
Liu and Leng Journal of Inequalities and Applications 2013, 2013:133
http://www.journalofinequalitiesandapplications.com/content/2013/1/133

RESEARCH Open Access

Volume inequalities for L-Minkowski
combination of convex bodies
Qixia Liu* and Gangsong Leng

*Correspondence:
liuqixiawf@163.com
Department of Mathematics,
Shanghai University, Shanghai,
200444, China

Abstract
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1 Introduction
The setting for this article is an Euclidean space R

n, n ≥ . A convex body is a compact
convex subset of Rn with a non-empty interior. For a compact convex set K ⊂ R

n and
x ∈ R

n, the support function hK : Rn → R is defined by hK (x) = max{x · y : y ∈ K}, where
x · y denotes the standard inner product of x and y in R

n. The polar body of a convex body
K is given by K∗ = {x ∈R

n : x · y≤  for all y ∈ K}. The Minkowski addition of two convex
bodies K and L is defined as K + L = {x+ y : x ∈ K , y ∈ L}, and the scalar multiplication λK
of K , where λ ≥ , is defined as λK = {λx : x ∈ K}.
In the early s, Firey [] extended the Minkowski combination of convex bodies to

Lp-Minkowski combination for each p ≥ . Furthermore, he established the Lp-Brunn-
Minkowski inequality which states the following: If Ki (i = , , . . . ,m) are convex bodies in
R

n that contain the origin in their interiors, and λi ∈ [, ] satisfying
∑m

i= λi = , then the
volumes of the bodies Ki and their Lp-Minkowski combination λ ·K +p · · ·+p λm ·Km are
related by

V (λ ·K +p · · · +p λm ·Km) ≥ V (K)λ · · ·V (Km)λm , (.)

with equality if and only if Ki are equal.
Recently, Böröczky et al. [] defined the L-Minkowski combination of convex bod-

ies and proved the L-Brunn-Minkowski inequality, which is stronger than (.), for two
origin-symmetric convex bodies in the plane.
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Theorem . [] If K and L are origin-symmetric convex bodies in the plane, then for all
real λ ∈ [, ],

V
(
( – λ) ·K + λ · L) ≥ V (K)–λV (L)λ.

When λ ∈ (, ), equality in the inequality holds if and only if K and L are dilates or K and
L are parallelograms with parallel sides.

Our first main result of this paper is to extend Theorem . to m (m ≥ ) origin-
symmetric convex bodies in the plane.

Definition IfKi (i = , , . . . ,m) are convex bodies that contain the origin in their interiors,
then for real λi ≥  (not all zero), the L-Minkowski combination λ ·K + · · · + λm ·Km

of Ki is defined by

λ ·K + · · · + λm ·Km =
⋂

u∈Sn–

{
x ∈R

n : x · u≤
m∏
i=

hKi (u)
λi

}
. (.)

Theorem . If Ki (i = , , . . . ,m) are origin-symmetric convex bodies in the plane, then
for all real λi ∈ [, ] satisfying

∑m
i= λi = , we have

V (λ ·K + · · · + λm ·Km) ≥ V (K)λ · · ·V (Km)λm . (.)

However, the L-Brunn-Minkowski inequality in R
n is still an open problem, even for

origin-symmetric convex bodies.
Now, with our second main result we focus on the volume estimate for L-Minkowski

combination of origin-symmetric convex bodies in R
n.

In [], Schuster and Weberndorfer established two powerful volume inequalities of the
Wulff shapeWν,f determined by an f -centered isotropic measure ν (see Section  for de-
tails). Using their results, we establish the following two inequalities.

Theorem . If Ki (i = , , . . . ,m) are origin-symmetric convex bodies in R
n, then for all

real λi ∈ [, ] satisfying
∑m

i= λi = , we have

V (λ ·K + · · · + λm ·Km) ≤ nn/(n + )(n+)/

n!

m∏
i=

(
sup

u∈Sn–
hKi (u)

)nλi
.

Theorem . If Ki (i = , , . . . ,m) are origin-symmetric convex bodies in R
n, then for all

real λi ∈ [, ] satisfying
∑m

i= λi = , we have

V
(
(λ ·K + · · · + λm ·Km)∗

) ≥ (n + )(n+)/

n!nn/

m∏
i=

inf
u∈Sn–

(
hKi (u)

–nλi
)
.

