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Abstract
We show that every unbounded approximate pexiderized gamma-beta type function
has a gamma-beta type. That is, we obtain the superstability of the pexiderized
gamma-beta type functional equation

β(x, y)f (x + y) = g(x)h(y)

and also investigate the superstability as the following form:

∣∣∣β(x, y)f (x + y)
g(x)h(y)

– 1
∣∣∣ ≤ ϕ(x, y).
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1 Introduction
In , Ulam gave a wide ranging talk in theMathematical Club of the University ofWis-
consin in which he discussed a number of important unsolved problems (ref. []). Among
those there was a question concerning the stability of homomorphisms: Let G be a group
and let G be a metric group with a metric d(·, ·). Given ε > , does there exist a δ >  such
that if a mapping h :G →G satisfies the inequality d(h(xy),h(x)h(y)) < δ for all x, y ∈ G,
then there exists a homomorphism H :G →G with d(h(x),H(x)) < ε for all x ∈G? In the
next year, Hyers [] answered the question of Ulam for the case where G and G are Ba-
nach spaces. Furthermore, the result of Hyers was generalized by Rassias []. Since then,
the stability problems of various functional equations have been investigated by many au-
thors (ref. []).
Baker, Lawrence and Zorzitto [] proved the Hyers-Ulam stability of the Cauchy expo-

nential equation f (x + y) = f (x)f (y). That is, if the Cauchy difference f (x + y) – f (x)f (y) of a
real-valued function f defined on a real vector space is bounded for all x, y, then f is either
bounded or exponential. Their result was generalized by Baker []: Let S be a semi-group
and let f : S → E be a mapping where E is a normed algebra in which the norm is multi-
plicative. If f satisfies the functional inequality ‖f (xy) – f (x)f (y)‖ ≤ δ for all x, y ∈ S, then
f is either bounded or multiplicative. That is, every unbounded approximate multiplica-
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tive function is multiplicative. Such a phenomenon for functional equations is called the
superstability.
The author [] proved superstability of the pexiderized multiplicative functional equa-

tion

f (x + y) = g(x)h(x),

and the author andKim [] also obtained superstability of the gamma-beta type functional
equation

β(x, y)f (x + y) = f (x)f (y),

where β(x, y) is a beta-type function.
In this paper, we generalize it to the pexiderized gamma-beta type functional equation

β(x, y)f (x + y) = g(x)h(y). (.)

And then we prove the superstability of this equation and obtain the superstability in the
sense of Ger [].

2 Definitions and solutions
Throughout this paper, we denote byD an additive subset (that is, x+ y ∈D for all x, y ∈D)
of R containing all positive integers Z+.

Definition  Let a function β :D×D → R– {} satisfy the following conditions (a)∼(e):
(a) β(x, y) = β(y,x) (x, y ∈D),
(b) |β(n,m)| ≤  (n,m ∈ Z+),
(c) β(x,y)β(z,x+y)

β(x,y+z)β(y,z) =  (x, y ∈D),
(d) limn→∞

∏n–
i= |β(im,m)| =  (m ∈ Z+),

(e) |β(x,n)| < ∞ (n ∈ Z+ and fixed x ∈D).
Then we call β a beta-type function.

Definition  Let a function ϕ :D→ [,∞) and a beta-type function β :D×D→ R– {}
be given. If a function f :D → R satisfies that

∣∣β(x, y)f (x + y) – f (x)f (y)
∣∣ ≤ ϕ(x, y)

for all (x, y) ∈ D × D, then we call f a {ϕ,β}-approximate gamma-beta type function. In
the case of ϕ = , we call f a gamma-beta type function.

Definition  Let a function ϕ :D → [,∞) and a beta-type function β :D×D → R– {}
be given. If a function f :D → R satisfies that

∣∣β(x, y)f (x + y) – g(x)h(y)
∣∣ ≤ ϕ(x, y)

for all (x, y) ∈ D × D and for some functions g,h : D → R, then we call f a {ϕ,β}-
approximate pexiderized gamma-beta type function. In the case of ϕ = , we call f a pex-
iderized gamma-beta type function.
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Examples and solutions
If f , g,h : R+ → R+ are functions satisfying equation (.) and β(x, y) = 

axy (a > ), then β is

a beta-type function and f (x) = ax
 +, g(x) = ax

 +, h(x) = ax
 + are solutions of it.

Now, we consider the gamma and the beta functions. Note that the beta function B(x, y)
is defined by

B(x, y) =
∫ 


tx–( – t)y– dt (x > , y > )

and the gamma function is defined by

�(x) =
∫ ∞


e–ttx– dt (x > ).

