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1 Introduction
Throughout this paper, we denote by N and R the sets of positive integers and real num-
bers, respectively. LetD be a nonempty closed subset of a real Banach space X. Amapping
T :D → D is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ D. Let N(D) and
CB(D) denote the family of nonempty subsets and nonempty bounded closed subsets ofD,
respectively. The Hausdorff metric on CB(D) is defined by

H(A,A) =max
{
sup
x∈A

d(x,A), sup
y∈A

d(y,A)
}

for A,A ∈ CB(D), where d(x,A) = inf{‖x – y‖, y ∈ A}. The multi-valued mapping T :
D → CB(D) is called nonexpansive if H(Tx,Ty) ≤ ‖x – y‖ for all x, y ∈ D. An element p ∈
D is called a fixed point of T : D → CB(D) if p ∈ T(p). The set of fixed points of T is
represented by F(T).
In the sequel, denote S(X) = {x ∈ X : ‖x‖ = }. A Banach space X is said to be strictly con-

vex if ‖ x+y
 ‖ ≤  for all x, y ∈ S(X) and x �= y. A Banach space is said to be uniformly convex

if limn→∞ ‖xn – yn‖ =  for any two sequences {xn}, {yn} ⊂ S(X) and limn→∞ ‖ xn+yn
 ‖ = .

The norm of the Banach space X is said to be Gâteaux differentiable if for each x, y ∈ S(X),

© 2013 Liu and Li; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2013/1/126
mailto:liuhongbo@swust.edu.cn
http://creativecommons.org/licenses/by/2.0


Liu and Li Journal of Inequalities and Applications 2013, 2013:126 Page 2 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/126

the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists. In this case, X is said to be smooth. The norm of the Banach space X is said to be
Fréchet differentiable if for each x ∈ S(X), the limit (.) is attained uniformly for y ∈ S(x),
and the norm is uniformly Fréchet differentiable if the limit (.) is attained uniformly for
x, y ∈ S(X). In this case, X is said to be uniformly smooth.
Let X be a real Banach space with dual X*. We denote by J the normalized duality map-

ping from X to X* which is defined by

J(x) =
{
x* ∈ X* :

〈
x,x*

〉
= ‖x‖ = ∥∥x*∥∥}, x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing.

Remark . The following basic properties for the Banach spaceX and for the normalized
duality mapping J can be found in Cioranescu [].
() X (X*, resp.) is uniformly convex if and only if X* (X , resp.) is uniformly smooth.
() If X is smooth, then J is single-valued and norm-to-weak* continuous.
() If X is reflexive, then J is onto.
() If X is strictly convex, then Jx∩ Jy �= � for all x, y ∈ X .
() If X has a Fréchet differentiable norm, then J is norm-to-norm continuous.
() If X is uniformly smooth, then J is uniformly norm-to-norm continuous on each

bounded subset of X .
() Each uniformly convex Banach space X has the Kadec-Klee property, i.e., for any

sequence {xn} ⊂ X , if xn ⇀ x ∈ X and ‖xn‖ → ‖x‖, then xn → x ∈ X .

Next we assume that X is a smooth, strictly convex, and reflexive Banach space and D
is a nonempty closed convex subset of X. In the sequel, we always use φ : X × X → R+ to
denote the Lyapunov bifunction defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, x, y ∈ X. (.)

It is obvious from the definition of the function φ that

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖x‖ + ‖y‖), (.)

φ(y,x) = φ(y, z) + φ(z,x) + 〈z – y, Jx – Jz〉, x, y, z ∈ X, (.)

and

φ
(
x, J–

(
αJy + ( – α)Jz

)) ≤ αφ(x, y) + ( – α)φ(x, z) (.)

for all α ∈ [, ] and x, y, z ∈ X.
Following Alber [], the generalized projection �D : X →D is defined by

�D(x) = arg inf
y∈Dφ(y,x), ∀x ∈ X.
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Many problems in nonlinear analysis can be reformulated as a problem of finding a fixed
point of a nonexpansive mapping.

Remark . (see []) Let �D be the generalized projection from a smooth, reflexive and
strictly convex Banach space X onto a nonempty closed convex subset D of X, then �D is
a closed and quasi-φ-nonexpansive from X onto D.

