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Abstract
In this paper, we introduce the concept of total asymptotically nonexpansive nonself
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1 Introduction
A metric space X is a CAT() space if it is geodesically connected and if every geodesic
triangle in X is at least as ‘thin’ as its comparison triangle in the Euclidean plane. That is
to say, let (X,d) be a metric space, and let x, y ∈ X with d(x, y) = l. A geodesic path from x
to y is an isometry c : [, l] → X such that c() = x and c(l) = y. The image of a geodesic
path is called a geodesic segment. A metric space X is a (uniquely) geodesic space if every
two points of X are joined by only one geodesic segment. A geodesic triangle �(x,x,x)
in a geodesic space X consists of three points x, x, x of X and three geodesic segments
joining each pair of vertices. A comparison triangle of the geodesic triangle �(x,x,x) is
the triangle �̄(x,x,x) := �(x̄, x̄, x̄) in the Euclidean space R such that

d(xi,xj) = dR (x̄i, x̄j), ∀i, j = , , .

A geodesic space X is a CAT() space if for each geodesic triangle �(x,x,x) in X and
its comparison triangle �̄ :=�(x̄, x̄, x̄) in R, the CAT() inequality

d(x, y) ≤ dR (x̄, ȳ) (.)

is satisfied for all x, y ∈ � and x̄, ȳ ∈ �̄.
A thorough discussion on these spaces and their important role in various branches of

mathematics is given in [–].
In , Lim [] introduced the concept of �-convergence in a general metric space.

Fixed point theory in a CAT() space was first studied by Kirk [, ]. He showed that every
nonexpansive (single-valued) mapping defined on a bounded closed convex subset of a
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complete CAT() space always has a fixed point. In , Kirk and Panyanak [] special-
ized Lim’s concept to CAT() spaces and proved that it is very similar to the weak conver-
gence in the Banach space setting. So, the fixed point and �-convergence theorems for
single-valued and multivalued mappings in CAT() spaces have been rapidly developed
and many papers have appeared [–].
Let (X,d) be ametric space. Recall that amappingT : X → X is said to be nonexpansive if

d(Tx,Ty) ≤ d(x, y), ∀x, y ∈ X. (.)

T is said to be asymptotically nonexpansive, if there is a sequence {kn} ⊂ [,∞) with
kn →  such that

d
(
Tnx,Tny

) ≤ knd(x, y), ∀n≥ ,x, y ∈ X. (.)

T is said to be ({μn}, {νn}, ζ )-total asymptotically nonexpansive, if there exist nonnega-
tive sequences {μn}, {νn} with μn → , νn →  and a strictly increasing continuous func-
tion ζ : [,∞) → [,∞) with ζ () =  such that

d
(
Tnx,Tny

) ≤ d(x, y) + νnζ
(
d(x, y)

)
+μn, ∀n≥ ,x, y ∈ X. (.)

Let (X,d) be a metric space, and let C be a nonempty and closed subset of X. Recall that
C is said to be a retract of X if there exists a continuous map P : X → C such that Px = x,
∀x ∈ C. A map P : X → C is said to be a retraction if P = P. If P is a retraction, then Py = y
for all y in the range of P.

Definition . Let X and C be the same as above. A mapping T : C → X is said to be
({μn}, {νn}, ζ )-total asymptotically nonexpansive nonself mapping if there exist nonnega-
tive sequences {μn}, {νn} with μn → , νn →  and a strictly increasing continuous func-
tion ζ : [,∞) → [,∞) with ζ () =  such that

d
(
T(PT)n–x,T(PT)n–y

) ≤ d(x, y) + νnζ
(
d(x, y)

)
+μn, ∀n≥ ,x, y ∈ C, (.)

where P is a nonexpansive retraction of X onto C.

Remark . From the definitions, it is to know that each nonexpansive nonself mapping
is an asymptotically nonexpansive nonself mapping with a sequence {kn = }, and each
asymptotically nonexpansive mapping is a ({μn}, {νn}, ζ )-total asymptotically nonexpan-
sive mapping with μn = , νn = kn – , ∀n≥  and ζ (t) = t, t ≥ .

Definition . A nonself mapping T : C → X is said to be uniformly L-Lipschitzian if
there exists a constant L >  such that

d
(
T(PT)n–x,T(PT)n–y

) ≤ Ld(x, y), ∀n≥ ,x, y ∈ C. (.)

