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Abstract

In (Bor in Int. J. Math. Math. Sci. 17:479-482, 1994), Bor has proved the main theorem
dealing with |N, p,|x summability factors of an infinite series. In the present paper, we
have generalized this theorem on the @ — |A, pn|x summability factors under weaker
conditions by using an almost increasing sequence instead of a positive
non-decreasing sequence.
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1 Introduction

Let > a, be a given infinite series with the partial sums (s,). We denote by ¢, the nth
(C,1) mean of the sequence (s,). The series ) _ a, is said to be summable |C, 1|, k > 1, if
(see [1])

o]

Z nk71|tn - tn—llk <0oo. (1)

n=1
Let (p,,) be a sequence of positive numbers such that
n
P,,:va—>oo asm—>oo(Pj=p_;=0,i>1). (2)
v=0
The sequence-to-sequence transformation

1 n
Oy = P_ VZO:vaV (3)

n

defines the sequence (o,,) of the (N, p,) mean of the sequence (s,), generated by the se-
quence of coefficients (p,,) (see [2]). The series 3 a,, is said to be summable [N, p, |, k > 1,
if (see [3])

00 P k-1
Z( n> |O‘,,,—G,,_1|k<OO. (4)

o1 \Pn

Let A = (a,,) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal en-
tries. Then A defines the sequence-to-sequence transformation, mapping the sequence
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s=(s,) to As = (A,,(s)), where
n
A,s) = Zam,sv, n=0,1,.... (5)
v=0

The series Y _ a,, is said to be summable |4, p,|x, k > 1, if (see [4])

x /p Nk .
Z(p—n) ’AA,,(S)| <00, (6)

n=1 n

where
AAn(S) = A,,(S) _An—l (S)

Let (¢,) be any sequence of positive real numbers. The series Y a,, is said to be summable
© — A, pulk, k > 1, if (see [5])

Z(ps’lyﬁAn(s)V( < 00. (7)

n=1

If we take ¢, = ﬁ—:, then ¢ — |A, p,|xr summability reduces to |A, p,|r summability. Also,
if we take ¢, = 2—2 and a,,, = f)—;, then we get |N,p,|x summability. Furthermore, if we
take ¢, = n, a,, = f;—; and p, =1 for all values of n, ¢ — |A, p,|x reduces to |C,1|; summa-
bility. Finally, if we take ¢, = n and a,, = ;;—:, then we get |R,p,|r summability (see
[6]).

Before stating the main theorem, we must first introduce some further notations.

Given a normal matrix A = (a,,), we associate two lower semimatrices A = (@,,) and
A= (@) as follows:

n
Apy = E an,, mv=0,1,... (8)
i=v
and
aoo = doo = Aoo, Apy = Apy — Gp-1v, N=1,2,.... )

It may be noted that A and A are the well-known matrices of series-to-sequence and series-

to-series transformations, respectively. Then we have

Au(s) = Z ApySy = Z Apyly (10)
v=0 v=0
and
AAn (S) = Z&nvﬂv' (11)
v=0

2 Known result
Many works have been done dealing with |N, p,|x summability factors of infinite series
(see [7-22]). Among them, in [21], the following main theorem has been proved.
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Theorem A Let (X,)) be a positive non-decreasing sequence and let there be sequences (8,)
and (A,) such that

|AM,] < B, 12)
Br— 0 asn— oo, (13)
[AulX, = O0Q) asn— oo, (14)
oo
> " n|ABIX, < 00 (15)
n=1

are satisfied. Furthermore, if (p,) is a sequence of positive numbers such that

P,=O0(np,) asn— oo, (16)
m P 0
F'S”| =0X,,) asm— 00, (17)
n=1""

then the series Y _ a,h, is summable |N,pn|k, k>1.

3 The main result

The aim of this paper is to generalize Theorem A for ¢ — |A, p, |« summability under weaker
conditions. For this, we need the concept of an almost increasing sequence. A positive se-
quence (c,) is said to be almost increasing if there exists a positive increasing sequence (b,)
and two positive constants A and B such that Ab,, < ¢, < Bb, (see [23]). Obviously, every
increasing sequence is an almost increasing sequence but the converse need not be true
as can be seen from the example b,, = ne™". Also, one can find some results dealing with
absolute almost convergent sequences (see [24]). So, we are weakening the hypotheses of
Theorem A replacing the increasing sequence by an almost increasing sequence. Now, we

shall prove the following theorem.

Theorem Let A = (a,,) be a positive normal matrix such that

=1, n=01,..., (18)

Apo1y = apy  forn>v+1, (19)
V4

Apn = O(IT:)’ (20)

|2ln,v+1| = O(V|Av&nv|)~ (21)

$nbn
Py

Let (X,,) be an almost increasing sequence and ( ) be a non-increasing sequence. If con-

ditions (12)-(16) and

m k
> ek (%) sul¥ = OX,) s m— o, (22)

n=1 n

are satisfied, then the series Y ayh, is summable ¢ — |A, pyli, k > 1.
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Remark It should be noted that if we take (X),) as a positive non-decreasing sequence,

On = f}—: and a,, = f;—;, then we get Theorem A. In this case, conditions (21) and (22) reduce
to conditions (16) and (17), respectively. Also, the condition ‘(%) is a non-increasing

sequence’ and the conditions (18)-(20) are automatically satisfied.

