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Abstract

Let A be a class of functions f(z) of the form
fo)=z+ Zanz” (0.1)
n=2

which are analytic in the open unit disk U. By means of the Dziok-Srivastava operator,
we introduce a new subclass

T T
S,’n(aw,oz,,u) (/§m+ 1,lm eNU{O},fg <a< E,,u,>fcosa>

of A. In particular, 8§ (2,0,0) coincides with the class of uniformly convex functions
introduced by Goodman. The order of starlikeness and the radius of a-spirallikeness
of order B (B8 < 1) are computed. Inclusion relations and convolution properties for
the class Séq(om,a,m are obtained. A special member of Séq(aw,oz,,u) is also given.
The results presented here not only generalize the corresponding known results, but
also give rise to several other new results.
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1 Introduction
Let A be a class of functions f(z) of the form

fle)=z+ Zanz” (1.1)

n=2

which are analytic in the open unit disk U = {z: |z| < 1}. For 8 < 1, a function f(z) € A is
said to be starlike of order 8 in U if

zf'(2)
" f(@
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>B (zeD). (1.2)
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This class is denoted by S*(8) (8 < 1). For - <a < 7 and B < 1, a function f(z) € A is said
to be a-spirallike of order 8 in U if

5)’%{3’” M } >Bcosa (zel). 1.3)
f@
When 0 < g <1, it is well known that all the starlike functions of order 8 and «-spirallike

functions of order B are univalent in U. A function f(z) € A is said to be convex univalent
in U if

Zf”(Z)
f'(@)

St{1+ } >0 (zel). (1.4)
We denote this class by K. Also, let UCV(C K) be the class of uniformly convex functions
in U introduced by Goodman [1]. It was shown in [2] that f(z) € A is in UCV if and only if

Zf” ( Z)

[0 (ze ). (1.5)

m{l + Zf”(z)} >

f(@)

In [2], Renning investigated the class S, defined by

Sy ={f(2) € §7(0) :f(2) = 2¢ (2), g(2) € UCV}. (1.6)
The uniformly convex and related functions have been studied by many authors (see, e.g.,

[1-10] and the references therein).
If

flz)=z+ Zanz” €A and gz)=z+ Zb,,z” €A,

n=2 n=2

then the Hadamard product (or convolution) of f(z) and g(z) is given by

(fxg)(z) =z + Zanbnz”.
n=2

For

ajeC (j=12,...,) and B;eC\{0,-1,-2,...} (j=12,...,m),
the generalized hypergeometric function

tEnlot,...,a5B1...s Bms 2)
is defined by the following infinite series:

= (o) -+ (o)n i

= (B1)n - (B 1!

(I=m+1L,meNy=NU({0};z€U),

(Foo,...oa5 B, By 2) =
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where (c), is the Pochhammer symbol defined by

)1 (n=0),
ele+1)--(c+n-1) (meN).

(©)n
Corresponding to the function
z- 1 Fylon, ..o 815 Bus 2),
the Dziok-Srivastava operator (see [11])
H(oy,...,05B1 .5 Bw): A—> A

is defined by the following Hadamard product:

H((Xl,...,Ol[;,Bl,..-,,Bm)f(Z) = (Z'lFm(al;-~-;Oll§,31y~«;,3m;2)) *f(Z)

(Il<m+1;l,meNg;zel).

If f(z) € A is given by (1.1), then we have

oo
(o) (0)n Apa 1
H(ay,...,a5B1 .. Bu)f(2) =z + ——— 7" (zel). (1.7)
oot / Zl B (B 1!
In order to make the notation simple, we write
H' (o) =H(w,...,a5 B0, Bm) ([ <m+1;L,meN). (1.8)

It should also be remarked that the Dziok-Srivastava operator an(al) is a generaliza-
tion of several linear operators considered in earlier investigations (see [12—19], also see
[20]).

In this paper we introduce and investigate the following subclass of A.

Definition A function f(z) € A is said to be in S (a1, &, ) if it satisfies the condition

5)?{3“%} %—1 (zeD) (19)
where

I<m+1, LmeN,, —%<a<% and u>—cosa. (1.10)
Note that f(z) = z € S!, (a1, @, i) and that

Si(1,a,0) = {f(z) eA;m{eia%} > ZJJ:(S) —1' (zeU)}. (111)
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Also,
85(1,0,0)=S, and &;(2,0,0) =UCY. (1.12)

Throughout this paper we assume, unless otherwise stated, that /, m, o and p satisfy
(1.10).