Furthermore, inequalities of mixed volume and normalized L-mixed volume (given in
this paper) for L-Minkowski combination of not necessarily origin-symmetric convex
bodies in R

n are established in the following theorems.
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Theorem . If Ki (i = , , . . . ,m) and Lj (j = , . . . ,n) are convex bodies inR
n that contain

the origin in their interiors, then for all real λi ∈ [, ] satisfying
∑m

i= λi = , we have

V (λ ·K + · · · + λm ·Km,L, . . . ,Ln) ≤
m∏
i=

V (Ki,L, . . . ,Ln)λi .

If K and L are convex bodies in R
n that contain the origin in their interiors, then for

p �= , the Lp-mixed volume Vp(K ,L) can be defined as

Vp(K ,L) =

n

∫
Sn–

hpLh
–p
K dSK =

∫
Sn–

(
hL
hK

)p

dVK ,

where SK and VK are the surface area measure and the cone-volume measure of K , re-
spectively (see Section  for the definitions).
The normalized Lp-mixed volume V̄p(K ,L) is defined by

V̄p(K ,L) =
(
Vp(K ,L)
V (K)

)/p

=
(∫

Sn–

(
hL
hK

)p

dV̄K

)/p

,

where V̄K is the cone-volume probability measure of K (also see Section  for the defini-
tion).
Note that when p converges to zero, the normalized L-mixed volume V̄(K ,L) can nat-

urally be given as

V̄(K ,L) = exp

(∫
Sn–

log
hL
hK

dV̄K

)
. (.)

Theorem . Suppose that K , L and Q are convex bodies in R
n that contain the origin in

their interiors, then for real λ ∈ [, ], we have

V̄
(
Q, ( – λ) ·K + λ · L) ≤ V̄(Q,K)–λV̄(Q,L)λ.

Combining the famous variant (proved in []) of Aleksandrov’s lemma and the repre-
sentation of (.), we obtain a limit form of V̄(K ,L) in the following theorem.

Theorem . Suppose that K and L are convex bodies inRn that contain the origin in their
interiors, then we have

nV (K) log V̄(K ,L) = lim
λ→

V (( – λ) ·K + λ · L) –V (K)
λ

.

The paper is organized as follows. In Section  some of the basic notations and prelimi-
naries are provided. Section  contains the proofs of the main theorems. Some properties
of normalized L-mixed volume and Wulff shape are discussed in Section .

2 Notations and preliminaries
Good general references for the theory of convex bodies are provided by the books [–]
and the articles [, , , –].

http://www.journalofinequalitiesandapplications.com/content/2013/1/133
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The group of nonsingular linear transformations is denoted by GL(n); its members are,
in particular, bijections of Rn onto itself. The group of special linear transformations of
R

n is denoted by SL(n). These are the members of GL(n) whose determinant is one.
For φ ∈GL(n), let φt , φ– and φ–t denote the transpose, inverse and inverse of the trans-

pose of φ, respectively.
For x ∈ R

n, then

hK (λx) = λhK (x), for λ ≥ ,

and

hφK (x) = hK
(
φtx

)
, for φ ∈GL(n).

Recall that for a Borel set ω ⊆ Sn–, the surface area measure of a convex body K in R
n

SK (ω) is the (n – )-dimensional Hausdorff measure of the set of all boundary points of K
at which there exists a normal vector of K belonging to ω.
Let K be a convex body in R

n that contains the origin in its interior. The cone-volume
measure VK of K is a Borel measure on the unit sphere Sn– defined by

dVK =

n
hK dSK . (.)

Obviously,

V (K) =

n

∫
Sn–

hK (u)dSK (u).

The cone-volume probability measure V̄K of K is defined by

V̄K =


V (K)
VK . (.)

Let Sn– and B denote the unit sphere centered at the origin and the unit ball in R
n,

respectively. The n-dimensional volume κn of B and the (n– )-dimensional volume ωn of
Sn– are

κn =
π

n


�( + n
 )
,

and

ωn = nκn.