Recently, Chang et al. [] introduced the following Krasnoselskii-Mann type iteration
for finding a fixed point of a total asymptotically nonexpansivemappings inCAT() spaces.

xn+ = ( – αn)xn ⊕ αnTnxn, n≥ . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/135
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Under some limit conditions, they proved that the sequence {xn} �-converges to a fixed
point of T .
Inspired andmotivated by the recent work of Chang et al. [], Tang et al. [], Laowang

et al. [] and so on, the purpose of this paper is to introduce the concept of total asymp-
totically nonexpansive nonself mappings and prove the demiclosed principle for this kind
of mappings in CAT() spaces. As a consequence, we obtain a �-convergence theorem of
total asymptotically nonexpansive nonself mappings in CAT() spaces. The results pre-
sented in this paper improve and extend the corresponding recent results in [, , ].

2 Preliminaries
The following lemma plays an important role in our paper.
In this paper, we write (– t)x⊕ ty for the unique point z in the geodesic segment joining

from x to y such that

d(z,x) = td(x, y), d(z, y) = ( – t)d(x, y). (.)

We also denote by [x, y] the geodesic segment joining from x to y, that is, [x, y] = {(– t)x⊕
ty : t ∈ [, ]}.
A subset C of a CAT() space is convex if [x, y]⊂ C for all x, y ∈ C.

Lemma . [] A geodesic space X is aCAT() space if and only if the following inequality
holds:

d(( – t)x⊕ ty, z
) ≤ ( – t)d(x, z) + td(y, z) – t( – t)d(x, y) (.)

for all x, y, z ∈ X and all t ∈ [, ]. In particular, if x, y, z are points in a CAT() space and
t ∈ [, ], then

d
(
( – t)x⊕ ty, z

) ≤ ( – t)d(x, z) + td(y, z). (.)

Let {xn} be a bounded sequence in a CAT() space X. For x ∈ X, we set

r
(
x, {xn}

)
= lim sup

n→∞
d(x,xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}) = inf

{
r
(
x, {xn}

)
: x ∈ X

}
. (.)

The asymptotic radius rC({xn}) of {xn} with respect to C ⊂ X is given by

rC
({xn}) = inf

{
r
(
x, {xn}

)
: x ∈ C

}
. (.)

The asymptotic center A({xn}) of {xn} is the set

A
({xn}) = {

x ∈ X : r
(
x, {xn}

)
= r

({xn})}. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/135
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And the asymptotic center AC({xn}) of {xn} with respect to C ⊂ X is the set

AC
({xn}) = {

x ∈ C : r
(
x, {xn}

)
= rC

({xn})}. (.)

Recall that a bounded sequence {xn} inX is said to be regular if r({xn}) = r({un}) for every
subsequence {un} of {xn}.

Proposition . [] Let X be a complete CAT() space, let {xn} be a bounded sequence in
X, and let C be a closed convex subset of X. Then
() there exists a unique point u ∈ C such that

r
(
u, {xn}

)
= inf

x∈C r
(
x, {xn}

)
;

() A({xn}) and AC({xn}) both are singleton.

Definition . [, ] Let X be a CAT() space. A sequence {xn} in X is said to �-converge
to p ∈ X if p is the unique asymptotic center of {un} for each subsequence {un} of {xn}. In
this case we write �-limn→∞ xn = p and call p the �-limit of {xn}.

Lemma . [] Every bounded sequence in a complete CAT() space always has a
�-convergent subsequence.

Lemma . [] Let X be a complete CAT() space, and let C be a closed convex subset
of X. If {xn} is a bounded sequence in C, then the asymptotic center of {xn} is in C.

Remark . Let X be a CAT() space, and let C be a closed convex subset of X. Let {xn}
be a bounded sequence in C. In what follows, we denote

{xn} ⇀ w ⇔ �(w) = inf
x∈C �(x),

where �(x) := lim supn→∞ d(xn,x).

Now we give a connection between the ‘⇀’ convergence and �-convergence.

Proposition . [] Let X be a CAT() space, let C be a closed convex subset of X, and
let {xn} be a bounded sequence in C. Then �-limn→∞ xn = p implies that {xn} ⇀ p.

Lemma . Let C be a closed and convex subset of a complete CAT() space X, and let
T : C → X be a uniformly L-Lipschitzian and ({μn}, {νn}, ζ )-total asymptotically nonex-
pansive nonself mapping. Let {xn} be a bounded sequence in C such that {xn} ⇀ p and
limn→∞ d(xn,Txn) = . Then Tp = p.

