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Abstract

The main purpose of this paper is, using the properties of Gauss sums and the
estimate for the generalized exponential sums, to study the upper bound estimate
problem of one kind sums analogous to the high-dimensional Kloosterman sums and
to give some interesting mean value formula and an upper bound estimate for it.
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1 Introduction
For any integer g > 3, the high-dimensional Kloosterman sums K(ci, ¢y, ..., ¢k, m; q) are
defined as follows:

q q _ _
/ ’ clay+ -+ Cpap +may - - A
K(ci,¢a,...hcr,m;q) = E E e ; ,

=l a=1
where e(x) = 27, Z/Zizl denotes the summation over all integers 1 < a; < g such that
(ai,q) =1, ¢; and m are integers with (m,q) = 1, a; denotes the solution of the congruent
equationx-a;=1mod g (i=1,2,...,k).

There are several results on the properties of the Kloosterman sums K(cy, ¢y, . . ., ¢k, 11 ).
For example, see [1, 2] and [3]. Related works can also be found in [4-8] and [9].

In this paper, we consider a sum analogous to the high-dimensional Kloosterman sums
as follows:

q q
/ /
Sler,aevnrClom, X3q) = Y +++ Y x(@1@r + -+ + cra + may - ay), (11)

aj=1 ar=1

where x is a Dirichlet character modg.
If k=1 and g = p (an odd prime), then for any integer a with (a,p) = 1, applying the
Fermat little theorem, one can deduce @2 = @ mod p. So, the sum (1.1) becomes

p-1

Z x (ca + ma).

=1

Q
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It is a special case of the general polynomial character sums

N+M

> x(f@),

a=N+1

where M and N are any positive integers and f(x) is a polynomial. Let x be a gth-order
character modp. If f(x) is not a perfect gth power modp, then from Weil’s classical work
(see [10]), we can deduce the estimate

N+M

3 x(f®) < p? Inp,

x=N+1

where ‘<’ constant depends only on the degree of f(x). Some related results can also be
found in [11-13] and [14].

Now we are concerned with the upper bound estimate problem of (1.1). Regarding this
contents, it seems that nobody has yet studied it, at least we have not seen any related
result before. The problem is interesting because it can reflect some new properties of
character sums. The main purpose of this paper is, using the analytic methods and the
properties of Gauss sums, to study this problem and give a sharp upper bound estimate
for (1.1). That is, we prove the following conclusions.

Theorem 1 Let p be an odd prime, let k be a positive integer with k > 2, and let x
be any non-principal character modp. Then for any integers ci,ca,...,ck and m with
(c1¢y - - - cxm, p) = 1, we have the identity

k
2

p? iflk+1Lp-1)=1,

|S(01,Cz,...,ck,m,x;p)| = .
0 if(k+D|(p—1)and x & # xo,

where xq denotes the principal character modp.

Theorem 2 Let p be an odd prime, let k be a positive integer with k > 2, and let
X be any non-principal character modp. Then for any integers cy,ca,...,ck and m with
(c1¢2 - - - cxm, p) = 1, we have the estimate

k
2

|S(c1,cz,...,ck,m,x;p)| <(k+1)-p2.

Theorem 3 Let p and q be two odd primes, let r be any qth non-residue modp. Then for
any integers ci,Cy, . ..,Cq-1 With (c1¢a - - - ¢4_1,p) = 1, we have the identity

-1 p-1 p-1 p-1 o _ 2
qX: |:pz Z Z <c1¢z1 +Coly + -+ Cqidgr + A - -aql):|

i=0 Laij=lap=1 ag-1=1 p

7 -pt ifqlp-1),
q-p"  if(gp-1) =1

If p =1 mod 4, then the above formula also holds for q = 2, where (If?) denotes the Legendre
symbol.
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Taking p = 4m + 1 and g = 2 in Theorem 3, note that 2|(p — 1), we may immediately
deduce the following.

Corollary Let p be an odd prime with p =1 mod 4, then we have the identity

- (B5) - (2C50)

where r and s are any two integers such that (ﬁ) . (159) =-1.

This gives another proof for a classical work in elementary number theory (i.e., see [15]
Theorems 4-11): For any prime p with p =1 mod 4, there exist two positive integers x and
y such that p = x* + ).

2 Several lemmas
To complete the proof of our theorems, we need the following basic lemmas.

Lemmal Let p be an odd prime, let x be any non-principal character modp, and let k be
any positive integer such that (k,p —1) = 1 or k|p — 1. Then for any integer m with (m,p) =1,
we have the identity

X (m)-T(x") if k,p-1)=1,
ifkl(p—1) and x T # xo,
X10m) - S LT m)e Gaxt)  ifklp—1) and x T = xo,

(=]

= ma*
> X(a)e<—) =
a=1 p

where r - k = 1mod (p — 1), xo denotes the principal character modp, x denotes any
k-order character modp and x* = x.

