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Abstract

Probability inequalities of random variables play important roles, especially in the
theory of limiting theorems of sums of independent random variables. In this note,
we give a proof of the following:

Let {€;} be a sequence of independent random variables such that £(e;) =0,
E(e?)=v < oo and E(€}) = o < 00. Then

n
max tBe eletrat’)
]

2
= 0,(nP*5).

O<w<m

O<a<m =

It is shown that this result will be useful in estimating the parameters of a chirp-type
statistical model and in establishing the consistency of estimators.

Keywords: probability inequality; independent random variables; chirp-type signal;
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1 Introduction
In [1] Whittle (1952) considered the problem of estimating the parameters of a sine wave:

X; =Acoswt + Bsinwt + €,

where X,’s are the observations and ¢;’s are independent, identically distributed random
variables with mean zero and finite(unknown) variance. Whittle’s solution to the problem
of estimating the parameters and the proof of consistency of parameters of the above sine
wave used arguments which are not mathematically rigorous. In 1973, a rigorous solution
to Whittle’s problem was given by Walker [2]. In his proof of consistency of parameters,
he used the following O, result:

max
0<w=<m

= Op(”%)’

n
E Yt eia)t
t=1

where {Y;} is a linear process.
In this paper, we extend the above O, result to obtain

2
= 0,(n*¥). (1)

n
max
0<w<m

tﬂ 6tei(throth)
O<a<m 1

t=
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We came across this problem while attempting to establish the consistency of the pa-
rameters of the model

X, = Acos(wt + at?) + Bsin(wt + at?) + &,

where X;’s and ¢,’s are as mentioned above. Models of this type are referred to as ‘chirp’
models [3, 4] and [5], and they have drawn the attention of many researchers [6, 7] and
[8]. Although we tried to find our main result given in (1) in the literature, we were unable
to find one. We make use of the following basic results to establish our main result.

2 Basicresults
Definition 1 Let {X,} be a sequence of random variables. We say that X,, = O,(1) if for

given € > 0, there exists M such that
P[|Xn| >M] <e¢ forall n.

Let (a,,) be a sequence of nonzero real numbers. We say that X,, = O,(a,) if X,,/a, = O,(1).

Lemma 1 Let {X,} be a sequence of random variables, and let {a,} and {b,} be two se-

quence of nonzero real numbers. Then
Xy=0u(b,) = a,X,=0pa,b,).

Lemma 2 Let {X,} be a sequence of random variables, let {a,} be a sequence of real num-
bers, and let q be a positive real number. Then

Xy=0p(a,) = Xl= Op(aZ).

Definition 2 Let {X,,} be a sequence of random variables. We say that X,, = 0,(1) if X,, — 0
in probability. (So, X,, = 0,(1) if for each € > 0, we have lim,,_, o P(|X,,| > €) = 0.)

Lemma 3 Let {X,} be a sequence of random variables, and let {a,} be a sequence of real
numbers with a,, — 0 as n — o00. If X,, = O,(1), then a, X, N 0.

Lemma 4 Let {X,} be a sequence of random variables, and let B be a positive real number.
Then

1
X, = o,,(}q—ﬁ) = X, =0,(1).

Lemma 5 Let {X,,} be a sequence of random variables, and let 8 be any real number. If
Xy = Op(nP) and Y, = O,(nP), then X, + Y, = O,(nP).

Lemma 6 Let u be any real number. Let {X,,} be a sequence of random variables such that
E(|X,]) = O(n*). Then X,, = O(n*).

We now establish two lemmas that we need to prove the main result.
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Lemma?7 Leta;,;t=1,2,...,n,u=12,...,n be complex numbers. Then

n-1 n-s
E E Aty = E E [ﬂ£t+s+at+st]+E At
t=1 u=1 s=1 t=1

Proof The Y, | >""_| a., is the sum of the terms in the table:

a1 ai,2 a3 Tt a1,n-1 ai,n

az a2 a3 Tt a,n-1 a,n
ap-11 4n-12 4p-1,3 - GAp-1n-1 Gn-1n

an,l ﬂn,Z an,S e an,n—l Anpn.

