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Abstract
The paper deals with the split common fixed-point problem (SCFP) introduced by
Censor and Segal. Motivated by Eicke’s damped projection method, we propose a
cyclic iterative scheme and prove its strong convergence to a solution of SCFP under
some mild assumptions. An application of the proposed method to multiple-set split
feasibility problems is also included.

1 Introduction
The split feasibility problem (SFP) [] consists of finding an element x̂ ∈H satisfying

x̂ ∈ C, Âx ∈Q, ()

where C and Q are closed convex subsets in Hilbert spacesH and K, respectively. More-
over, if C and Q are the intersections of finitely many closed convex subsets, then the
problem is known as the multiple-set split feasibility problem (MSFP) []. Note that SFP
and MSFP model image retrieval [] and intensity-modulated radiation therapy [], and
they have recently been investigated by many researchers (see, e.g., [–]). One method
for solving SFP is Byrne’s CQ algorithm []: For any initial guess x ∈H, define {xn} recur-
sively by

xn+ = PC
(
xn – λA*(I – PQ)Axn

)
, ()

where PC stands for the metric projection onto C, I is the identity operator on K and λ is
the step-size satisfying  < λ < 

‖A‖ . By using Hundal’s counterexample, Xu [] showed
the CQ algorithm does not converge strongly in infinite-dimensional spaces. Motivated
by Byrne’s CQ algorithm,Wang and Xu [] proposed the following iterative method: For
any initial guess x ∈H, define {xn} recursively by

xn+ = PC
[
( – αn)

(
xn – λA*(I – PQ)Axn

)]
, ()

where {αn} ⊂ (, ) satisfies limn→∞ αn = ;
∑∞

n= αn = ∞; either
∑∞

n= |αn+ – αn| < ∞ or
limn→∞ |αn+ – αn|/αn = . It is worth noting that this algorithm is in fact a generalization
of Eicke’s damped projection method [] for solving convexly constrained linear inverse
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problems (see []). Motivated by Krasnosel’skii-Mann’s iteration, Dang and Gao [] pro-
posed the following algorithm: For any initial guess x ∈H, define {xn} recursively by

xn+ = ( – βn)xn + βnPC
[
( – αn)

(
xn – λA*(I – PQ)Axn

)]
, ()

where {αn} ⊂ (, ) satisfies (i) limn→∞ αn = ,
∑∞

n= αn = ∞; (ii) limn→∞ |αn+ – αn| = ;
(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < . It is clear that such an algorithm is an extension
of (). However, algorithm () fails to include the original one () because of condition (iii).
In the case where C andQ in () are the intersections of finitely many fixed-point sets of

nonlinear operators, problem () is called byCensor and Segal [] the split commonfixed-
point problem (SCFP). More precisely, SCFP requires to seek an element x̂ ∈H satisfying

x̂ ∈
p⋂
i=

Fix(Ui), Âx ∈
s⋂
j=

Fix(Tj), ()

where p, s ∈ N, Fix(Ui) and Fix(Tj) denote the fixed point sets of two classes of nonlinear
operators Ui :H →H, i = , . . . ,p and Tj :K →K, j = , . . . , s. In this situation, Byrne’s CQ
algorithm does not work because the metric projection onto fixed point sets is generally
not easy to calculate. To solve the two-set SCFP, that is, p = s =  in (), Censor and Se-
gal [] proposed the following iterative method: For any initial guess x ∈ H, define {xn}
recursively by

xn+ =U
(
xn – λA*(I – T)Axn

)
, ()

where λ >  is known as the step-size. They proved that if U and T in () are directed
operators, then λ should be chosen in (, 

‖A‖ ). Some further generations of this algo-
rithm were studied by Moudafi [] for demicontractive operators and by Wang-Xu []
for finitely many directed operators.
We note that the existing algorithms for SCFP have only weak convergence in the frame-

work of infinite-dimensional spaces (see [, ]). However, as pointed by Bauschke and
Combettes [], norm convergence of the algorithm is much more desirable than weak
convergence in some applied sciences. It is therefore of interest to seek modifications of
these algorithms so that strong convergence is guaranteed. Following the damped projec-
tionmethod, we propose in this paper a new iterative scheme and prove its strong conver-
gence to a solution of SCFP. An application of our method to multiple-set split feasibility
problems is also included. This enables us to cover some recent results on split feasibility
problems.