In , Mann [] introduced the following iterative sequence {xn}:

xn+ = αnxn + ( – αn)Txn,

where the initial guess x ∈ D is arbitrary and {αn} is a real sequence in [, ]. It is known
that under appropriate settings the sequence {xn} converges weakly to a fixed point of
T . However, even in a Hilbert space, the Mann iteration may fail to converge strongly
[]. Some attempts to construct an iteration method guaranteeing the strong convergence
have been made. For example, Halpern [] proposed the following so-called Halpern iter-
ation:

xn+ = αnu + ( – αn)Txn,

where u,x ∈D are arbitrarily given and {αn} is a real sequence in [, ]. Another approach
was proposed by Nakajo and Takahashi []. They generated a sequence as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ X is arbitrary;

yn = αnu + ( – αn)Txn,

Cn = {z ∈D : ‖yn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈D : 〈xn – z,x – xn〉 ≥ },
xn+ = PCn∩Qnx (n = , , . . .),

(.)

where {αn} is a real sequence in [, ] and PK denotes the metric projection from a Hilbert
space H onto a closed convex subset K of H . It should be noted here that the itera-
tion above works only in the Hilbert space setting. To extend this iteration to a Banach
space, the concept of relatively nonexpansive mappings and quasi-φ-nonexpansive map-
pings have been introduced by Aoyama et al. [], Chang et al. [, ], Chidume et al. [],
Matsushita et al. [–], Qin et al. [], Song et al. [], Wang et al. [] and others.
Inspired by thework ofMatsushita andTakahashi, in this paper, we introducemodifying

Halpern-Mann iterations sequence for finding a fixed point of a multi-valued mapping
T : D → CB(D) and prove some strong convergence theorems. The results presented in
the paper improve and extend the corresponding results in [].

2 Preliminaries
In the sequel, we denote the strong convergence and weak convergence of the sequence
{xn} by xn → x and xn ⇀ x, respectively.

Lemma . (see []) Let X be a smooth, strictly convex and reflexive Banach space, and
let D be a nonempty closed convex subset of X. Then the following conclusions hold:
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(a) φ(x, y) =  if and only if x = y.
(b) φ(x,�Dy) + φ(�Dy, y) ≤ φ(x, y), ∀x, y ∈D.
(c) If x ∈ X and z ∈D, then z = �Dx if and only if 〈z – y, Jx – Jz〉 ≥ , ∀y ∈D.

Lemma . (see []) Let X be a real uniformly smooth and strictly convex Banach space
with the Kadec-Klee property, and let D be a nonempty closed convex subset of X. Let {xn}
and {yn} be two sequences in D such that xn → p and φ(xn, yn) → ,where φ is the function
defined by (.), then yn → p.

Definition . A point p ∈ D is said to be an asymptotic fixed point of a multi-valued
mapping T : D → CB(D) if there exists a sequence {xn} ⊂ D such that xn ⇀ x ∈ X and
d(xn,T(xn))→ . Denote the set of all asymptotic fixed points of T by F̂(T).

Definition .
() A multi-valued mapping T :D→ CB(D) is said to be relatively nonexpansive if

F(T) �= �, F̂(T) = F(T) and φ(p, z) ≤ φ(p,x), ∀x ∈ D, p ∈ F(T), z ∈ T(x).
() A multi-valued mapping T :D→ CB(D) is said to be closed if for any sequence

{xn} ⊂D with xn → x ∈ X and d(y,T(xn)) → , then d(y,T(x)) = .

Remark . If H is a real Hilbert space, then φ(x, y) = ‖x – y‖ and �D is the metric pro-
jection PD of H onto D.

Next, we present an example of a relatively nonexpansive multi-valued mapping.

Example . (see []) Let X be a smooth, strictly convex and reflexive Banach space, let
D be a nonempty closed and convex subset of X, and let f :D×D→ R be a bifunction sat-
isfying the conditions: (A) f (x,x) = , ∀x ∈ D; (A) f (x, y) + f (y,x) ≤ , ∀x, y ∈ D; (A) for
each x, y, z ∈ D, limt→ f (tz + ( – t)x, y) ≤ f (x, y); (A) for each given x ∈ D, the function
y �–→ f (x, y) is convex and lower semicontinuous. The so-called equilibrium problem for f
is to find an x* ∈D such that f (x*, y) ≥ , ∀y ∈ D. The set of its solutions is denoted byEP(f ).
Let r > , x ∈D and define a multi-valued mapping Tr :D →N(D) as follows:

Tr(x) =
{
z ∈D, f (z, y) +


r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈D

}
, ∀x ∈D, (.)

then () Tr is single-valued, and so {z} = Tr(x); () Tr is a relatively nonexpansive mapping,
therefore, it is a closed quasi-φ-nonexpansive mapping; () F(Tr) = EP(f ).