Proof By the definition, {xn} ⇀ p if and only if AC({xn}) = {p}. By Lemma ., we have
A({xn}) = {p}.
Since limn→∞ d(xn,Txn) = , by induction we can prove that

lim
n→∞d

(
xn,T(PT)mxn

)
=  for eachm≥ . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/135
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In fact, it is obvious that the conclusion is true for m = . Suppose that the conclusion
holds form ≥ , now we prove that the conclusion is also true form + .
Indeed, since T is uniformly L-Lipschitzian, we have

d
(
xn,T(PT)mxn

) ≤ d
(
xn,T(PT)m–xn

)
+ d

(
T(PT)m–xn,T(PT)mxn

)
≤ d

(
xn,T(PT)m–xn

)
+ Ld(xn,PTxn)

= d
(
xn,T(PT)m–xn

)
+ Ld(Pxn,PTxn)

≤ d
(
xn,T(PT)m–xn

)
+ Ld(xn,Txn) →  (as n→ ∞).

(.) is proved. Hence for each x ∈ C andm ≥ , from (.), we have

�(x) := lim sup
n→∞

d(xn,x) = lim sup
n→∞

d
(
T(PT)m–(xn),x

)
. (.)

In (.) taking x = T(PT)m–p,m ≥ , we have

�
(
T(PT)m–p

)
= lim sup

n→∞
d
(
T(PT)m–(xn),T(PT)m–p

)

≤ lim sup
n→∞

{
d(xn,p) + νmζ

(
d(xn,p)

)
+μm

}
.

Letting m → ∞ and taking the superior limit on the both sides, we get that

lim sup
m→∞

�
(
T(PT)m–p

) ≤ �(p). (.)

Furthermore, for any n,m ≥ , it follows from inequality (.) with t = 
 that

d
(
xn,

p⊕ T(PT)m–(p)


)

≤ 

d(xn,p) +



d(xn,T(PT)m–(p)

)
–


d(p,T(PT)m–(p)

)
. (.)

Letting n→ ∞ and taking the superior limit on the both sides of the above inequality, for
anym ≥ , we get

�

(
p⊕ T(PT)m–(p)



)

≤ 

�(p) +



�

(
T(PT)m–(p)

) – 

d(p,T(PT)m–(p)

)
. (.)

Since A({xn}) = {p}, for anym ≥ , we have

�(p) ≤ �

(
p⊕ T(PT)m–(p)



)

≤ 

�(p) +



�

(
T(PT)m–(p)

) – 

d(p,T(PT)m–(p)

)
, (.)

which implies that

d(p,T(PT)m–(p)
) ≤ �

(
T(PT)m–(p)

) – �(p). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/135
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By (.) and (.), we have limm→∞ d(p,T(PT)m–p) = . Hence we have

d(Tp,p) ≤ d
(
Tp,T(PT)mp

)
+ d

(
T(PT)mp,p

)
≤ Ld

(
p,T(PT)m–p

)
+ d

(
T(PT)mp,p

) →  (asm → ∞),

i.e., p = Tp, as desired. �

The following result can be obtained from Lemma . immediately.

Lemma . Let C be a closed and convex subset of a complete CAT() space X, and let
T : C → X be an asymptotically nonexpansive nonself mapping with a sequence {kn} ⊂
[,∞), kn → . Let {xn} be a bounded sequence in C such that limn→∞ d(xn,Txn) =  and
�-limn→∞ xn = p. Then Tp = p.

Lemma . [] Let X be a CAT() space, let x ∈ X be a given point, and let {tn} be a
sequence in [b, c] with b, c ∈ (, ) and  < b( – c) ≤ 

 . Let {xn} and {yn} be any sequences
in X such that

lim sup
n→∞

d(xn,x)≤ r, lim sup
n→∞

d(yn,x)≤ r and

lim
n→∞d

(
( – tn)xn ⊕ tnyn,x

)
= r,

for some r ≥ . Then

lim
n→∞d(xn, yn) = . (.)

Lemma . [] Let {an}, {λn} and {cn} be the sequences of nonnegative numbers such
that

an+ ≤ ( + λn)an + cn, ∀n≥ .

If
∑∞

n= λn < ∞ and
∑∞

n= cn < ∞, then limn→∞ an exists. If there exists a subsequence of
{an} which converges to zero, then limn→∞ an = .