5

We can add by summing along the diagonals. So, the sum is equal to

n-1 n-s n-1 n—-p
Zatns + Zzaum,u + Zatt
s=1 t=1 p=1 u=1
Therefore
n n n-1 n-s
Zzat,u:ZZ[dtHs"'aﬂst]+Zatt 0
t=1 u=1 s=1 t=1
Lemma 8 Let b;t=1,2,...,n be complex numbers. Then
n 2 n-1 n-s
D b =23 bibi| + Z|bt|
t=1 s=1 t=1
Proof Since | Y, b/* =Y 1 >0, b,b,, by using a,, = b;b, in Lemma 7, then
n 2 n-1 n-s
Y b Zbembmmebm
t=1 s=1 t=1
n-1 n-s
=3 29biby + Z b, |?
s=1 t=1
n-1 n-s
> bibus +Z|bt : .
s=1 t=1

3 Main result

Theorem 1 Let {¢;} be a sequence of independent random variables such that E(e,) = 0,
E(e?) =v< oo and E(e}) = o < 00. Then

B i wt+at _ ﬁ+%
01;132(71 E tPe.e = Op(n )
O0<a<m t=1
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Proof Letting b, = t# €,/@*) in Lemma 8, we see that

2

n n-1 n-s
Z tﬂetei(wt+at2) <2 Z Z tﬁ (t + s)ﬁEténsei(wnatz)e—i(w(t+s)+a(t+s)2)
t=1 s=1 t=1

n
. 2y12
+ § :’tﬂetez(wnat )’
t=1

n-1 n-s

. ) .
Z Z t/S (t " S)ﬂ6t€[+se—zwse—zas e—Zwtts

s=1 t=1

n
+ Z t*h ef.
=1

=2

Using the triangle inequality, we obtain

n 2 n-1| n-s n

. 2 .
E the, @) <o E E Pt +5)Peern e 2| + E P2, (2)
=1 51 | =1 -1

Fix s and consider | ) /- t#(¢ +5)P€,€,,567|. By Lemma 8 with b, = P (£ + 5)P €,€,, 567215,

we obtain

n-s 2

Z P (t + 5)Pe,e,, 507208

t=1
n—-s—1n-s—p

= 2 Z Z tﬁ (t + S)ﬁ(t +l9)ﬂ(t tp+ S)ﬂEt€t+seiziatset+pEt+p+s62ia3(t+p)
p=1 t=1
n-s
+ Z [P (t + 5)P ererpse ™" 2

t=1

and it follows from the triangle inequality that

n-s 2
Z P (t + 5)Pe,e,, 0720
=1
n—-s—1|n—s—p H—s
<2 Z Z P +9P(t+p)P(t+p+s)Pecserperips| + Z Pt +s)Pele? .
p=1 1| t=1 t=1
Therefore
n-s 2
Z P (t + 5)Pe,e,, 50720
=1
n-s—1|n—-s—p
<V2 [ Y1 L+ @+ e+ p+ sV eeriseriperips
p=1 t=1

s 12
Yy (e s)zﬂefef+s:| )

t=1
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Substituting this in equation (2), we obtain

n
Z tﬂetei(wnatz)
t=1

tﬁ (t + S)ﬂ(t +P)ﬁ (t +I9 + S)ﬂ€t€t+s€t+p€t+p+s

12
+ ) e+ s)zﬂefet2+si| + Z tPe?.

It follows that

n 2
Z t/S Etei(wt+at2)

max
0<w<m
O<a<m t=1
n-1 [ n-s-1|n-s—p
<22} [ D12 P+’ p) e+ pr 9 eeriserperps
s=1 L p=1 | t=1

n-s

12
Yy P+ s)zﬂefet2+s:| + Z £he?,
t=1
Taking the expectation of both sides of the above inequality, we obtain
2:|
n-s—p
tP(t +5) (L + D) (L + P+ 9) €veris€ripCripes

Z tﬂé et wt+at?)

t=1

max
O0<w<m

0<a<m

< 2\/—25[il

s=1 p=1

-1
n—s 172 n

+ thﬁ(t+s 2ﬂefet2+sj| + thﬁE(ef).
t=1 t=1

We claim that

Z tﬂé e i(wt+at?)