It is well known that B and � satisfy the gamma-beta functional equation

B(x, y)�(x + y) = �(x)�(y) (.)

for all x, y ∈ (,∞). Also, B(x, y) = B(y,x) and

B(n,m) =
�(n)�(m)
�(n +m)

=
(n – )!(m – )!
(n +m – )!

< 

for all x, y ∈ (,∞) and nonnegative integers n,m. By (.), we have

n–∏
i=

B(im,m) =
�(m)�(m)

�(m)
· �(m)�(m)

�(m)
· · · · · �((n – )m)�(m)

�(nm)

=
�(m)n

�(nm)

=
[(m – )!]n

(nm – )!
→ 

as n→ ∞ and

B(x, y)B(z,x + y)
B(x, y + z)B(y, z)

= 

for all x, y, z ∈ (,∞). Also, for all x ∈ (,∞) and n ∈ Z+,

B(x,n) =
�(n)�(x)
�(x + n)

=
(n – )!

(x + n – )(x + n – ) · · · (x + )x
<

x
.

Thus, B : (,∞) × (,∞) → (,∞) is a beta-type function and � is a gamma-beta type
function.
If β(x, y) is the beta function and

f (x) = ax+�(x), g(x) = ax�(x), h(x) = ax+�(x),

then f , g,h are the solutions of equation (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/14
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3 Superstability of a gamma-beta type functional equation
The following Theorem  with φ(x) = δ states that every unbounded approximate pexider-
ized gamma-beta type function is a gamma-beta type function.

Theorem  Let a function φ : D → [,∞) be given and let ϕ(x, y) =min{φ(x),φ(y)}. Sup-
pose that β :D×D→ R– {} is a beta-type function and f , g,h :D→ R are functions such
that f is a {ϕ,β}-approximate gamma-beta type function, f (s) = g(s) for some s ∈ D and

∣∣β(x, y)f (x + y) – g(x)h(y)
∣∣ ≤ ϕ(x, y) (.)

for all (x, y) ∈ D×D.
(a) If h is unbounded, then f and g are unbounded gamma-beta type functions.
(b) If |g(m)| ≥ max{, (φ(s) + φ(m))/|h(m)||g(s)|} for some positive integer m, then f

and g are unbounded gamma-beta type functions.

Proof (a) Suppose that h is unbounded. Since f is a {ϕ,β}-approximate gamma-beta type
function,

∣∣h(x) – f (x)
∣∣ = 

|g(s)|
∣∣g(s)h(x) – f (s)f (x)

∣∣
≤ |β(x, s)f (x + s) – f (x)f (s)| + |β(x, s)f (x + s) – h(x)g(s)|

|g(s)|

≤ φ(s)
|g(s)| (.)

for all x ∈D. Also, since

∣∣g(x)h(y) – g(y)h(x)
∣∣ ≤ ∣∣g(x)h(y) – β(x, y)f (x + y)

∣∣ + ∣∣β(y,x)f (x + y) – g(y)h(x)
∣∣

≤ φ(y),

we have

∣∣g(x)∣∣ ≤ ∣∣h(x)∣∣∣∣∣∣g(y) + φ(y)
h(y)

∣∣∣∣
and

∣∣h(x)∣∣ ≤ ∣∣g(x)∣∣∣∣∣∣h(y) + φ(y)
g(y)

∣∣∣∣
for all x ∈D and for fixed y ∈ D. Thus, f and g are unbounded. By the unboundedness of h,
we can choose a sequence {yn} in Z+ such that |h(yn)| → ∞ as n → ∞. By the conditions
(a), (c) and (e) of the beta-type function β and (.), we have

∣∣h(yn)∣∣∣∣β(x, y)g(x + y) – g(x)g(y)
∣∣

≤ ∣∣β(x, y)∣∣∣∣h(yn)g(x + y) – β(x + y, yn)f (x + y + yn)
∣∣

+
∣∣β(y, yn)∣∣∣∣β(x, y + yn)f (x + y + yn) – g(x)h(y + yn)

∣∣

http://www.journalofinequalitiesandapplications.com/content/2013/1/14
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+
∣∣β(y, yn)∣∣∣∣h(y + yn) – f (y + yn)

∣∣∣∣g(x)∣∣
+

∣∣g(x)∣∣∣∣β(y, yn)f (y + yn) – g(y)h(yn)
∣∣

≤ ∣∣β(x, y)∣∣φ(x + y) +
∣∣β(y, yn)∣∣φ(x)

+
∣∣g(x)∣∣∣∣β(y, yn)∣∣φ(s)|g(s)| +

∣∣g(x)∣∣φ(y) <∞ (.)

for all sufficiently large yn and (x, y) ∈ D×D. It follows from (.) by dividing |h(yn)| that

β(x, y)g(x, y) = g(x)g(y)

for all (x, y) ∈D×D. Also, by letting f = g = h in (.) and using the property of an approx-
imate gamma-beta type function, we have

β(x, y)f (x, y) = f (x)f (y)

for all (x, y) ∈D×D.
(b) If we replace x bym and also y bym in (.), respectively, we get

∣∣β(m,m)f (m) – g(m)h(m)
∣∣ ≤ φ(m).