2 Subordination theorem
Let f(2) and g(z) be analytic in U. We say that the function f(z) is subordinate to g(z) in U,
and we write f(z) < g(z), if there exists an analytic function w(z) in U such that

w(@)| <lzl and f(z)=g(w(z)) (z€N).
If g(2) is univalent in U, then
f@)<gle) < f(0)=g(0) and f(U)cCg(U).
Theorem 1 A function f(z) € Aisin S. (o1, «, 1) if and only if

i 2(H! (1) (2))
H! (c1)f ()

2 1 1+z\?
h(z)—1+;(1+cosa)<logl_ﬁ)

8 2 23
=1+—(1+ i 2+ =22+ =8+ (ze ). (2.2)
cosa 3 45

< h(z)cosa +isina, (2.1)

Proof Let us define w(z) = u + iv by

o Z(H (1) (2))

HL (a)f @) =w(z)cosa +isina (zeU). (2.3)

Then w(0) =1 and the inequality (1.9) can be rewritten as

1
u>&2+—<1— s ) (2.4)

v
2(cosa + 1) 2 cosa

Thus
wlU)c Q= {w =u +iv:u and v satisfy (2.4)}.

It follows from (2.2) that /#(0) = 1. In order to prove the theorem, it suffices to show that
the function w = h(z) given by (2.2) maps U conformally onto the parabolic region 2.

Note that %(1 - &) < 1. Consider the transformations

2cosa 1 1
wi=vw-1, wy =exp|lrw, [ ——— ), t=—[wy+— ). (2.5)
coso + 2 Wy
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It is easy to verify that the composite function

~ 2cosa(w—1)\
t—Ch(JT m) =g(w) (say)

maps Q" = QN {w=u+iv:v>0} conformally onto the upper half-plane Im(¢) > 0 so that
w=NRw)e [%(1 — &), +00) corresponds to ¢ = NR(t) € [-1,+o0) and w =1 to ¢ = 1. With

cosa

the help of the symmetry principle, the function ¢ = g(w) maps Q conformally onto the
region G = {t: | arg(¢ + 1)| < }. Since

maps U onto G, we see that

22

2 1 g
=1+ —|(1+ t log *z
T2 cosa 1-4/z

=h(z)

w0 =10 5 (10 LYo+ V)Y

maps U conformally onto 2. The proof of the theorem is now completed. O

Corollary1 Letf(z) € Srln(al,a, w). Then for z € U,

H., (e1)f (2) )" 2 W\ L1/ 1+ o\
(B2) ool (o22) [(mitm) o) e
and
an( ) ( ) secael® 8 14
‘(O‘Tlfz) zexp{—;(l+col:a>/o ;(arctan,/p|z|)2d,o}. (2.8)

The results are sharp.

Proof From Theorem 1 we have

e (Z(an () ()

H. @) @) 1) <HE -1

cosa

for f(z) € S! (o1, @, 1) and h(z) given by (2.2). Since the function /(z) — 1 is univalent and
starlike (with respect to the origin) in U, using the result of Suffridge [21, Theorem 3], we

é (2 (HL (@)@ 1 2 () -1
cosa/o ( H (@) () _2) d”/o Ll

get
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This implies that

dp (zel), (2.9)

Cz’: log H,, (1) (2) _ / ' h(pw(z)) -1
o z 0 P

where w(z) is analytic and |w(z)| < |z| in U.
Noting that /(z) maps the disk |z] < p (0 < p < 1) onto a region which is convex and
symmetric with respect to the real axis, we know that

h(-plzl) < R{h(ow(2))} <h(plzl) (z€). (2.10)

Now (2.2), (2.9) and (2.10) lead to

2 11 1+ 2
<—(1+ e / — | log i 441 Pl d
2 cosa ) Jo p 1-4/plz|

mg‘ (* fn(aﬂf(Z))S“”m

z

and

| ‘<an(a1)f(z)>secaem
og 72:

| 1
cosa Yol ,o|z|
1
:——( )f — (arctan p|z|) dp
cosa 0

for z € U. Hence we have (2.7) and (2.8).
Furthermore, for

@ eC\{0,-1,-2,...} (i=1,...,0),

it is easy to see that the function fy(z) in an (01,a, 1), defined by

H,,(@1)fo(2)
2 (71 1+1)\*
= zexp{ — (1 + cop;a) cosae ™™ /0 ;(log N i é) dt} (ze ), (2.11)
shows that the estimates (2.7) and (2.8) are sharp. O

Corollary 2 Letf(z) € Sfﬂ(al,oc, Wu), where

o e C\{0,-1,-2,...} (i=1,2,...,0.