Proof If (k,p — 1) = 1, then there exists one integer r with (r,p — 1) =1 such that r - k =
1 mod (p—1). This time, for any integer a with (a, p) = 1, we have 4™ = a mod p. If a passes
through a reduced residue system modp, then a” also passes through a reduced residue
system modp. Therefore, we have

(5 S

=1

p-1
dox a)e( ):7’(M)-r(x’). (2.1)

a=1

-1

If k> 1and k|(p — 1) with x % # X0, then there must exist an integer # with (1, p) = 1 such
p-1

that x % (n) # 1. For this n, we have

2 mak 2 -1, (mla- n'% )k
Zx(a)e<7) = Zx(a . npk)e(—)

a=1
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or
p-1 > mak
) Zx(a)e(—> o.
a=1 p

-1
Since x % (n) #1, from the above identity, we have

- ma*
> x(a)e(—) =0. (2.2)
a=1 p

-1

If x . Xo, then x must be a kth character mod p, so there exists one character y; mod p
such that x = X1k~ Let xx be a k-order character modp (i.e., X/’f = Xo), then for any integer
a with (a, p) = 1, note that

) 1 k if ais a kth residue modp,
L+ xk(@) + xic (@) + -+ + x (a) =
0, otherwise.

From the properties of Gauss sums, we have

5o (5) - Erton(5) St 2)

p-1

=Y @1+ @) + 3@ + -+ xk“(m)e(%)
a=1
= X10m) - D xklm)T (axi)- (2.3)
i=0
Now Lemma 1 follows from (2.1), (2.2) and (2.3). a

Lemma 2 Letp and q be two odd primes with q|(p —1), and let x, be any q-order character
modp. Then for any integers ci,cy,...,cq1 and m with (mcicy - - - c4_1,p) = 1, we have the
identities

p-1 p-1
0 Z Z Z <c1a1 +Colly + -+ Cqo1 G + MAdy - Gy )

a1=lay=1 aqll p

q-1 q i
_(n o i TI0xg) \
(5) o Sam )

i=0

pl _ X1(m) Mmooy
(1 Z(a+ma): T(Xz)( (1)+(p) (x1) ifp=1mod 4,

0 ifp=3 mod 4,

where (;) = x denotes the Legendre symbol, n = mcicy - - - ¢4_1 and X12 = X2.
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Proof 1f q is an odd prime, then x5 = x, and ¥, = 2, 50 applying (2.3) and the properties
of Gauss sums, we have

p-1 p-1 p-1 — —
(Clﬂl + Crdy + -+ Cq-18q-1 + maay - - - ﬂq_1>
a1=lay=1 ag-1= =1 p
-1 p-1 -1 __ _
L pZ<a1+a2+---+aq_1+nalu2~--aq_1>
aij=las=1 ag-1=1 p
-1 p-1 1 p-1 _
s L b(zzl +o+dag)+bnay - -dg
= () E x2(b
X2 a1=las=1 ag-1=1 b=1 p
-1 p-1 -1 p-1
1 £k O bl+ai+---+ags)
= Ton) x(be
X2) ag-2=1 b=1 p

p-1 p-1

B b(1+a1+~~~+aq2))
s & S

ay=1as=1 ag—2=1 b=1

pr-1 - ~
X Z XZ(C)(l + Xq(c) Foeee Xg—l(c))e(w>
c=1

1 szq)
(P) - Xz)(qu 79(x2) )

This proves formula (I).

To prove formula (II), note that if p = 3 mod 4, then x, must be an odd character modp
(i.e., xo(=1) = —1) so that

p-1 _ p-1
(a+ma> (p a+mp— a)
p

a=1

1

1

—1) p <a+mﬁ>_
p) =\ p

"c
L

VN

S(55)

Q
I
(=

or

p-1
<a+ma>

a=1

If p =1 mod 4, then there exists one character x; mod p such that x? = x,. Note that x =
X1 and x2x; = x1; from the properties of Gauss sums, we have

P v ma 1 b(a + ma)
£2)- S ()
p 7(x2) p

11
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R b\ 2 mba?®
- el 2 2
ﬂmgyﬂk@>;hwﬂip>
1 2 b\ 2 mba
- be( 2 moa
oy ot )e(p) IRICIE m(a))e( : )
:YWm(ﬂun+(T>#an)
7(X2) p
This proves Lemma 2. g