Lemma [22] Under the conditions on (X,), (B,) and (A,) as taken in the statement of the
theorem, we have the following:

nBuX,=01) asn— oo, (23)
Z BuX, < 00. (24)
n=1

Proof of the Theorem Let (T,,) denote A-transform of the series Y _ a,1,,. Then we have, by
(10) and (11),

n
AT, = Z&nvkvav.
v=1

Applying Abel’s transformation to this sum, we get that

n-1
ATn = Z Av(&m/)\v)sv + Zlnn)\nsn
v=1

n-1
= Z(&m/}"v - &n,v+1)"v+1)sv + &nn)"nsn
v=1
n-1 n-1
=D A+ Y 1Sy DAy + Gunhsy
v=1 v=1

=T,Q1) + T,(2) + T,(3).

To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to show
that

oo
Z¢§’1|Tn(r)|k <oo forr=1,2,3.

n=1

Now, when k > 1, applying Holder’s inequality with indices k and k, where 1/k + 1/k =1,
we have that

v=1

m+1 m+1 n-1 k
Y kT = 0 Y gk (Z\AV(&W)HAVHM)
n=2 n=2
m+1 n-1 n-1 k-1
=0(1) Z@s_l <Z|Av(&nv)||)\v|k|sv|k> X (Z|Av(&nv)|>
n=2 v=1

v=1

m+1 k=1 / n-1
- 0(1)Z<‘”;1” ) (Z|Av<&w)||xv|k|sv|k>
n=2 n

v=1
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m+1

m k-1
=0 Y Il Y (%) |Au(@m)]
v=1 n

n=v+1

k—=1 m+l

-om Y mW%%) 3| Aulaw)]
v=1 v

n=v+l

m k-1
-om Y |xv|k-1|xv||sv|k<"’;p > (%)

v=1

m k
(P
=0() > Inlek 1(17”) sy ¢
14
v=1
m-1 v p k m p k
=O(1)ZAMV|Z¢£1(IT’) |sr|k+0(1)|xm|2<p51(1%) sy ¢
v=1 r=1 r v=1 v

m-1
=0(1) > |1 ALIX, + OW)| A X
v=1

m-1

=0(1) Z BXy + O) | A | X

v=1

=0(1) asm— oo,

by virtue of the hypotheses of the theorem and the lemma. Again, applying Hélder’s in-
equality and using the fact that v8, = O(X%) = 0(1) by (23), we get that

m+1 ‘ m+1 n-1 k
> T2 = O(l)Zw’,;l( |£zn,v+1||AAv||sv|)
n=2

n=2 v=1

m+1 n-1 n-1 k-1
=0()) ¢ft (Z |&n,v+1|ﬂv|sv|k> x (Z |£zn,v+1|ﬂv>
n=2 v=1

v=1

m+l n-1 n-1 k-1
=0 ) ¢i (Z |&n,v+1|ﬂv|sv|k> x (Z v|AV(&W>\ﬂV)
n=2 v=1

v=1
m+1 @ p k-1 / n-1
=o<1>2($) (Zvym(anv>\ﬂv|sv|k)
n=2 " v=1
m m+1 @ [9 k-1
= O(l)ZV,BV|SV|k Z <%> |Av(2lnv)|
v=1 n=v+l n
m (0 p k=1 m+1l
- k( PPy ;
=0(1) ;Vﬁv|sv| ( D, ) H;I|Av(anv)|

m k-1
- o) vﬁvlsv|k(%p ) (’ﬁ)
2 p ) \p,

m-1 v k m k
=0) > AR D k! (%) 5,1+ OWymB, Y ¢k <’I’7> s, [
v=1 r=1 r v=1 v

m-1

= 0(1) Y |AWB)|X, + OW)mPB X,

v=1
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m-1 m-1
= 0() ) vIABIX, + O) Y Bua Xy + OW)mpBX,
v=1 v=1

=0Q0) asm— oo,

by virtue of the hypotheses of the theorem and the lemma. Finally, as in 7,(1), we have
that

m m
S G T3 = 0) S ek sl
n=1

n=1

m k
_1( Pn
=0(1) Y 1Mok 1<P—> Isal*
n=1 n

=0Q0) asm— oo.

This completes the proof of the theorem. If we take ¢,, = ﬁ—:, then we get aresult concerning
the |A, p,|«x summability factors. If we take a,,, = f,—:, then we have another result dealing
with [N, p,., @, |x summability. If we take a,, = f,—; and p, = 1 for all values of n, then we get
a result dealing with |C, 1, ¢,|x summability. If we take ¢, = #n, a,, = f,—: and p, =1 for all
values of n, then we get a result for |C, 1| summability. d
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