Note that |f (x) – h(x)| ≤ φ(s)/|g(s)| from the proof of (a). An induction argument implies
that for all n≥ ,

∣∣∣∣∣f (nm)
n–∏
i=

β(im,m) – g(m)n–h(m)

∣∣∣∣∣
≤ φ(m)

n–∏
i=

∣∣β(im,m)
∣∣

+
∣∣g(m)

∣∣(φ(s)
|g(s)|

n–∏
i=

∣∣β(im,m)
∣∣ + φ(m)

n–∏
i=

∣∣β(im,m)
∣∣)

+
∣∣g(m)

∣∣(φ(s)
|g(s)|

n–∏
i=

∣∣β(im,m)
∣∣ + φ(m)

n–∏
i=

∣∣β(im,m)
∣∣)

+ · · · + ∣∣g(m)
∣∣n–(φ(s)

|g(s)|
∣∣β(m,m)

∣∣ + φ(m)
)
. (.)

To prove the inequality (.) by the induction, suppose that the inequality (.) holds for
k = n≥ . Let k = n + . Then we have

∣∣∣∣∣f ((n + )m
) n∏

i=

β(im,m) – g(m)nh(m)

∣∣∣∣∣
≤ ∣∣β(nm,m)f

(
(n + )m

)
– g(m)h(nm)

∣∣ n–∏
i=

∣∣β(im,m)
∣∣

+
∣∣g(m)

∣∣∣∣h(nm) – f (nm)
∣∣ n–∏
i=

∣∣β(im,m)
∣∣

http://www.journalofinequalitiesandapplications.com/content/2013/1/14
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+
∣∣g(m)

∣∣
∣∣∣∣∣f (nm)

n–∏
i=

β(im,m) – g(m)n–h(m)

∣∣∣∣∣
≤ φ(m)

n–∏
i=

∣∣β(im,m)
∣∣ + ∣∣g(m)

∣∣φ(s)
|g(s)|

n–∏
i=

∣∣β(im,m)
∣∣

+
∣∣g(m)

∣∣∣∣∣∣∣f (nm)
n–∏
i=

β(im,m) – g(m)n–h(m)

∣∣∣∣∣
for all n ≥ . And thus we get

∣∣∣∣∣f ((n + )m
) n∏

i=

β(im,m) – g(m)nh(m)

∣∣∣∣∣
≤ φ(m)

n–∏
i=

∣∣β(im,m)
∣∣

+
∣∣g(m)

∣∣(φ(s)
|g(s)|

n–∏
i=

∣∣β(im,m)
∣∣ + φ(m)

n–∏
i=

∣∣β(im,m)
∣∣)

+
∣∣g(m)

∣∣(φ(s)
|g(s)|

n–∏
i=

∣∣β(im,m)
∣∣ + φ(m)

n–∏
i=

∣∣β(im,m)
∣∣)

+ · · · + ∣∣g(m)
∣∣n–(φ(s)

|g(s)|
∣∣β(m,m)

∣∣ + φ(m)
)

for all n ≥ . By the induction, the inequality (.) holds for all n ∈ Z+. Note that

n–∏
i=

β(im,m) < ∞, and
∣∣g(m)n–

∣∣ → ∞ as n→ ∞.

By dividing g(m)n–h(m) by (.), we get

∣∣∣∣ f (nm)
∏n–

i= β(im,m)
g(m)n–h(m)

– 
∣∣∣∣

≤ 
g(m)n–h(m)

(
φ(m) +

(
φ(s)
|g(s)| + φ(m)

)∣∣g(m)
∣∣

+
∣∣g(m)

∣∣(φ(s)
|g(s)| + φ(m)

)
+ · · · + ∣∣g(m)

∣∣n–(φ(s)
|g(s)| + φ(m)

))

≤ φ(s) + φ(m)
|h(m)||g(m)||g(s)|

(


|g(m)|m– +


|g(m)|m– + · · · + 
|g(m)| + 

)

≤ φ(s) + φ(m)
|h(m)||g(m)||g(s)|

(
 +



+




+



· · ·
)

≤ 
φ(s) + φ(m)

|h(m)||g(m)||g(s)|
≤ 
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for all positive integer n. Thus, we can easily show that

∣∣f (nm)
∣∣ → ∞ as n→ ∞.