If Ki (i = , , . . . ,n) are convex bodies in R
n, the mixed volume V (K, . . . ,Kn) is given by

(see [], [, Theorem ..] or [, Section ])

V (K, . . . ,Kn) =

n

∫
Sn–

hK (u)dS(K, . . . ,Kn,u), (.)

where S(K, . . . ,Kn, ·) is the mixed area measure of Ki (i = , . . . ,n).

http://www.journalofinequalitiesandapplications.com/content/2013/1/133
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If K is a convex body in R
n, the quermassintegralsWi(K) of K are defined for  ≤ i ≤ n

by

Wi(K) = V (K ,n – i;B, i),

where the notation V (K ,n – i;B, i) signifies that K appears (n – i) times and B appears i
times.
The mean widthW (K) of a convex body K in R

n is defined by

W (K) =

ωn

∫
Sn–

hK (u)dHn–(u),

whereHn– denotes the (n – )-dimensional Hausdorff measure.
It can be shown that


κn

Wn–(K) =W (K). (.)

Throughout, all Borel measures are understood to be non-negative and finite. We write
suppν for the support of a measure ν .
Suppose that ν is a Borel measure on Sn– and f is a positive continuous function on

Sn–. The Wulff shapeWν,f determined by ν and f is defined by

Wν,f =
{
x ∈ R

n : x · u≤ f (u) for all u ∈ suppν
}
. (.)

Obviously,

hWν,f (u) ≤ f (u) for all u ∈ suppν. (.)

Let f be a positive continuous function on Sn–. A Borel measure ν on Sn– is called
f -centered if

∫
Sn–

f (u)udν(u) = o.

The measure ν is called isotropic if
∫
Sn–

u⊗ udν(u) = In,

where u ⊗ u is the orthogonal projection onto the line spanned by u and In denotes the
identity map on R

n. Thus, ν is isotropic if
∫
Sn–

|v · u| dν(u) =  for all v ∈ Sn–.

The displacement ofWν,f is defined by

dispWν,f = cdWν,f ·
∫
Sn–

u
f (u)

dν(u),

where cdWν,f denotes the centroid ofWν,f .

http://www.journalofinequalitiesandapplications.com/content/2013/1/133
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3 Proof of main results
The following lemma will be used in the proof of Theorem ..

Lemma . If Ki (i = , , . . . ,m) are convex bodies that contain the origin in their interiors,
then for real λi ∈ (, ) and

∑m
i= λi = , we have

λ ·K + · · · + λm ·Km

⊇ ( – λm) ·
(

λ

 – λm
·K + · · · +

λm–

 – λm
·Km–

)
+ λm ·Km.

Proof SinceKi (i = , , . . . ,m) contain the origin in their interiors, thus it is easy to see that
the L-Minkowski combination

λ

 – λm
·K + · · · +

λm–

 – λm
·Km– =

⋂
u∈Sn–

{
x ∈R

n : x · u≤
m–∏
i=

hKi (u)
λi

–λm

}
, (.)

also contains the origin in its interior.
Let x ∈ ( – λm) · ( λ

–λm
· K + · · · +

λm–
–λm

· Km–) + λm · Km, then combining (.) and
(.) we have

x · u ≤ h λ
–λm ·K+···+ λm–

–λm ·Km–
(u)–λmhKm (u)

λm

≤
(m–∏

i=

hKi (u)
λi

–λm

)–λm

hKm (u)
λm

=
m∏
i=

hKi (u)
λi

for all u ∈ Sn–.
Hence, by (.), we have x ∈ λ · K + · · · + λm · Km, which yields the lemma directly.

�

Proof of Theorem . We will prove Theorem . by induction onm.
Obviously, it is true by Theorem . whenm = .
Suppose that the result holds on (m – ). Thus, for real λi ∈ (, ) satisfying

∑m
i= λi = ,

we have

V
(

λ

 – λm
·K + · · · +

λm–

 – λm
·Km–

)
≥ V (K)

λ
–λm · · ·V (Km–)

λm–
–λm .

We now consider the situation on m. In fact, since Ki (i = , , . . . ,m) are origin-
symmetric convex bodies in the plane, then by (.) we have λ

–λm
·K + · · ·+

λm–
–λm

·Km–

is also an origin-symmetric convex body in the plane.
Then by Lemma ., Theorem . and the induction hypothesis, we have

V (λ ·K + · · · + λm ·Km)

≥ V
(
( – λm) ·

(
λ

 – λm
·K + · · · +

λm–

 – λm
·Km–

)
+ λm ·Km

)

http://www.journalofinequalitiesandapplications.com/content/2013/1/133
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≥ V
(

λ

 – λm
·K + · · · +

λm–

 – λm
·Km–

)–λm

V (Km)λm

≥ (
V (K)

λ
–λm · · ·V (Km–)

λm–
–λm

)–λmV (Km)λm

= V (K)λ · · ·V (Km–)λm–V (Km)λm .