2 Preliminary and notation
Throughout this paper, I denotes the identity operator onH, Fix(T) the set of fixed points
of an operator T , ‘→’ strong convergence, and ‘⇀’ weak convergence. Given a positive
integer p, denote by [n] := (nmodp) the mod function taking values in {, , . . . ,p}.

Definition  An operatorT :H →H is called nonexpansive if ‖Tx–Ty‖ ≤ ‖x–y‖, ∀x, y ∈
H; firmly nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ – ‖(I – T)x – (I – T)y‖, ∀x, y ∈H.
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Definition  Assume that T : H → H is a nonlinear operator. Then I – T is said to be
demiclosed at zero, if, for any {xn} inH, the following implication holds:

xn ⇀ x,
(I – T)xn → 

]
⇒ x ∈ Fix(T).

Clearly, firm nonexpansiveness implies nonexpansiveness. It is well known that nonex-
pansive operators are demiclosed at zero (cf. []).

Definition  Let T :H → H be an operator with Fix(T) 
= ∅. Then T is called directed if
〈z –Tx,x –Tx〉 ≤ , ∀z ∈ Fix(T), x ∈H; ν-demicontractive with ν ∈ (–∞, ) if ‖Tx – z‖ ≤
‖x – z‖ + ν‖(I – T)x‖, ∀z ∈ Fix(T), x ∈H.

Lemma  (Bauschke-Combettes []) An operator T : H → H is directed if and only if
one of following inequalities holds for all z ∈ Fix(T) and x ∈H:

‖Tx – z‖ ≤ ‖x – z‖ – ∥∥(I – T)x
∥∥; ()〈

(I – T)x,x – z
〉 ≥ ∥∥(I – T)x

∥∥. ()

It is clear that demicontractive operators include directed operators, while the latter
include firmly nonexpansive operators with nonempty fixed-point sets. The concept of
directed operators was introduced by Bauschke and Combettes []. Such a class of op-
erators is important because they include many types of nonlinear operators arising in
applied mathematics. For instance, the metric projections onto a closed convex subset.
Recall that the metric projection, denoted by PC :H → C, is defined by

PCx = argmin
y∈C ‖x – y‖, x ∈H.

It is well known that PCx is characterized by the variational inequality

〈x – PCx,PCx – z〉 ≥ , ∀z ∈ C. ()

Lemma  (Wang-Xu []) Assume that A :H → K is a bounded linear operator and T :
K →K is a directed operator. Let Vλ = I – λA*(I – T)A with λ > . Then

Fix(Vλ) = A–(Fix(T)),
whenever A–(Fix(T)) := {x ∈H : Ax ∈ Fix(T)} is nonempty.

Lemma  Assume that A :H → K is a bounded linear operator and T : K → K is a di-
rected operator. Let Vλ = I – λA*(I – T)A with  < λ < 

‖A‖ . If A
–(Fix(T)) is nonempty,

then

‖Vλx – z‖ ≤ ‖x – z‖ –  – λ‖A‖
λ‖A‖ ‖Vλx – x‖, ()

for all z ∈ A–(Fix(T)) and x ∈H.

http://www.journalofinequalitiesandapplications.com/content/2013/1/123
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Proof Since Az ∈ Fix(T), it follows from () that

〈
(I –Vλ)x,x – z

〉
= λ

〈
(I – T)Ax,Ax –Az

〉
≥ λ

∥∥(I – T)Ax
∥∥

≥ 
λ‖A‖

∥∥(I –Vλ)x
∥∥.

Consequently,

‖Vλx – z‖ =
∥∥(x – z) + (Vλx – x)

∥∥

= ‖x – z‖ + ‖Vλx – x‖ + 〈x – z,Vλx – x〉

≤ ‖x – z‖ –  – λ‖A‖
λ‖A‖ ‖Vλx – x‖.

Hence the proof is complete. �

We end this section by a useful lemma.