t=1

2
:| _ O(n25+7/4)'

max
O0<w<m

O<a<m

We note that since
n n
Z tzﬂE(etZ) - thﬁv - O(nzﬂ”) < O(n2’3+7/4),
t=1 t=1

we can ignore the term ) |, */ E(¢?) provided, and we show the other term is O(n

264714,
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Taking x = |z|"? in Schwarz’s inequality E|x| < (E|x|*)"/? yields E(|z|V?) < (E|z])"%. Using
this on the right-hand side of the above inequality, we get

2
max tﬁe et wt+at?)
|:0<w<71 Z
O<a<m
n-1 (n-s-1 n—s—p
= Zl Z E Z th (t+ S)ﬁ (t +P)ﬁ(t +tp+ S)ﬁ€t€t+s€t+p€t+p+s
s=1 p=1 t=1
s 1/2
+ Z 2P (¢ +)*PE(e}el,) } .
t=1

Using Schwarz’s inequality again on the first term on the right, we get

n-1 [n-s-1 n-s—p 291/2
< Z |: Z |:E{ tPt+s)Pt+p)ft+p+ s)ﬂetet+set+pet2+p+s} i|

s=1 L p=1 t=1
s 1/2
S ed,)|
t=1

s=1 p=1 t=1

n-1 [ n-s-1 n—s—p
= Z|: Z |:E< Z P+ t+p)Pt+p+ s)zﬁefef+sef+pef+p+s)

n-s—p
+E(2 Z Wu+s)Pu+p)Pu+p+s)PVPw+s)fv+p)fv+p+s)?

u,v=1
u<v

1/2 ns 1/2
2, 2,
€u€u+s€u+p€u+p+s€v€v+s€v+p€v+p+s):| + > (e +s)PE(e em)}

t=1
n-1 [ n—-s-1[ n—s—p
- z[ 5 [z PP (e P e p o PP E(E 2 )

t=1

So,

n—s—p
+2<Z Wu+s)Pu+p)Pw+p+s)PVPw+s)fv+p)fv+p+s)

u,v=1
u<v

1/2
E(Eu€u+s€u+p€u+p+sEv€v+s€v+pev+p+s)) :|

s 12
Yy (e s)zﬂE(efet2+S):| .

t=1
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Consider E(€,€,+5€u+p€urprs€v€rrs€vp€vapes)- SiNCE U < v, v+ p + s is the unique largest sub-

script, the €;’s are independent and E(¢;) = 0, we have
E(Gu€u+s€u+p€u+p+s€vév+s€v+p€v+p+s) = E(Eu€u+s€u+p6u+p+s€v6v+sEv+p)E(€v+p+s) =0.

Therefore

2
n
E| max Zt’g etei(“’t*at2)

O0<w<m
O<a<m

n-1 [ n—-s-1[ n—s—-p 1/2

A D P+ 9P+ P+ p+ )PE( el €] €l )
s=1 L p=1 t=1
1/2

+ Z 2P (t + )P E(e}el,)
-1
Now consider the term E(e?€?). Since E(e?) = v < 00, and the €,’s are independent,
Z P (t + 9P E(efel,;) < Kn*P*.

t=1

Similarly, since E(¢?) = v < 00, E(€}) = 0 < 00, and the ¢,’s are independent,

n-s—p
Z 2P (t+9)*P(t + p)*P (t + p + 9)*PE(e} emefmeﬂpﬁ) Kn®P+1,
=1
Thus
2 n-1[ n-s-1 172
max tPe,el wtrat)| | < K312 4 Kt
[max > =2 | D[k
0<q<r ! t=1 s=1 L p=1
n-1

Z [n](n4ﬂ*1/2 + I(n4’3*1]1/2

@
I
—_

5
L

[ I(n4ﬁ+3/2]1/2
s=1

— nKn2ﬁ+3/4

_ O(n2/3+7/4)'

It follows by virtue of Lemma 6 that

B i(wt+at?)| _ 2B+7/4
max. Zt €.e =0p(n )-

O0<a<m t=1
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Using Lemma 3, we obtain

O0<w<m
O<a<m

n
; 2
max § tﬂetez(wtﬂlt) _ Op(nﬂ+7/8),
t=1

which completes the proof of the theorem. d
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