Note that Theorem . also holds when λm =  and λm = , respectively.
Thus Theorem . holds for all λi ∈ [, ] satisfying

∑m
i= λi = . �

In [], Schuster andWeberndorfer established a sharp bound for the volume of theWulff
shapeWν,f determined by an f -centered isotropic measure ν as follows.

Lemma . [] Suppose that f is a positive continuous function on Sn– and that ν is an
isotropic f -centered measure. If dispWν,f = , then

V (Wν,f ) ≤ (n + )(n+)/

n!
‖f ‖nL(ν),

with equality if and only if conv suppν is a regular simplex inscribed in Sn– and f is con-
stant on suppν .

Proof of Theorem . Let dν = 
κn
du and f (u) =

∏m
i= hKi (u)λi for all u ∈ Sn– in Lemma ..

Obviously, f is a positive continuous function on Sn– and ν is isotropic. By (.) we have

Wν,f =

{
x ∈R

n : x · u≤
m∏
i=

hKi (u)
λi for all u ∈ suppν

}
.

Combining it with (.), we get

Wν,f = λ ·K + · · · + λm ·Km. (.)

Furthermore, since Ki (i = , , . . . ,m) are origin-symmetric convex bodies, then we have


κn

∫
Sn–

hK (u)
λ · · ·hKm (u)

λmudu = o,

and


κn

∫
Sn–

u
hK (u)λ · · ·hKm (u)λm

du = o.

Thus ν is f -centered, and

dispWν,f = cdWν,f · 
κn

∫
Sn–

u
hK (u)λ · · ·hKm (u)λm

du = .

Combining (.) and Lemma ., we have

V (λ ·K + · · · + λm ·Km) ≤ (n + )(n+)/

n!
‖f ‖nL(ν). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/133
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Since λi ∈ [, ] satisfying
∑m

i= λi = , then from Hölder’s inequality (see []) we have

‖f ‖L(ν) =

κn

∫
Sn–

f (u) du

=

κn

∫
Sn–

m∏
i=

hKi (u)
λi du

≤ n
m∏
i=

(
sup

u∈Sn–
hKi (u)

)λi
. (.)

Combining (.) and (.), we obtain

V (λ ·K + · · · + λm ·Km) ≤ nn/(n + )(n+)/

n!

m∏
i=

(
sup

u∈Sn–
hKi (u)

)nλi
. �

A natural dual to Lemma . is also given in [], which provided a sharp lower bound
for the volume of the polar of the Wulff shapeWν,f .

Lemma . [] Suppose that f is a positive continuous function on Sn– and that ν is an
isotropic f -centered measure. Then

V
(
W ∗

ν,f
) ≥ (n + )(n+)/

n!
‖f ‖–nL(ν),

with equality if and only if conv suppν is a regular simplex inscribed in Sn– and f is con-
stant on suppν .

Proof of Theorem . Let dν = 
κn
du and f (u) =

∏m
i= hKi (u)λi for all u ∈ Sn– in Lemma ..

Similarly, from the proof of Theorem ., we know that f is a positive continuous function
on Sn– and ν is an isotropic f -centered measure.
Thus, combining (.) and Lemma ., we have

V
(
(λ ·K + · · · + λm ·Km)∗

) ≥ (n + )(n+)/

n!
‖f ‖–nL(ν). (.)

Now, combining (.) and (.), we obtain

V
(
(λ ·K + · · · + λm ·Km)∗

) ≥ (n + )(n+)/

n!nn/

m∏
i=

(
sup

u∈Sn–
hKi (u)

)–nλi

=
(n + )(n+)/

n!nn/

m∏
i=

inf
u∈Sn–

(
hKi (u)

–nλi
)
. �

Proof of Theorem . Since λi ∈ [, ] satisfying
∑m

i= λi = , then by (.), (.), Hölder’s
inequality and again (.), we have

V (λ ·K + · · · + λm ·Km,L, . . . ,Ln)

=

n

∫
Sn–

hλ·K+···+λm·Km (u)dS(L, . . . ,Ln,u)

http://www.journalofinequalitiesandapplications.com/content/2013/1/133
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≤ 
n

∫
Sn–

hK (u)
λ · · ·hKm (u)

λm dS(L, . . . ,Ln,u)

≤
m∏
i=

(

n

∫
Sn–

hKi (u)
λi· 

λi dS(L, . . . ,Ln,u)
)λi

=
m∏
i=

V (Ki,L, . . . ,Ln)λi . �

Letting L = · · · = Ln = λ · K + · · · + λm · Km in Theorem . gives the following in-
equality of mixed volumes.