Then
B 2cosae™™ m 1q 1+ /@)
f(z)—zeXp{ 72 (1+Cosa)/0 ;<logm> dp}
) {Z+ ; (011) (otz)n } (z€U), (2.12)

where w(z) is analytic in U with w(0) = 0 and |w(z)| <1 (z € U).

Page 6 of 15
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Proof From (2.9) and (2.2), we have

H,, (on)f (2)

—ia 1 / 2
=zexp{zcosae (1+ e )/ l(logipr ,ow(z)) dp} (ze ).
0

2 cos o

p 1-/pw(z)

For
o € C\{0,-1,-2,...} (i=1,2,...,]),
from (2.13) and (1.7), we obtain (2.12).

3 Properties of the class S! (o, o, )
Theorem 2 Let f(z) € S! (a1, @, i1). Then

1 * 1 K
H, ()f(2)eS (5 (1 - cosa))

and the order %(1 — L) is sharp.

cosa

Proof Let h(z) be given by (2.2). It follows from the proof of Theorem 1 that

Blfz(IU):{w:u+iv:u:&2 l(1— s >}

Ve +
2(cosa + 1) 2 cos o

By using (3.2), we find that

min R{e™(h(z)cosa +isina)} = min v)cosa + sin’ a,
|z|=1(z#1) { ( ( ) )} ve(—oc,+oo)g( )

where

2
cos‘a  , cosa—pu

V) = + + vsin —00 < V< +090).
gw) 2(cosa+u)v 2 inac( Vs )
Since
§2
g = v+ sina, g'v)>0,
cosSo + U

the function g(v) attains its minimum value at

(cosa + ) sina
Vos—— o2~
cos?

Thus

. N [ —io T
‘erzrllgznﬂ) f)i{e (h(z) coso + isin (x) }

=g(vo)cosa + sin®

Page 7 of 15

(2.13)

(3.1)

(3.2)
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sina(cosar + u) cosa(coso —p) . 9
=— + +sin” &
2cosa 2

T2 (1 B cosa)' (3:3)

If f(2) € S! (a1, ¢, i), then we deduce from Theorem 1 and (3.3) that

Z(H () (2)) 1 u
N— = 5 —(1- U
H! (o1)f () g 2 coso (zel)
and the order %(1 - &) in (3.1) is sharp for the function fy(z) defined by (2.11). a

Theorem 3 Letf(z) € S (o1, a, 1) and %(1 — L)< B <. Then H' (o)f (2) is aa-spirallike

cosa’ —

of order B in |z| < p, where

3 B w [2cosa(l-B) 2
p=p(B,au)= (tan<1‘, m)) . (3.4)

The result is sharp.

Proof From (3.4) and (2.2) we have

1 "
O<p<1|{=(1- <B«<l1
2 cosa
and

. 2
h(—p)=1+i2<1+ s )<log1+lﬁ)
T

cosa 1-i/p
_ 8 M 2
=1- = (1 + COSd)(arctan\/,z_))
= ﬁ‘
Hence
|i{]f Nh(z) = h(-p) = B. (3.5)
z|<p

Let f(z) € S (a1, , ). Then it follows from Theorem 1 and (3.5) that

" { i 2(H,,(c1)f (2))'

HL @)f ) } > Beosa (2] <p),

that is, an(oq)f(z) is «-spirallike of order B in |z| < p. Also, the result is sharp for the
function f;(z) defined by (2.11). O

Setting 8 = %(1 — ), Theorem 3 reduces to the following.

cosa

Corollary 3 Let f(z) € S,ln(al,oz, w). Then an(ozl)f(z) is a-spirallike of order %(1 - £

cosu

in U. The result is sharp.