Lemma  (Xu []) Let {an} be a nonnegative real sequence satisfying

an+ ≤ ( – αn)an + αnbn,

where {αn} ⊂ (, ) and {bn} are real sequences. Then an →  provided that
(i)

∑
n αn = ∞, limn αn = ,

(ii) limn bn ≤  or
∑

αn|bn| < ∞.

3 Algorithm and its convergence analysis
In this section, we consider the following problem.

Problem  Find an element x̂ ∈H satisfying

x̂ ∈
p⋂
i=

Fix(Ui), Âx ∈
p⋂
i=

Fix(Ti), ()

where p is a positive integer and (Ui)
p
i=, (Ti)

p
i= are two classes of directed operators such

that Ui – I and Ti – I are demiclosed at zero for every i = , , . . . ,p.

We remark here that problem () is a special case of (). However, this is not restrictive.
Indeed, following an idea in [], one can easily extend the results to the general case.
We now present our algorithm for SCFP: Take x ∈ H and define a sequence {xn} by the
iterative procedure:

xn+ = ( – βn)xn + βnUn
[
( – αn)

(
xn – λnA*(I – Tn)Axn

)]
, ()

where Un :=U[n], Tn := T[n] and {αn} ⊂ (, ), {βn} ⊆ [, ], {λn} ⊆ R
+ are properly chosen

real sequences.
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Theorem  Assume that the following conditions hold:
(i) lim infn→∞ βn > ,
(ii) limn→∞ αn = ,

∑∞
n= αn = ∞,

(iii)  < λ ≤ λn ≤ λ < 
‖A‖ .

If the solution set of problem () denoted by � is nonempty, then the sequence {xn} gener-
ated by () converges strongly to P�().

Proof We first show the boundedness of {xn}. To see this, let z = P�() and set Vn = I –
λnA*(I – Tn)A, yn = ( – αn)Vnxn. Hence

‖yn – z‖ =
∥∥( – αn)(Vnxn – z) – αnz

∥∥
≤ ( – αn)‖xn – z‖ + αn‖z‖.

Since Un is directed, it follows that

‖xn+ – z‖ =
∥∥( – βn)(xn – z) + βn(Unyn – z)

∥∥
≤ ( – βn)‖xn – z‖ + βn‖yn – z‖.

Adding up these inequalities, we have

‖xn+ – z‖ ≤ ( – αnβn)‖xn – z‖ + αnβn‖z‖.

By induction, the sequence {xn} is bounded, and so is {yn}.
Next we show the following key inequality:

sn+ ≤ ( – αnβn)sn + αnβn〈z – yn, z〉 – cn, ()

where sn = ‖xn – z‖ and

cn = βn

[
( – αn)( – λ‖A‖)

λ‖A‖
∥∥(I –Vn)xn

∥∥ +
∥∥(I –Un)yn

∥∥
]
.

Indeed, in view of Lemma , we arrive at

‖Unyn – z‖ ≤ ‖yn – z‖ – ∥∥(I –Un)yn
∥∥,

‖Vnxn – z‖ ≤ ‖xn – z‖ –  – λn‖A‖
λn‖A‖

∥∥(I –Vn)xn
∥∥ ()

≤ ‖xn – z‖ –  – λ‖A‖
λ‖A‖

∥∥(I –Vn)xn
∥∥.

On the other hand, we deduce that

‖yn – z‖ =
∥∥( – αn)(Vnxn – z) – αnz

∥∥

≤ ( – αn)‖Vnxn – z‖ + αn〈z – yn, z〉, ()
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where we use the subdifferential inequality, and also that

‖xn+ – z‖ =
∥∥( – βn)(xn – z) + βn(Unyn – z)

∥∥

≤ ( – βn)‖xn – z‖ + βn‖Unyn – z‖. ()

Adding up ()-(), we thus get inequality ().
Finally, we prove sn → . To see this, let {snk } be a subsequence such that it includes all

elements in {sn} with the property: each of them is less than or equal to the term after it.
Following an idea developed by Maingé [], we consider two possible cases on such a
sequence.
Case . Assume that {snk } is finite. Then there exists N ∈ N such that sn > sn+ for all

n≥ N , and therefore {sn} must be convergent. It follows from () that

cn ≤ Mαnβn + (sn – sn+),

whereM >  is a sufficiently large real number. Consequently, both ‖(I –Vn)xn‖ and ‖(I –
Un)yn‖ converge to zero. We have

‖yn – xn‖ ≤ ‖yn –Vnxn‖ + ‖Vnxn – xn‖
= αn‖Vnxn‖ + ‖Vnxn – xn‖ → ,

which implies

‖xn+ – xn‖ ≤ ‖Unyn – yn‖ + ‖yn – xn‖ → .