Corollary . If Ki (i = , , . . . ,m) are convex bodies in R
n that contain the origin in their

interiors, then for all real λi ∈ [, ] satisfying
∑m

i= λi = , we have

V (λ ·K + · · · + λm ·Km) ≤
m∏
i=

· · ·
m∏

in=

V (Ki , . . . ,Kin )
λi ···λin .

Letting L = · · · = Ln = B in Theorem . gives the following inequality of quermassinte-
grals.

Corollary . If Ki (i = , , . . . ,m) are convex bodies in R
n that contain the origin in their

interiors, then for all real λi ∈ [, ] satisfying
∑m

i= λi = , we have

Wn–(λ ·K + · · · + λm ·Km) ≤
m∏
i=

Wn–(Ki)λi .

In view of (.), we also obtain the following inequality of mean widths.

Corollary . If Ki (i = , , . . . ,m) are convex bodies in R
n that contain the origin in their

interiors, then for all real λi ∈ [, ] satisfying
∑m

i= λi = , we have

W (λ ·K + · · · + λm ·Km)≤
m∏
i=

W (Ki)λi .

Proof of Theorem . Since K , L and Q are convex bodies in R
n that contain the origin in

their interiors, then from (.), (.), (.) and again (.), we have

V̄
(
Q, ( – λ) ·K + λ · L)

= exp

(∫
Sn–

log
h(–λ)·K+λ·L

hQ
dV̄Q

)

≤ exp

(∫
Sn–

log
h–λ
K hλ

L
hQ

dV̄Q

)

= exp

[∫
Sn–

log

(
hK
hQ

)–λ

dV̄Q +
∫
Sn–

log

(
hL
hQ

)λ

dV̄Q

]

= exp

[∫
Sn–

log

(
hK
hQ

)–λ

dV̄Q

]
exp

[∫
Sn–

log

(
hL
hQ

)λ

dV̄Q

]

http://www.journalofinequalitiesandapplications.com/content/2013/1/133
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=
[
exp

(∫
Sn–

log
hK
hQ

dV̄Q

)]–λ[
exp

(∫
Sn–

log
hL
hQ

dV̄Q

)]λ

= V̄(Q,K)–λV̄(Q,L)λ. �

The following variant of Aleksandrov’s lemma (see [, p.]) will be needed in proving
Theorem ..

Lemma . [] Suppose that qλ(u) = q(λ,u) : I × Sn– → (,∞) is a continuous function,
where I ⊂R is an open interval. Suppose also that the convergence in

∂q(λ,u)
∂λ

= lim
γ→

q(λ + γ ,u) – q(λ,u)
γ

is uniform on Sn–. If {Qλ}λ∈I is the family of Wulff shapes associated with qλ, i.e., for fixed
λ ∈ I ,

Qλ =
⋂

u∈Sn–

{
x ∈R

n : x · u ≤ q(λ,u)
}
,

then

dV (Qλ)
dλ

=
∫
Sn–

∂q(λ,u)
∂λ

dSQλ
(u).

Proof of Theorem . Since K and L are convex bodies in R
n that contain the origin in

their interiors, let q(λ,u) = hK (u)–λhL(u)λ in Lemma ., then the convergence in

∂(hK (u)–λhL(u)λ)
∂λ

= lim
γ→

hK (u)–(λ+γ )hL(u)(λ+γ ) – hK (u)–λhL(u)λ

γ

= hK (u)
(
hL(u)
hK (u)

)λ

log
hL(u)
hK (u)

is uniform on Sn–, and

Qλ =
⋂

u∈Sn–

{
x ∈R

n : x · u ≤ hK (u)–λhL(u)λ
}
. (.)