Lemma . [] Let X be a complete CAT() space, and let {xn} be a bounded sequence
in X with A({xn}) = {p}; {un} is a subsequence of {xn} with A({un}) = {u}, and the sequence
{d(xn,u)} converges, then p = u.

3 Main results
Theorem. Let C be a nonempty, closed and convex subset of a completeCAT() space E.
Let Ti : C → E be a uniformly L-Lipschitzian and total asymptotically nonexpansive non-
self mapping with sequences {μ(i)

n } and {υ(i)
n } satisfying limn→∞ μ

(i)
n =  and limn→∞ υ

(i)
n = ,

and strictly increasing function ξ (i) : [,∞) → [,∞)with ξ (i)() = , i = , . For arbitrarily
chosen x ∈ K , {xn} is defined as follows:

⎧⎨
⎩
yn = P(( – βn)xn ⊕ βnT(PT)n–xn),

xn+ = P(( – αn)xn ⊕ αnT(PT)n–yn),
(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/135
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where {μ()
n }, {μ()

n }, {υ()
n }, {υ()

n }, ξ (), ξ (), {αn} and {βn} satisfy the following conditions:
()

∑∞
n= μ

(i)
n < ∞,

∑∞
n= υ

(i)
n < ∞, i = , ;

() there exist constants a,b ∈ (, ) with  < b( – a)≤ 
 such that {αn} ⊂ [a,b] and

{βn} ⊂ [a,b];
() there exists a constantM* >  such that ξ (i)(r)≤ M*r, r ≥ , i = , .

Then the sequence {xn} defined in (.) �-converges to a common fixed point of T and T.

Proof We divide the proof into three steps.
Step . We first show that limn→∞ d(xn,q) exists for each q ∈ F(T)∩ F(T).
Set μn = max{μ()

n ,μ()
n } and υn = {υ()

n ,υ()
n }, n = , , . . . ,∞. Since

∑∞
n= μ

(i)
n < ∞,∑∞

n= υ
(i)
n < ∞, i = , , we know that

∑∞
n= μn < ∞ and

∑∞
n= υn < ∞. For any q ∈ F(T) ∩

F(T), we have

d(xn+,q) = d
(
P
(
( – αn)xn ⊕ αnT(PT)n–yn

)
,q

)
≤ d

(
( – αn)xn ⊕ αnT(PT)n–yn,q

)
≤ ( – αn)d(xn,q) + αnd

(
T(PT)n–yn,q

)
≤ ( – αn)d(xn,q) + αn

[
d(yn,q) + υnξ

()(d(yn,q)) +μn
]

≤ ( – αn)d(xn,q) + αn
[(
 + υnM*)d(yn,q) +μn

]
, (.)

where

d(yn,q) = d
(
P
(
( – βn)xn ⊕ βnT(PT)n–xn

)
,q

)
≤ d

(
( – βn)xn ⊕ βnT(PT)n–xn,q

)
≤ ( – βn)d(xn,q) + βnd

(
T(PT)n–xn,q

)
≤ ( – βn)d(xn,q) + βn

[
d(xn,q) + υnξ

()(d(xn,q)) +μn
]

≤ (
 + βnυnM*)d(xn,q) + βnμn. (.)

Substituting (.) into (.), we have

d(xn+,q) ≤ ( – αn)d(xn,q) + αn
[(
 + υnM*)(( + βnυnM*)d(xn,q) + βnμn

)
+μn

]
≤ [

 +
(
 + βn + βnυnM*)αnM*υn

]
d(xn,q) + ( + βn)

(
 + υnM*)αnμn. (.)

Since
∑∞

n= μn < ∞ and
∑∞

n= υn < ∞, it follows from Lemma . that limn→∞ d(xn,q)
exists for each q ∈ F(T)∩ F(T).
Step . We show that limn→∞ d(xn,Txn) = limn→∞ d(xn,Txn) = .
For each q ∈ F(T)∩F(T), from the proof of Step , we know that limn→∞ d(xn,q) exists.

We may assume that limn→∞ d(xn,q) = k. From (.), we have

d(yn,q) ≤
(
 + βnυnM*)d(xn,q) + βnμn. (.)

Taking lim sup on both sides in (.), we have

lim sup
n→∞

d(yn,q) ≤ k. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/135
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In addition, since

d
(
T(PT)n–yn,q

) ≤ d(yn,q) + υnξ
()(d(yn,q)) +μn

≤ (
 + υnM*)d(yn,q) +μn,

we have

lim sup
n→∞

d
(
T(PT)(n–)yn,q

) ≤ k. (.)