Definition .
() A multi-valued mapping T :D → CB(D) is said to be quasi-φ-nonexpansive if

F(T) �= � and φ(p, z) ≤ φ(p,x), ∀x ∈D, p ∈ F(T), z ∈ Tx.
() A multi-valued mapping T :D → CB(D) is said to be quasi-φ-asymptotically

nonexpansive if F(T) �= � and there exists a real sequence kn ⊂ [, +∞), kn → ,
such that

φ(p, zn) ≤ knφ(p,x), ∀x ∈D,p ∈ F(T), zn ∈ Tnx. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/126
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() A multi-valued mapping T :D → CB(D) is said to be totally quasi-φ-asymptotically
nonexpansive if F(T) �= � and there exist nonnegative real sequences {vn}, {μn} with
vn,μn →  (as n → ∞) and a strictly increasing continuous function ζ : R+ → R+

with ζ () =  such that

φ(p, zn) ≤ φ(p,x) + vnζ
[
φ(p,x)

]
+μn,

∀x ∈ D,∀n≥ ,p ∈ F(T), zn ∈ Tnx. (.)

Remark. From the definitions, it is obvious that a relatively nonexpansivemulti-valued
mapping is a quasi-φ-nonexpansive multi-valued mapping, and a quasi-φ-nonexpansive
multi-valued mapping is a quasi-φ-asymptotically nonexpansive multi-valued mapping,
and a quasi-φ-asymptotically nonexpansive multi-valued mapping is a total quasi-φ-
asymptotically nonexpansive multi-valued mapping, but the converse is not true.

Lemma . Let X and D be as in Lemma .. Let T : D → CB(D) be a closed and totally
quasi-φ-asymptotically nonexpansive multi-valued mapping with nonnegative real se-
quences {vn}, {μn} and a strictly increasing continuous function ζ : R+ → R+ with ζ () = .
If vn,μn →  (as n→ ∞) and μ = , then F(T) is a closed and convex subset of D.

Proof Let {xn} be a sequence in F(T) such that xn → x*. Since T is a totally quasi-φ-
asymptotically nonexpansive multi-valued mapping, we have

φ(xn, z) ≤ φ
(
xn,x*

)
+ vζ

[
φ
(
xn,x*

)]

for all z ∈ Tx* and for all n ∈N . Therefore,

φ
(
x*, z

)
= lim

n→∞φ(xn, z) ≤ lim
n→∞

{
φ
(
xn,x*

)
+ vζ

[
φ
(
xn,x*

)]}
= φ

(
x*,x*

)
= .

By Lemma .(a), we obtain z = x*. Hence, Tx* = {x*}. So, we have x* ∈ F(T). This implies
F(T) is closed.
Let p,q ∈ F(T) and t ∈ (, ), and put w = tp + ( – t)q. Next we prove that w ∈ F(T).

Indeed, in view of the definition of φ, letting zn ∈ Tnw, we have

φ(w, zn) = ‖w‖ – 〈w, Jzn〉 + ‖zn‖

= ‖w‖ – 
〈
tp + ( – t)q, Jzn

〉
+ ‖zn‖

= ‖w‖ + tφ(p, zn) + ( – t)φ(q, zn) – t‖p‖ – ( – t)‖q‖. (.)

Since

tφ(p, zn) + ( – t)φ(q, zn)

≤ t
[
φ(p,w) + vnζ

[
φ(p,w)

]
+μn

]
+ ( – t)

[
φ(q,w) + vnζ

[
φ(q,w)

]
+μn

]
= t

{‖p‖ – 〈p, Jw〉 + ‖w‖ + vnζ
[
φ(p,w)

]
+μn

}
+ ( – t)

{‖q‖ – 〈q, Jw〉 + ‖w‖ + vnζ
[
φ(q,w)

]
+μn

}
= t‖p‖ + ( – t)‖q‖ – ‖w‖ + tvnζ

[
φ(p,w)

]
+ ( – t)vnζ

[
φ(q,w)

]
+μn. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/126
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Substituting (.) into (.) and simplifying it, we have

φ(w, zn) ≤ tvnζ
[
φ(p,w)

]
+ ( – t)vnζ

[
φ(q,w)

]
+μn →  (as n→ ∞).