Thus, f is unbounded and so h is unbounded. By (a), we complete the proof. �

Corollary  Let δ >  be given and β(x, y) be a beta-type function on (,∞). Suppose that
f is a function from (,∞) into (,∞)with f (m) ≥ max{, (δ)/} for some positive integer
m such that

∣∣β(x, y)f (x + y) – f (x)f (y)
∣∣ ≤ δ

for all x, y ∈ (,∞). Then

β(x, y)f (x + y) = f (x)f (y)

for all x, y ∈ (,∞).

Proof By Theorem  with φ(x) = δ and s =m, we complete the proof. �

Corollary  Let δ >  be given. Suppose that h, g : (,∞)→ (,∞) are functionswith g() =
, h is unbounded, |g(m)| ≥ max(,

√
δ) for some positive integer m and

∣∣B(x, y)�(x + y) – g(x)h(y)
∣∣ ≤ δ

for all x, y ∈ (,∞),where B(x, y) is the beta function and �(x) is the gamma function. Then

B(x, y)g(x + y) = g(x)g(y)

for all x, y ∈ (,∞).

Corollary  Let δ >  and a >  be given. Suppose that f : (,∞) → (,∞) is a function
with |f (m)| ≥ max{, (δ)/} for some positive integer m and

∣∣∣∣ 
axy

f (x + y) – f (x)f (y)
∣∣∣∣ ≤ δ

for all x, y ∈ (,∞). Then

f (x + y) = axyf (x)f (y)

for all x, y ∈ (,∞).

Proof Let β(x, y) = 
axy for all x, y ∈ (,∞). Then β(x, y) = β(y,x) and  < β(x, y) < . Also,

β(x, y)β(z,x + y)
β(x, y + z)β(y, z)

=
ax(y+z)ayz

axyaz(x+y)
= 

http://www.journalofinequalitiesandapplications.com/content/2013/1/14
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for all x, y, z ∈ (,∞) and

n–∏
i=

β(im,m) =
n–∏
i=


aim → 

as n→ ∞. Also, β(x,n) <∞ for fixed x. Thus, β(x, y) is a beta-type function. By Theorem 
with φ(x) = δ and s =m, we complete the proof. �

Corollary  Let δ >  and k >  be given. Suppose that f : R→ R is a function with |f (m)| ≥
max{, (δ)/} for some positive integer m such that

∣∣∣∣ k f (x + y) – f (x)f (y)
∣∣∣∣ ≤ δ

for all x, y ∈ R. Then

f (x + y) = kf (x)f (y)

for all x, y ∈ R.

Proof By Theorem  with β(x, y) = 
k , s =m and φ(x) = δ, we complete the proof. �

4 Superstability of a gamma-beta type functional equation in the sense of Ger
Ger [] suggested a new type of stability for the exponential equation of the following
form:

∣∣∣∣ f (x + y)
f (x)f (y)

– 
∣∣∣∣ ≤ δ.

In this section, the superstability problem in the sense of Ger for a gamma-beta type func-
tional equation will be investigated.

Theorem  Let ϕ :D×D → (, ) be a function such that ϕ(x, yn)→  as yn → ∞ and let
a beta-type function β :D×D → (,∞) be given.
(a) Suppose that a function f :D → (,∞) satisfies

∣∣∣∣β(x, y)f (x + y)
f (x)f (y)

– 
∣∣∣∣ ≤ ϕ(x, y) (.)

for all (x, y) ∈D×D. Then

β(x, y)f (x + y) = f (x)f (y)

for all (x, y) ∈D×D.
(b) Suppose that the inequality (.) holds and functions f , g,h :D → (,∞) satisfy

∣∣∣∣β(x, y)f (x + y)
g(x)h(y)

– 
∣∣∣∣ ≤ ϕ(x, y) (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/14
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for all (x, y) ∈D×D. If f (s) = g(s) for some s ∈D, then

β(x, y)g(x + y) = g(x)g(y)

for all (x, y) ∈D×D.
(c) Suppose that the inequalities (.) and (.) hold. If f (s) = h(s) for some s ∈D and

ϕ(x, y) = ϕ(y,x), then

β(x, y)h(x + y) = h(x)h(y)

for all (x, y) ∈D×D.