3 Proof of the theorems

In this section, we complete the proof of our theorems. First we prove Theorems 1 and 2.
Letn=mcicy--cx, (k+1,p—1)=d. If d =1, we can assume r(k + 1) =1 mod (p — 1), then
from Lemma 1, the properties of a reduced residue system mod p and Gauss sums, we have

S(CIICZwaCk;myX;p)

p-1 p-1
- ...Zx(ﬂl+...+ak+mclcz...ck.5l...ﬁk)
aj=1 ar=1
-1 -1 p-1 _
1 < U b(a + - +ay +nay - - - a)
:E ZX(b)e
X ai=1 ar=1 b=1 p

= 7(bﬁ1)6<b(1+-“+ak)+nbﬁll(+152"'ﬁk>

T(Y) ar=1 ar=1ai=1 b=1 p
A e b+blay+--+a
-3 7(b)e< (a2 k))
T ap=1 ar=1 b=1
L nba “'a,---a
xe(al)e( L2 k)
ar=1
A b+blay+ - +ay)
" ()
T az=1 ar=1 b=1
. p-1 P (nbu1a2 ﬂk)
a1=1 p
) (BN e, (blay et ay)
S (8] 5 5t 1)
0 3 Pl oo e p
‘L'k+1 —r
T
(%)
thl(x)

= x"(mecicy - cr) - (3.1)

t(X)

Ifd>1and xpT_l # X0, then from the method of proving (2.2), we have

ZX(m)e(nbal ek ak)zo.

ar=1
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From this identity and the method of proving (3.1), we may immediately deduce that if
-1
X'T # Xo, then
5(617621---761(;”7: X;p) =0. (32)

-1
Ifd>1and g T - Xo, then x must be a dth character modp, so there exists a character

x1 mod p such that x = x{. Let x, be a d-order character modp, then we have

r-1 —k+1— -
b .
E X(m)e(in h_d ak)

a1=1 p
= o ( nba® T ay -k
=) (@) ——
a=1 p
p-l kel _ _
_ nba 4 a, - --ay
= F@(1+ xal@) + 1@+t xE l(a))e<TZ>
a=1
d-1 p-1 k+l _
: nba d ay---a
- (a)x;(a)e(izk) (33)
i=0 a=1 4

Let (k;I,p 1) = d,, then repeat the process of proving (2.1), (2.2) and (2.3). Combining
(3.1), (3.2) and (3.3), we may immediately deduce the estimate

k
2,

|S(Cl:62r < Cl M, X5 17)| = (k+ 1) 4 (34)

Now note that |t(x)| = [t(x")| = \/p, Theorems 1 and 2 follow from (3.1), (3.2) and (3.4).

Now we prove Theorem 3. If g > 3, we separate g into two cases (g,p — 1) = 1 and

(gp—-1) =q.1f (g,p - 1) = g, then note that for any gth non-residue r mod p, we have

qf:x’(rh) _Ja ifall
q .

Py 0 if(q,l)=1.

From (I) of Lemma 2, we can deduce that

g-1[ p-1 p-1 p-1 PR _ 2
Z|: (clal +Coly + -+ Cquidgr + A - - -aq_1>

p

Tq(XzX,;) . tq(szé)
t(x2)  T(x2)

=pT! X (crca - cqar”)

X)) 106X
T4(X2) T4(X2)

Page 7 of 9


http://www.journalofinequalitiesandapplications.com/content/2013/1/130

Li and Han Journal of Inequalities and Applications 2013, 2013:130 Page 8 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/130

If (g,p — 1) = 1, then from the method of proving (2.1) and the properties of Gauss sums,
we can deduce that

q-1[ p-1 p-1 p-1 —— = 2
Z Z Z (cml +Coly + -+ Cqidg1 + A - -aq_1>
i=0 glz 2: a- = p
q-1
_ -1 _ q-1
= p =q9p
i=0

If g =2 and p =1 mod 4, then applying (II) of Lemma 2, we have
p-1 2 2= 12
<a+ma) (m) 2(Xx1)

=p- 1+1—)- 5
p 2(x1)

a=1
m\ t2(x) (m) (x1)
-2 —_). —_). . 3.5
p +(p> 20 "\ 7)) 760 (3:5)

Therefore, from (3.5) we can deduce that

”i(ma) . ”i(a;rﬁ) ap,

a=1 p a=1

This proves Theorem 3.
To prove the corollary, note that

r-1 _ r1
§<a+mﬁ>_i(a+mﬁ>+ §<a+mﬁ)_2 2 <a+mﬁ)
a=1 p a=1 p _p+l p a=1 p

2

From (3.5) we may immediately deduce the identity

v\ (b))
a-+ra +S
=(2(57) - (2057)

a=1 b=1 p

where r and s are any two integers such that (2) . (1%) =-1.
This completes the proof of our corollary.
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