By Lemma ., we have zn → w. This implies that zn+ (∈ TTnw) → w. Since T is closed,
we have Tw = {w}, i.e., w ∈ F(T). This completes the proof of Lemma .. �

Definition . Amapping T :D → CB(D) is said to be uniformly L-Lipschitz continuous
if there exists a constant L >  such that ‖xn – yn‖ ≤ L‖x – y‖, where x, y ∈ D, xn ∈ Tnx,
yn ∈ Tny.

3 Main results
Theorem . Let X be a real uniformly smooth and strictly convex Banach space with the
Kadec-Klee property, let D be a nonempty closed convex subset of X, and let T :D → CB(D)
be a closed and uniformly L-Lipschitz continuous totally quasi-φ-asymptotically non-
expansive multi-valued mapping with nonnegative real sequences {vn}, {μn}, vn,μn → 
(as n → ∞) and a strictly increasing continuous function ζ : R+ → R+ with ζ () =  satis-
fying condition (.). Let {αn} be a sequence in [, ] such that αn → . If {xn} is the sequence
generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ X is arbitrary; D =D,

yn = J–[αnJx + ( – αn)Jzn], zn ∈ Tnxn,

Dn+ = {z ∈ Dn : φ(z, yn) ≤ αnφ(z,x) + ( – αn)φ(z,xn) + ξn},
xn+ = �Dn+x (n = , , . . .),

(.)

where ξn = vn supp∈F(T) ζ [φ(p,xn)] + μn, F(T) is the fixed point set of T , and �Dn+ is the
generalized projection of X onto Dn+. If F(T) is nonempty and μ = , then limn→∞ xn =
�F(T)x.

Proof (I) First, we prove that Dn is a closed and convex subset in D.
By the assumption, D = D is closed and convex. Suppose that Dn is closed and convex

for some n≥ . In view of the definition of φ, we have

Dn+ =
{
z ∈Dn : φ(z, yn)≤ αnφ(z,x) + ( – αn)φ(z,xn) + ξn

}
=

{
z ∈D : φ(z, yn)≤ αnφ(z,x) + ( – αn)φ(z,xn) + ξn

} ∩Dn

=
{
z ∈D : αn〈z, Jx〉 + ( – αn)〈z, Jxn〉 – 〈z, Jyn〉

≤ αn‖x‖ + ( – αn)‖xn‖ – ‖yn‖
} ∩Dn.

This shows that Dn+ is closed and convex. The conclusions are proved.
(II) Next, we prove that F(T)⊂Dn for all n ≥ .
In fact, it is obvious that F(T)⊂D. Suppose that F(T) ⊂Dn. Hence, for any u ∈ F(T) ⊂

Dn, by (.), we have

φ(u, yn) = φ
(
u, J–

(
αnJx + ( – αn)Jzn

))
≤ αnφ(u,x) + ( – αn)φ(u, zn)

http://www.journalofinequalitiesandapplications.com/content/2013/1/126
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≤ αnφ(u,x) + ( – αn)
{
φ(u,xn) + vnζ

[
φ(u,xn)

]
+μn

}

≤ αnφ(u,x) + ( – αn)
{
φ(u,xn) + vn sup

p∈F(T)
ζ
[
φ(p,xn)

]
+μn

}

= αnφ(u,x) + ( – αn)φ(u,xn) + ξn. (.)

This shows that u ∈ F(T)⊂Dn+, and so F(T)⊂Dn.
(III) Now we prove that {xn} converges strongly to some point p*.
In fact, since xn = �Dnx, from Lemma .(c), we have

〈xn – y, Jx – Jxn〉 ≥ , ∀y ∈ Dn.

Again since F(T) ⊂Dn, we have

〈xn – u, Jx – Jxn〉 ≥ , ∀u ∈ F(T).

It follows from Lemma .(b) that for each u ∈ F(T) and for each n ≥ ,

φ(xn,x) = φ(�Dnx,x) ≤ φ(u,x) – φ(u,xn) ≤ φ(u,x). (.)

