1 we have $K=\Phi_{p} K_{0}$, where K_{0} is the convex body with $S_{p}\left(K_{0}, \cdot\right)=f$. Let $F \in \mathcal{C}\left(S^{n-1}\right)$ be a non-constant even function, such that: $F(u) \geq 0$ if $f(u)<0$, and $F(u)=0$ if $f(u) \geq 0$. By suitable approximation of the function F with spherical harmonics, we can find a nonnegative even function $G \in$ \mathcal{H}^{n} and an even function $H \in \mathcal{H}^{n}$ such that

$$
\begin{equation*}
\langle f, G\rangle<0, \quad \text { and } \quad G=H * g . \tag{4.6}
\end{equation*}
$$

Since K is a p-polynomial and has p-positive curvature, the L_{p} surface area measure of K has a positive density $S_{p}(K, \cdot)$. Thus, we can choose $\alpha>0$ such that

$$
S_{p}(K, \cdot)+\alpha H>0 .
$$

By Theorem C, there exists an origin-symmetric convex body L such that

$$
\begin{equation*}
S_{p}(L, \cdot)=S_{p}(K, \cdot)+\alpha H . \tag{4.7}
\end{equation*}
$$

From (4.6) and Theorem 1.1, we see that $h\left(\Phi_{p} L, \cdot\right)^{p}=h\left(\Phi_{p} K, \cdot\right)^{p}+\alpha G$.
Since $G \geq 0$, it follows that

$$
\begin{equation*}
\Phi_{p} K \subseteq \Phi_{p} L . \tag{4.8}
\end{equation*}
$$

Applying with (2.3), (4.5), (4.7), (2.10) and (4.6), we obtain

$$
\begin{align*}
n\left(V_{p}(K, L)-V(K)\right) & =\left\langle h(K, \cdot)^{p}, S_{p}(L, \cdot)-S_{p}(K, \cdot)\right\rangle \\
& =\left\langle h(K, \cdot)^{p}, \alpha H\right\rangle \\
& =\alpha\langle f * g, H\rangle \\
& =\alpha\langle f, H * g\rangle \\
& =\alpha\langle f, G\rangle<0 . \tag{4.9}
\end{align*}
$$

To complete the proof, we can use (2.6) to conclude

$$
V(K)>V(L) .
$$

In particular, we replace Φ_{p} by Π_{p} to Theorem 1.2, we have the following corollary, which was proved by Ryabogin and Zvavitch.

Corollary 4.5 [25] Let K and L be origin-symmetric convex bodies and $1 \leq p<n$ where p is not an even integer. If L belongs to the class of L_{p} projection bodies, then

$$
\Pi_{p} K \subseteq \Pi_{p} L \quad \Rightarrow \quad V(K) \leq V(L)
$$

Competing interests

The author declares that they have no competing interests.

Acknowledgements

A project supported by Scientific Research Fund of Hunan Provincial Education Department (11C0542).

Received: 25 March 2012 Accepted: 19 March 2013 Published: 2 April 2013

References

1. Hadwiger, H: Vorlesungenuber Inhalt, Oberflache und Isoperimetrie. Springer, Berlin (1957)
2. Schneider, R: Equivariant endomorphisms of the space of convex bodies. Trans. Am. Math. Soc. 194, 53-78 (1974)
3. McMullen, P, Schneider, R: Valuations on convex bodies. In: Gruber, PM, Wills, JM (eds.) Convexity and Its Applications, pp. 170-247. Birkhäuser, Basel (1983)
4. Schneider, R: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993)
5. Alesker, S: Continuous rotation invariant valuations on convex sets. Ann. Math. 149, 977-1005 (1999)
6. Alesker, S: Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture Geom. Funct. Anal. 11, 244-272 (2001)
7. Haberl, C: Star body valued valuations. Indiana Univ. Math. J. 58, 2253-2276 (2009)
8. Haberl, C, Ludwig, M: A characterization of L_{p} intersection bodies. Int. Math. Res. Not. 2006, Article ID 10548 (2006)
9. Klain, DA: Star valuations and dual mixed volumes. Adv. Math. 121, 80-101 (1996)
10. Ludwig, M: Projection bodies and valuations. Adv. Math. 172(2), 158-168 (2002)
11. Ludwig, M: Minkowski valuations. Trans. Am. Math. Soc. 357(10), 4191-4213 (2005)
12. Ludwig, M: Intersection bodies and valuations. Am. J. Math. 128(6), 1409-1428 (2006)
13. Ludwig, M, Reitzner, M: A classification of SL(n) invariant valuations. Ann. Math. 172, 1223-1271 (2010)
14. Schneider, R, Schuster, FE: Rotation equivariant Minkowski valuations. Int. Math. Res. Not. 2006, Article ID 72894 (2006)
15. Schuster, FE: Convolutions and multiplier transformations of convex bodies. Trans. Am. Math. Soc. 359(11), 5567-5591 (2007)
16. Schuster, FE: Valuations and Busemann-Petty type problems. Adv. Math. 219(1), 344-368 (2008)
17. Schuster, FE: Crofton measures and Minkowski valuations. Duke Math. J. 154, 1-30 (2010)
18. Schuster, FE, Wannerer, T: GL(n) contravariant Minkowski valuations. Trans. Am. Math. Soc. 364, 815-826 (2012)
19. Wang, W, Liu, LJ, He, BW: Lp radial Minkowski homomorphisms. Taiwan. J. Math. 15(3), 1183-1199 (2011)
20. Wannerer, T: GL(n) equivariant Minkowski valuations. Indiana Univ. Math. J. 60, 1655-1672 (2011)
21. Lutwak, E: The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas. Adv. Math. 118, 244-294 (1996)
22. Lutwak, E: The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem. J. Differ. Geom. 38 131-150 (1993)
23. Grinberg, E, Zhang, G: Convolutions, transforms and convex bodies. Proc. Lond. Math. Soc. 78, 77-115 (1999)
24. Lutwak, E, Yang, D, Zhang, G: Lp affine isoperimetric inequalities. J. Differ. Geom. 56, 111-132 (2000)
25. Ryabogin, D, Zvavitch, A: The Fourier transform and Firey projections of convex bodies. Indiana Univ. Math. J. 53, 234-241 (2004)
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

[^0]: © 2013 Wang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: doi:10.1186/1029-242X-2013-140
 Cite this article as: Wang: Lp Blaschke-Minkowski homomorphisms. Journal of Inequalities and Applications 2013 2013:140.