Observe that q(,u) is the support function of K , hence Q = K .
On the one hand, from Lemma ., (.), (.) and (.) we have

dV (Qλ)
dλ

∣∣∣∣
λ=

=
∫
Sn–

∂(hK (u)–λhL(u)λ)
∂λ

∣∣∣∣
λ=

dSQ (u)

=
∫
Sn–

hK (u) log
hL(u)
hK (u)

dSK (u)

= nV (K)
∫
Sn–

log
hL(u)
hK (u)

dV̄K (u)

= nV (K) log V̄(K ,L). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/133
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On the other hand, by (.) and (.), we have

Qλ = ( – λ) ·K + λ · L.

Therefore

dV (Qλ)
dλ

∣∣∣∣
λ=

= lim
λ→

V (( – λ) ·K + λ · L) –V (K)
λ

. (.)

Hence, combining (.) and (.), we obtain

nV (K) log V̄(K ,L) = lim
λ→

V (( – λ) ·K + λ · L) –V (K)
λ

. �

4 Other results and comments
Firstly, we prove that L-Minkowski combination and normalized L-mixed volume are
invariant under simultaneous unimodular centro-affine transformations.

Proposition . Suppose that K and L are convex bodies in R
n that contain the origin in

their interiors, and λ ∈ [, ]. If φ ∈ SL(n), then

φ
(
( – λ) ·K + λ · L)

= ( – λ) · φK + λ · φL.

Proof For x ∈ R
n and u ∈ Sn–, let y = φx and φ–tu = |φ–tu|v, then y ∈ R

n and v ∈ Sn–.
Thus we have

φ
(
( – λ) ·K + λ · L)
= φ

( ⋂
u∈Sn–

{
x ∈R

n : x · u≤ hK (u)–λhL(u)λ
})

= φ

( ⋂
u∈Sn–

{
φ–y ∈R

n : φ–y · u≤ hK (u)–λhL(u)λ
})

=
⋂

u∈Sn–

{
y ∈R

n : y · φ–tu≤ hK (u)–λhL(u)λ
}

=
⋂

v∈Sn–

{
y ∈R

n : y · v≤ hK
(
φtv

)–λhL
(
φtv

)λ}

=
⋂

v∈Sn–

{
y ∈R

n : y · v≤ hφK (v)–λhφL(v)λ
}

= ( – λ) · φK + λ · φL. �

Proposition . Suppose that K and L are convex bodies in R
n that contain the origin in

their interiors, then for φ ∈ SL(n) we have

V̄(φK ,φL) = V̄(K ,L).

Proof From Theorem ., we have

V̄(K ,L) = exp

{


nV (K)
lim
λ→

V (( – λ) ·K + λ · L) –V (K)
λ

}
.
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Then, by Proposition ., we obtain

V̄(φK ,φL) = exp

{


nV (φK)
lim
λ→

V (( – λ) · φK + λ · φL) –V (φK)
λ

}

= exp

{


nV (φK)
lim
λ→

V (φ(( – λ) ·K + λ · L)) –V (φK)
λ

}

= exp

{


nV (K)
lim
λ→

V (( – λ) ·K + λ · L) –V (K)
λ

}

= V̄(K ,L). �

The following proposition shows the property of weak convergence of the cone-volume
probability measure.

Proposition . If Ki is a sequence of convex bodies in R
n that contain the origin in their

interiors, and limi→∞ Ki = K, where K is a convex body that also contains the origin in its
interior, then limi→∞ V̄Ki = V̄K weakly.

Proof Suppose that f ∈ C(Sn–). Since Ki → K, by definition, hKi → hK uniformly
on Sn–. Since the continuous function hK is positive, the hKi are uniformly bounded away
from zero, and thus

fhKi → fhK uniformly on Sn–.

But Ki → K also implies (see []) that

S(Ki, ·) → S(K, ·) weakly on Sn–.

By the continuity of the volume, that is, if Ki → K then V (Ki) → V (K), we have


nV (Ki)

∫
Sn–

f (u)hKi (u)dS(Ki,u) → 
nV (K)

∫
Sn–

f (u)hK (u)dS(K,u)

or, equivalently,
∫
Sn–

f (u)dV̄Ki (u) →
∫
Sn–

f (u)dV̄K (u). �

The continuity of the normalized L-mixed volume is contained in the following propo-
sition.

Proposition . Suppose that Ki and Li are two sequences of convex bodies in R
n that

contain the origin in their interiors, and limi→∞ Ki = K , limi→∞ Li = L, where K and L are
convex bodies that also contain the origin in its interior, then limi→∞ V̄(Ki,Li) = V̄(K ,L).