Therefore, {φ(xn,x)} is bounded and so is {xn}. Since xn = �Dnx and xn+ = �Dn+x ∈
Dn+ ⊂ Dn, we have φ(xn,x) ≤ φ(xn+,x). This implies that {φ(xn,x)} is nondecreasing.
Hence limn→∞ φ(xn,x) exists. Since X is reflexive, there exists a subsequence {xni} ⊂ {xn}
such that xni ⇀ p* (some point in D = D). Since Dn is closed and convex and Dn+ ⊂ Dn.
This implies that Dn is weakly closed and p* ∈ Dn for each n ≥ . In view of xni = �Dni

x,
we have

φ(xni ,x) ≤ φ
(
p*,x

)
, ∀ni ≥ .

Since the norm ‖ · ‖ is weakly lower semi-continuous, we have

lim
ni→∞ infφ(xn,x) = lim

ni→∞ inf
(‖xni‖ – 〈xni , Jx〉 + ‖x‖

)

≥ ∥∥p*∥∥ – 
〈
p*, Jx

〉
+ ‖x‖

= φ
(
p*,x

)
,

and so

φ
(
p*,x

) ≤ lim
ni→∞ infφ(xn,x)

≤ lim
ni→∞ supφ(xn,x) = φ

(
p*,x

)
.

This shows that limni→∞ φ(xni ,x) = φ(p*,x), and we have ‖xni‖ → ‖p*‖. Since xni ⇀ p*,
by virtue of the Kadec-Klee property of X, we obtain that xni → p*. Since {φ(xn,x)} is
convergent, this together with limni→∞ φ(xni ,x) = φ(p*,x) shows that limni→∞ φ(xn,x) =

http://www.journalofinequalitiesandapplications.com/content/2013/1/126
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φ(p*,x). If there exists some subsequence {xnj} ⊂ {xn} such that xnj → q, then from
Lemma . we have

φ
(
p*,q

)
= lim

ni ,nj→∞φ(xni ,xnj ) = lim
ni ,nj→∞φ(xni ,�Dnj

x)

≤ lim
ni ,nj→∞

[
φ(xni ,x) – φ(�Dnj

x,x)
]
= lim

ni ,nj→∞
[
φ(xni ,x) – φ(xnj ,x)

]

= φ
(
p*,x

)
– φ

(
p*,x

)
= ,

i.e., p* = q, and hence

xn → p*. (.)

By the way, from (.), it is easy to see that

ξn = vn sup
p∈F(T)

ζ
[
φ(p,xn)

]
+μn → . (.)

(IV) Now we prove that p* ∈ F(T).
In fact, since xn+ ∈Dn+, from (.), (.) and (.), we have

φ(xn+, yn) ≤ αnφ(xn+,x) + ( – αn)φ(xn+,xn) + ξn → . (.)

Since xn → p*, it follows from (.) and Lemma . that

yn → p*. (.)

Since {xn} is bounded andT is a totally quasi-φ-asymptotically nonexpansivemulti-valued
mapping, Tnxn is bounded. In view of αn → , from (.), we have

lim
n→∞‖Jyn – Jzn‖ = lim

n→∞αn‖Jx – Jzn‖ = . (.)

Since Jyn → Jp*, this implies Jzn → Jp*. From Remark ., it yields that

zn ⇀ p*. (.)

Again, since

‖zn‖ –
∥∥p*∥∥ = ‖Jzn‖ –

∥∥Jp*∥∥ ≤ ∥∥Jzn – Jp*
∥∥ → , (.)

this together with (.) and the Kadec-Klee-property of X shows that

zn → p*. (.)

On the other hand, by the assumption that T is L-Lipschitz continuous, we have

d(Tzn, zn) ≤ d(Tzn, zn+) + ‖zn+ – xn+‖ + ‖xn+ – xn‖ + ‖xn – zn‖
≤ (L + )‖xn+ – xn‖ + ‖zn+ – xn+‖ + ‖xn – zn‖. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/126
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From (.) and xn → p*, we have that d(Tzn, zn) → . In view of the closedness of T , it
yields that T(p*) = {p*}, which implies that p* ∈ F(T).
(V) Finally, we prove that p* = �F(T)x and so xn → �F(T)x.
Let w = �F(T)x. Since w ∈ F(T)⊂ Dn, we have φ(p*,x) ≤ φ(w,x). This implies that

φ
(
p*,x

)
= lim

n→∞φ(xn,x) ≤ φ(w,x), (.)

which yields that p* = w = �F(T)x. Therefore, xn → �F(T)x. The proof of Theorem . is
completed. �

By Remark ., the following corollaries are obtained.