Take a subsequence {ynk } of {yn} so that

lim sup
n→∞

〈z, z – yn〉 = lim
k→∞

〈z, z – ynk 〉.

Without loss of generality, we assume that {ynk } weakly converges to an element y′. Let
an index i ∈ {, , . . . ,p} be fixed. Noticing that the pool of indexes is finite, we can find a
subsequence {ymk } of {yn} such that ymk ⇀ y′ and [mk] = i for all k. Since ‖(I –Ui)ymk‖ =
‖(I – Umk )ymk‖ → , we thus use the demiclosedness of I – Ui at zero to conclude that
y′ ∈ Fix(Ui). On the other hand, we deduce from () that∥∥(I – Ti)Axmk

∥∥ ≤ 〈
(I – Ti)Axmk ,Axmk –Az

〉
=

〈
A*(I – Ti)Axmk ,xmk – z

〉
≤ 

λ

∥∥(I –Vi)xmk

∥∥‖xmk – z‖

≤ M
∥∥(I –Vi)xmk

∥∥ → .

As xmk – ymk → , the weak continuity of A yields that Axmk ⇀ Ay′, which together with
the demiclosedness of I – Ti at zero enables us to deduce Ay′ ∈ Fix(Ti). Since the index i
is arbitrary, we therefore conclude y′ ∈ �. Consequently,

lim sup
n→∞

〈z, z – yn〉 =
〈
z, z – y′〉 ≤ ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/123
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where the inequality uses (). It then follows from () that

sn+ ≤ ( – αnβn)sn + αnβn〈z – yn, z〉.

We therefore apply Lemma  to conclude sn → .
Case . Assume now that {snk } is infinite. Let n ∈ N be fixed. Then there exists k ∈ N

such that nk ≤ n ≤ nk+. By the choice of {snk }, we see that snk+ is the largest one among
{snk , snk+, . . . , snk+}; in particular,

snk ≤ snk+ and sn ≤ snk+. ()

Then we deduce from () that cnk ≤ Mαnk so that

∥∥(I –Vnk )xnk
∥∥ +

∥∥(I –Unk )ynk
∥∥ → . ()

In a similar way to case , we deduce ‖xnk+ – xnk‖ →  and

lim sup
n→∞

〈u – z, ynk – z〉 ≤ .

Since by () snk ≤ snk+, it follows from () that

snk ≤ 〈z, z – ynk 〉. ()

Hence limk→∞ snk ≤  so that snk → . Moreover,

|snk+ – snk | =
∣∣‖xnk+ – z‖ – ‖xnk – z‖∣∣

≤ ‖xnk+ – xnk‖
(‖xnk+ – z‖ + ‖xnk – z‖) → ,

which immediately implies snk+ → . Consequently, sn →  follows from () and the
proof is complete. �

We next use our algorithm to approximate a solution to the two-set SCFP: Find an ele-
ment x̂ ∈H such that

x̂ ∈ Fix(U), Âx ∈ Fix(T), ()

where U : H → H and T : K → K are directed operators so that U – I and T – I are
demiclosed at zero.

Corollary  Suppose that the following conditions hold:
(i) limn→∞ αn = ,

∑∞
n= αn = ∞,

(ii)  < λ ≤ λn ≤ λ < 
‖A‖ .

Then the sequence {xn}, generated by

xn+ =U
[
( – αn)

(
xn – λnA*(I – T)Axn

)]
, ()

converges strongly to P�(), whenever such point exists.

http://www.journalofinequalitiesandapplications.com/content/2013/1/123
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4 Some applications
In this section, we extend our result to SCFP for demicontractive operators recently con-
sidered by Moudafi [].