Proof Since Ki → K and Li → L, by definition, hKi → hK and hLi → hL uniformly on Sn–.
Since the continuous functions hK and hL are positive, the hKi and hLi are uniformly
bounded away from zero. It follows that hLi

hKi
→ hL

hK
uniformly on Sn–, and thus that

log
hLi
hKi

→ log
hL
hK

uniformly on Sn–.
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By Proposition ., Ki → K implies that

V̄Ki → V̄K weakly on Sn–.

Hence

exp

(∫
Sn–

log
hLi
hKi

dV̄Ki

)
→ exp

(∫
Sn–

log
hL
hK

dV̄K

)
. �

Next, we show some properties of the Wulff shape in the following propositions.

Proposition . [] Suppose that ν is a Borel measure on Sn– and that fi, f are pos-
itive continuous functions on Sn–. If limi→∞ fi(u) = f (u) uniformly on u ∈ suppν , then
limi→∞ Wν,fi =Wν,f .

Proposition . Suppose that ν is a Borel measure on Sn– and that f , g are positive con-
tinuous functions on Sn–, then Wν,min{f ,g} =Wν,f ∩Wν,g .

Proof Assume that x ∈Wν,min{f ,g}, then

x · u ≤ min
{
f (u), g(u)

}
for all u ∈ suppν.

Thus

x · u ≤ f (u) and x · u≤ g(u) for all u ∈ suppν.

Hence, by (.), we get

x ∈Wν,f and x ∈Wν,g .

Then x ∈Wν,f ∩Wν,g . Therefore,Wν,min{f ,g} ⊆Wν,f ∩Wν,g .
Conversely, assume that x ∈Wν,f ∩Wν,g , then

x · u ≤ f (u) and x · u≤ g(u) for all u ∈ suppν.

Fix u ∈ suppν , then x · u ≤ min{f (u), g(u)}. By the arbitrariness of u, we have
x · u ≤ min{f (u), g(u)} for all u ∈ suppν . Hence x ∈ Wν,min{f ,g}. Therefore, Wν,f ∩ Wν,g ⊆
Wν,min{f ,g}. �

Proposition . Suppose that ν is a Borel measure on Sn– and that f , g are positive con-
tinuous functions on Sn–, then Wν,max{f ,g} ⊇Wν,f ∪Wν,g .

Proof Assume that x ∈ Wν,f ∪ Wν,g . Fix u ∈ suppν , then x · u ≤ f (u) or x · u ≤ g(u),
thus x · u ≤ max{f (u), g(u)}. By the arbitrariness of u, we have x · u ≤ max{f (u), g(u)}
for all u ∈ suppν . Hence x ∈Wν,max{f ,g}. �

Proposition . Suppose that ν is a Borel measure on Sn– and that f , g are positive con-
tinuous functions on Sn–, then for real number λ ∈ [, ]wehaveWν,f –λ·gλ ⊇ (–λ) ·Wν,f +

λ ·Wν,g .
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Proof Let x ∈ ( – λ) ·Wν,f + λ ·Wν,g . By (.), we have x · u ≤ hWν,f (u)
–λhWν,g (u)λ for all

u ∈ suppν . From (.), we know that hWν,f (u) ≤ f (u) and hWν,g (u) ≤ g(u) for all u ∈ suppν .
Since f and g are positive continuous functions on Sn–, then

hWν,f (u)
–λhWν,g (u)

λ ≤ f (u)–λg(u)λ.

Hence x · u ≤ f (u)–λg(u)λ for all u ∈ suppν . Therefore, by (.), we have x ∈ Wν,f –λ·gλ .
�

Proposition . Suppose that ν is a Borel measure on Sn– and that f , g are positive con-
tinuous functions on Sn–, then Wν,f +g ⊇Wν,f +Wν,g .

Proof Let x ∈Wν,f +Wν,g . Assume x = x + x, where x ∈Wν,f and x ∈Wν,g , then by (.)
we have x · u ≤ f (u) and x · u ≤ g(u) for all u ∈ suppν . Thus x · u + x · u ≤ f (u) + g(u)
for all u ∈ suppν . That is, x · u≤ f (u) + g(u) for all u ∈ suppν . Therefore, x ∈Wν,f +g . �
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