Corollary . Let X and D be as in Theorem ., and let T : D → CB(D) be a closed and
uniformly L-Lipschitz continuous relatively nonexpansive multi-valued mapping. Let {αn}
in (, ) with limn→∞ αn = . Let {xn} be the sequence generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ X is arbitrary; D =D,

yn = J–[αnJx + ( – αn)Jzn], zn ∈ Txn,

Dn+ = {z ∈ Dn : φ(z, yn) ≤ αnφ(z,x) + ( – αn)φ(z,xn)},
xn+ = �Dn+x (n = , , . . .),

(.)

where F(T) is the set of fixed points of T , and �Dn+ is the generalized projection of X onto
Dn+, then {xn} converges strongly to �F(T)x.

Corollary . Let X and D be as in Theorem ., and T : D → CB(D) be a closed and
uniformly L-Lipschitz continuous quasi-φ-nonexpansive multi-valued mapping. Let {αn}
be a sequence of real numbers such that αn ∈ (, ) for all n ∈N and satisfy limn→∞ αn = .
Let {xn} be the sequence generated by (.). Then {xn} converges strongly to �F(T)x.

Corollary . Let X be a real uniformly smooth and strictly convex Banach space with the
Kadec-Klee property, let D be a nonempty closed convex subset of X, and let T :D → CB(D)
be a closed and uniformly L-Lipschitz continuous quasi-φ-asymptotically nonexpansive
multi-valued mapping with nonnegative real sequences {kn} ⊂ [, +∞) and kn →  satisfy-
ing condition (.). Let {αn} be a sequence in (, ) and satisfy limn→∞ αn = . If {xn} is the
sequence generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ X is arbitrary; D =D,

yn = J–[αnJx + ( – αn)Jzn], zn ∈ Tnxn,

Dn+ = {z ∈ Dn : φ(z, yn) ≤ αnφ(z,x) + ( – αn)φ(z,xn) + ξn},
xn+ = �Dn+x (n = , , . . .),

(.)

where ξn = (kn – ) supp∈F(T) φ(p,xn), F(T) is the fixed point set of T , and �Dn+ is the gener-
alized projection of X onto Dn+, if F(T) is nonempty, then {xn} converges strongly to�F(T)x.
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4 Application
We utilize Corollary . to study a modified Halpern iterative algorithm for a system of
equilibrium problems.

Theorem . Let D, X and {αn} be the same as in Theorem .. Let f : D × D → R be a
bifunction satisfying conditions (A)-(A) as given in Example .. Let Tr : X → D be a
mapping defined by (.), i.e.,

Tr(x) =
{
x ∈D, f (z, y) +


r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈D

}
, ∀x ∈ X.

Let {xn} be the sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ X is arbitrary; D =D,

f (un, y) + 
r 〈y – un, Jun – Jxn〉 ≥ , ∀y ∈D, r > ,un ∈ Trxn,

yn = J–[αnJx + ( – αn)Jun],

Dn+ = {z ∈ Dn : φ(z, yn) ≤ αnφ(z,x) + ( – αn)φ(z,xn)},
xn+ =

∏
Dn+

x (n = , , . . .).

(.)

If F(Tr) �= �, then {xn} converges strongly to
∏

F(T) x, which is a common solution of the
system of equilibrium problems for f .

Proof In Example ., we have pointed out that un = Tr(xn), F(Tr) = EP(f ) andTr is a closed
quasi-φ-nonexpansive mapping. Hence (.) can be rewritten as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ X is arbitrary; D =D,

yn = J–[αnJx + ( – αn)Jun], un ∈ Trxn,

Dn+ = {z ∈ Dn : φ(z, yn) ≤ αnφ(z,x) + ( – αn)φ(z,xn)},
xn+ =

∏
Dn+

x (n = , , . . .).

(.)

Therefore the conclusion of Theorem . can be obtained from Corollary .. �
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