Since limn→∞ d(xn+,q) = k, it is easy to prove that

lim
n→∞d

(
( – αn)xn ⊕ αnT(PT)(n–)yn,q

)
= k. (.)

It follows from Lemma . that

lim
n→∞d

(
xn,T(PT)n–yn

)
= . (.)

On the other hand, since

d(xn,q) ≤ d
(
xn,T(PT)n–yn

)
+ d

(
T(PT)n–yn,q

)
≤ d

(
xn,T(PT)n–yn

)
+ d(yn,q) + υnM*d(yn,q) +μn

= d
(
xn,T(PT)n–yn

)
+

(
 + υnM*)d(yn,q) +μn,

we have lim infn→∞ d(yn,q) ≥ k. Combined with (.), it yields that

lim
n→∞d(yn,q) = k. (.)

This implies that

lim
n→∞d

(
( – βn)xn ⊕ βnT(PT)n–xn,q

)
= k. (.)

It is easy to show that

lim sup
n→∞

d
(
T(PT)n–xn,q

) ≤ k. (.)

So, it follows from (.) and Lemma . that

lim
n→∞d

(
xn,T(PT)n–xn

)
= . (.)

Observe that

d
(
xn,T(PT)n–xn

) ≤ d
(
xn,T(PT)n–yn

)
+ d

(
T(PT)n–yn,T(PT)n–xn

)
≤ d

(
xn,T(PT)n–yn

)
+ d(xn, yn) + υnξ

()(d(xn, yn)) +μn

= d
(
xn,T(PT)n–yn

)
+

(
 + υnM*)d(xn, yn) +μn, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/135
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where

d(xn, yn) = d
(
P
(
( – βn)xn ⊕ βnT(PT)n–xn

)
,xn

)
≤ βnd

(
xn,T(PT)n–xn

)
. (.)

It follows from (.) that

lim
n→∞d(xn, yn) = . (.)

Thus, from (.), (.) and (.), we have

lim
n→∞d

(
xn,T(PT)n–xn

)
= . (.)

In addition, since

d(xn+,xn) = d
(
P
(
( – αn)xn ⊕ αnT(PT)n–yn

)
,xn

)
≤ d

(
( – αn)xn ⊕ αnT(PT)n–yn,xn

)
≤ αnd

(
T(PT)n–yn,xn

)
,

from (.), we have

lim
n→∞d(xn+,xn) = . (.)

Finally, since

d(xn,Txn) ≤ d(xn,xn+) + d
(
xn+,T(PT)nxn+

)
+ d

(
T(PT)nxn+,T(PT)nxn

)
+ d

(
T(PT)nxn,Txn

)
≤ ( + L)d(xn,xn+) + d

(
xn+,T(PT)nxn+

)
+ Ld

(
T(PT)n–xn,xn

)
,

it follows from (.) and (.) that limn→∞ d(xn,Txn) = . Similarly, we also can show
that limn→∞ d(xn,Txn) = .
Step . We show that {xn} �-converges to a common fixed point of T and T.
Let Wω(xn) =

⋃
{un}⊂{xn} A({un}). Firstly, we show that Wω ⊂ F(T) ∩ F(T). Let u ∈ Wω ,

then there exists a subsequence {un} of {xn} such that A({un}) = {u}. By Lemma . and
Lemma ., there exists a subsequence {uni} of {un} such that �-limi→∞ uni = p ∈ K . Since
limn→∞ d(xn,Txn) = limn→∞ d(xn,Txn) = , it follows from Lemma . that p ∈ F(T) ∩
F(T). So, limn→∞ d(xn,p) exists. By Lemma ., we know that p = u ∈ F(T) ∩ F(T).
This implies that Wω(xn) ⊂ F(T) ∩ F(T). Next, let {un} be a subsequence of {xn} with
A({un}) = {u} and A{xn} = {v}. Since u ∈ Wω(xn) ⊂ F(T) ∩ F(T), limn→∞ d(xn,u) exists.
By Lemma ., we know that v = u. This implies that Wω(xn) contains only one point.
Thus, sinceWω(xn) ⊂ F(T)∩ F(T),Wω(xn) contains only one point and limn→∞ d(xn,q)
exists for each q ∈ F(T)∩F(T), we know that {xn} �-converges to a common fixed point
of T and T. The proof is completed. �
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