Page 8 of 15
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For B <1, a function f(z) € A is said to be prestarlike of order g in U if

i * (@ e ST B), B<l,

AN =1,
z 2

(3.6)

(see [20]). We denote this class by R(B) (8 < 1). The following lemma is due to
Ruscheweyh [20, p.54].

Lemma 1 Let B <1, f(z) € R(B) and g(z) € S*(B). Then, for any analytic function F(z)
inTU,

f*(Fg)
fxg

where co(F(U)) denotes the convex hull of F(U).

(U) c o (F(D)),

Applying the lemma, we derive Theorems 4 and 5 below.

Theorem 4 Let

>0 and o> max{ozl,l + } (3.7)
cosa
Then
S (ai, a, ,u) c S (ar,a, ). (3.8)
Proof Define
= (o)
d2)=z+ Z =l (ze)
= (@p)n

for a; and o satisfying (3.7). Then ¢(z) € A and

V4 z

-2 *¢(z) = 12 (ze ). (3.9)

In view of o] > a1 > 0, it follows from (3.9) that

< * o] * Ol{
(l—z)“i xpz) eS8 (1—?) cS (1—?),

which implies that

@(z) € R(l - %) (3.10)

Also, for f(z) € A, (3.9) leads to

{Hml)f@) = ¢(2) * HL, () )f 2), (3.11)

2(HL ()f (2)) = ¢(2) * (z(HL (a))f (2))).

Page 9 of 15
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Let f(z) € an(oz{,ot, ). Then, by Theorems 1 and 2, we have

(HL, (o)) @)
F(z) = Zoa e
@) = e

H. () (2) e S*3(1- L) cs*- %{)

< e ®(h(z)cosa + isina), (3.12)

for h(z) given by (2.2) and o] > 1+ —£. Since the function e~ (h(z) cos & + i sin &) is convex

cosar

univalent in U, from (3.10), (3.11), (3.12) and the lemma, we deduce that

2(H,,(@)f (@) _ ¢(z) * (z(H,,(@)f (2)))
H! (a1)f (2) ¢(2) x H. (a))f ()
_ #(2) * (F(2)H! (o})f (2)
¢(2) * H. (a])f (=)

< e (h(z)cosa +isina).

Therefore, by Theorem 1, f(z) € an(al,a, w) and (3.8) is proved. O

Theorem 5 Letf(z) € S! (a1, @, 1) and g(z) € R(%(l — —£)). Then

(f xg)(2) € S! (a1, , 1) (3.13)

Proof Letf(z) € an(ozl,ot, ). According to Theorems 1 and 2, we have

1 ’
F(z) = % < e (h(z)cosa +isina)
and
1 «f1 w
H ()f (@) e S (5 (1 - COSd)). (3.14)

If we put ¢(2) = (f * g)(z), then

2(H,,(1)¢(2)  g(2) * (2(H,, (e1)f (2)))

H},(e1)$(2) g(@) x H, (c1)f (2)

_ 8@) * (F@H},(e1)f (2)
¢ i, (0)f (2)

(zel) (3.15)

for g(z) € R(%(l - =)
In view of (3.14) and (3.15), an application of the lemma leads to

24(}11’1” (@)¢@)) < e (h(z) cosa + isin a).
H;, (o1)¢(2)

Consequently, by applying Theorem 1, ¢(z) € S’ (a1, @, 1) and the proof of (3.13) is com-
pleted. d
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Note that R(%) = S*(%). Since R(B1) C R(B,) for B; < By <1 (see [15, p.49], we have

1

K =R(0)C R(— (1 K )) (—cosa < <cosa).
2 cos

Thus Theorem 5 yields the following.

Corollary 4
() Iff(z) € S,lﬂ(al,(x,O) and g(z) € S*(%), then

(f ¥ 2)(2) € Sy, @, 0).
(i) Iff(2) € S (e, @, ) with —cosa < u < cosa and g(z) € K, then
(f x2)(z) € S (a1, , ).
Theorem 6 The function f(z) € A defined by
z

an(al)f'(Z) = W (Z (S] U) (316)

belongs to the class Sfﬂ(oq, o, ), where
aje C\{0,-1,-2,...} (j=12,...,0),

b is complex and

C:;:l(;:;[i (_ coso < I,L < COSO{),
bl < Pt s (3.17)
COS U +/L (,LL z T)
The result is sharp, that is, |b| cannot be increased.
Proof For f(z) € A defined by (3.16) and
o € C\{0,-1,-2,...} (j=1,2,...,0),
we easily have
- z(H, " 1+b
a2 l"’(al)f(z)) -t cosa +isina  (zeU). (3.18)
H! (a1)f(z) 1-bz
Hence, by Theorem 1, f(z) € Sil(al, o, 1) if and only if
1+bz
, 3.1
o <hi@) (3.19)
where /(z) is given by (2.2). Clearly, (3.19) is equivalent to
1+|b? 2|b|
s lw— h(U 3.20
{W |W e | “T-pr | <MY (320
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for 0 < |b| < 1. Let