Problem  Find an element x̂ ∈H satisfying

x̂ ∈
p⋂
i=

Fix(Ui), Âx ∈
p⋂
i=

Fix(Ti), ()

where p is a positive integer and (Ui)
p
i=, (Ti)

p
i= are respectively νi-demicontractive and

κi-demicontractive operator so that Ui – I and Ti – I are demiclosed at zero for every
i = , , . . . ,p.

The following lemma states a relation between directed and demicontractive operators.

Lemma  Let ν ∈ (–∞, ) and τ ∈ (, –ν
 ]. If T is ν-demicontractive, then Tτ := ( – τ )I +

τT is directed.

Proof For ∀z ∈ Fix(T), we deduce that

‖Tτx – z‖ =
∥∥( – τ )(x – z) + τ (Tx – z)

∥∥

= ( – τ )‖x – z‖ + τ‖Tx – z‖ – τ ( – τ )
∥∥(I – T)x

∥∥

≤ ‖x – z‖ – τ ( – ν – τ )
∥∥(I – T)x

∥∥

= ‖x – z‖ –  – τ /( – ν)
τ /( – ν)

∥∥(I – Tτ )x
∥∥

≤ ‖x – z‖ – ∥∥(I – Tτ )x
∥∥.

Then the result follows from Lemma . �

We now propose an algorithm to solve problem (). Take x ∈H and define a sequence
{xn} by the iterative procedure

xn+ =Uτn

[
( – αn)

(
xn – λA*(I – Tγn )Axn

)]
, ()

where {αn} ⊂ (, ), Uτn = ( – τ[n])I + τ[n]U[n] and Tγn = ( – γ[n])I + γ[n]T[n]. By using the
previous lemma, we can easily extend our result to demicontractive operators.

Theorem  Let  < τi ≤ –νi
 and  < γi ≤ –κi

 for every i = , , . . . ,p. Assume that the
following conditions hold:

(i) limn→∞ αn = ,
∑∞

n= αn = ∞,
(ii)  < λ <min{ –κi

γi‖A‖ :  ≤ i≤ p}.
If the solution set of problem () denoted by � is nonempty, then the sequence {xn} gener-
ated by () converges strongly to P�().

Remark  Theorem  also holds true if we relax hypothesis (ii) above as  < λ <
min{ –κi

γi‖A‖ :  ≤ i≤ p}.

http://www.journalofinequalitiesandapplications.com/content/2013/1/123
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We next consider the multiple-set split feasibility problem (MSFP): Find an element x̂ ∈
H satisfying

x̂ ∈
p⋂
i=

Ci, Âx ∈
p⋂
i=

Qi, ()

where {Ci}pi= and {Qi}pi= are closed convex subsets inH and K, respectively. Take x ∈H
and define a sequence {xn} by the iterative procedure

xn+ = ( – βn)xn + βnPCn

[
( – αn)

(
xn – λnA*(I – PQn )Axn

)]
, ()

where Cn := C[n], Qn :=Q[n], and {αn} ⊂ (, ), {βn} ⊆ [, ], {λn} ⊆R
+ are properly chosen

real sequences.

Theorem  Assume that the following conditions hold:
(i) lim infn→∞ βn > ,
(ii) limn→∞ αn = ,

∑∞
n= αn = ∞,

(iii)  < λ ≤ λn ≤ λ < 
‖A‖ .

If the solution set of MSFP denoted by � is nonempty, then the sequence {xn} generated by
() converges strongly to P�().

Proof We note that the metric projection PC is firmly nonexpansive, which implies PC is
directed and I–PC is demiclosed at zero. Hence, by using Theorem , one can immediately
get the desired result. �

Remark  Theorem  covers [, Theorem .], and we relax the condition on {βn} as
lim infn→∞ βn > . Moreover, the choice of variable {λn} is more flexible than the fixed
one. Also, we cover the result of [] and remove one condition posed on {αn}: either∑∞

n= |αn+ – αn| < ∞ or limn→∞ |αn+ – αn|/αn = .
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