Proof (a) Choose a sequence {yn} in D such that yn → ∞. For all x, y, yn ∈D, we have

β(x, y)f (x + y)
f (x)f (y)

=
f (x + y)f (yn)

β(x + y, yn)f (x + y + yn)
· β(x, y + yn)f (x + y + yn)

f (x)f (y + yn)

· β(y, yn)f (y + yn)
f (y)f (yn)

· β(x, y)β(x + y, yn)
β(x, y + yn)β(y, yn)

.

By the condition (c) of a beta-type function β and (.), we have

lim
yn→∞


 + ϕ(x + y, yn)

(
 – ϕ(x, y + yn)

)(
 – ϕ(y, yn)

)
= 

≤ β(x, y)f (x + y)
f (x)f (y)

≤ lim
yn→∞


 – ϕ(x + y, yn)

(
 + ϕ(x, y + yn)

)(
 + ϕ(y, yn)

)
= 

for all x, y ∈ D. Thus, we complete the proof of (a).
(b) Choose a sequence {yn} in D such that yn → ∞. For all y, yn ∈D, we have

h(y + yn)
f (y + yn)

=
β(s, y + yn)f (s + y + yn)

f (y + yn)f (s)
· g(s)h(y + yn)
β(s, y + yn)f (s + y + yn)

and for all x, y, yn ∈ D, we get

β(x, y)g(x + y)
g(x)g(y)

=
g(x + y)h(yn)

β(x + y, yn)f (x + y + yn)
· β(x, y + yn)f (x + y + yn)

g(x)h(y + yn)

· h(y + yn)
f (y + yn)

· β(y, yn)f (y + yn)
g(y)h(yn)

· β(x, y)β(x + y, yn)
β(x, y + yn)β(y, yn)

.

By the condition (c) of a beta-type function β and (.), we have

lim
yn→∞


 + ϕ(x + y, yn)

(
 – ϕ(x, y + yn)

) 
 + ϕ(s, y + yn)

(
 – ϕ(y, yn)

)
= 

http://www.journalofinequalitiesandapplications.com/content/2013/1/14
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≤ β(x, y)g(x + y)
g(x)g(y)

≤ lim
yn→∞


 – ϕ(x + y, yn)

(
 + ϕ(x, y + yn)

) 
 – ϕ(s, y + yn)

(
 + ϕ(y, yn)

)
= 

for all x, y ∈ D. Thus, we complete the proof of (b). Similarly, we obtain (c) from (b). �

Remark  Consider the following inequalities: For all (x, y) ∈D×D,


 + ϕ(x, y)

≤ β(x, y)f (x + y)
f (x)f (y)

≤  + ϕ(x, y) (.)

and


 + ϕ(x, y)

≤ β(x, y)f (x + y)
g(x)h(y)

≤  + ϕ(x, y), (.)

where ϕ : D × D → (,∞) is a function such that ϕ(x, yn) →  as yn → ∞. If we replace
the inequality (.) by (.) and (.) by (.) respectively, then we have the same result as
Theorem .

Corollary  Let ϕ : (,∞) × (,∞) → (, ) be a function such that ϕ(x, yn) →  as
yn → ∞ and let the beta function B and the gamma function � be given. If functions
g,h : (,∞)→ (,∞) satisfy

∣∣∣∣B(x, y)�(x + y)
g(x)h(y)

– 
∣∣∣∣ ≤ ϕ(x, y)

for all (x, y) ∈ (,∞)× (,∞). If g() = , then

β(x, y)g(x + y) = g(x)g(y)

for all (x, y) ∈ (,∞)× (,∞).

Corollary  Let ϕ : (,∞)× (, ) → (,∞) be a function such that ϕ(x, yn) →  as yn →
∞ and let a >  be given. If a function f : (,∞)→ (,∞) satisfies

∣∣∣∣

axy f (x + y)
f (x)f (y)

– 
∣∣∣∣ ≤ ϕ(x, y)

for all (x, y) ∈ (,∞)× (,∞), then


axy

f (x + y) = f (x)f (y)

for all (x, y) ∈ (,∞)× (,∞).

Corollary  Let ϕ : (,∞)× (,∞) → (, ) be a function such that ϕ(x, yn) →  as yn →
∞ and let k >  be given. If a function f : (,∞) → (,∞) satisfies

∣∣∣∣

k f (x + y)
f (x)f (y)

– 
∣∣∣∣ ≤ ϕ(x, y)

http://www.journalofinequalitiesandapplications.com/content/2013/1/14
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for all (x, y) ∈ (,∞)× (,∞), then


k
f (x + y) = f (x)f (y)

for all (x, y) ∈ (,∞)× (,∞).
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