1+|b)?
1-|b?

8:min{ w

:weah(U)},

where 9A4(U) is given by (3.2). Then we have

ié =min{\/g(u) :u > %(1—

2
gu) = (u—115)" + 21+

"

cosa

i

cosa

)b

2cosa

cos o

Note that
1 M 1+|b)? ) 2|b)
(1= it =2 u- _
2< cosa) STopr EW=2u-\Te

(i) If

cosa
and

—cosa < <

then

1-1p] 1 1 I
1+1b 2 cosa )’
and so

2|b)? " 1
_ <=
1-|b|2 cosa 2

|b| =

"

-,
cosa

From (3.22), (3.23) and (3.25), we have g'(u) > 0(u > %(1 — o

coso + [
- 5
3cosa —

cosa + [

o= L) (2 k),

=)

cosa + (b

|b|2=(
3cosa —

;

- Je(3(- )

(i) I

cosa coso + U
—COSU < [ < and ——
3 3cosa —

1+ 1 W
T1-1b2 2

then
1_|h| 1 1% /
—|1- d 0
1+|b] <2< cosa) and - gu) > (
Hence
1 1% 2|b|
8= —(1- .
\/g<2< cosoe)><1—|b|2

- )
cosa

1
u>-\1
o

)
5cosa +

—£ ), and hence

2|b|
1- b2

cosa + (4
<|b|< | —,
5cosa + 1
uw
cosa ) )’

Page 12 of 15

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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(iii) If

cosw
w> and |b| = /L,
3 coso + [

then

b2 = " _ cosatp
| | - - ’
cosa+u ~ 5cosa+

and so

2
21 w1 LAY
1-|b]2 cosa — 2 cosa

Thus g(u) attains its minimum value at

2|b|? 1z
uy = -
07 1- |b|2  cosa

and

cosa + [L 2|b|
8=+ =21b|, | = .
8luo) = 21| cosa(l—|b2) 1-|b|?

(iv) If

coso
> and [—F < jpl<1,
3 coso + [

then from (iii) we easily have

5 = /gl < 22

1- b2

Now, by virtue of (3.19), (3.20), (3.21), and (i)-(iv), we have proved the theorem.

Theorem 7 Let

J@=z+Y a,2" €S, ),
n=2

where
o €C\{0,-1,-2,-3,...} (=1,2,...,0).

Then

8(cosa + 1)

Br-Bm

oo

laz| <

72

The result is sharp.

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

Page 13 0of 15
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Proof It can be easily verified that, forz € U,

Hl 2)Y
z( lm(on)f( L SSLL A (3.34)
H;, (o1)f (2) Pr-Bm
and
2
8z m o 21
hiz)=1+ — 1+
@) nz( cosa) ;211—1
8 [ee) 1 n-1 1
=1+—2(1+ Kk )Z - z"
b1 cosa J A= \nl=2v+1
8
:1+_2(1+ s >Z+..., (3.35)
g cos«
where

@ =z+ @+ S (ena )

and /(z) is given by (2.2). From (3.34), (3.35) and Theorem 1, we obtain

arz+ -

7lel (z(H,’n(ozl)f(z))/ 1)  meaq
8(cosa + )\ H:,(01)f (2) ) " 8(cosa+ )y B

2 cosa

< m(h(z) — 1) ek. (3.36)

It is the well-known Rogosinski result (¢f. [22, p.195]) that if

g(z) = anzn
n=1

is analytic in U, g(z) < ¢(z) and ¢(z) € IC, then |b,| <1 (n € N). Hence (3.33) follows from
(3.36) at once. O

The estimate (3.33) is sharp since equality is attained for the function f;(z) defined by
(2.11).
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