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Abstract
For p,q, r, s, t ∈ Z

+ with rt ≤ p and st ≤ q, let G = G(p,q; r, s; t) be the bipartite graph
with partite sets U = {u1, . . . ,up} and V = {v1, . . . , vq} such that any two edges ui and vj
are not adjacent if and only if there exists a positive integer k with 1≤ k ≤ t such that
(k – 1)r + 1≤ i ≤ kr and (k – 1)s + 1≤ j ≤ ks. Under these circumstances, Chen et al.
(Linear Algebra Appl. 432:606-614, 2010) presented the following conjecture:
Assume that p≤ q, k < p, |U| = p, |V| = q and |E(G)| = pq – k. Then whether it is true

that

λ1(G)≤ λ1(G(p,q; k, 1; 1)) =

√
pq – k +

√
p2q2 – 6pqk + 4pk + 4qk2 – 3k2

2
.

In this paper, we prove this conjecture for the range minvh∈V{deg vh} ≤ � p–1
2 �.
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1 Introduction
Let G be a (simple) graph with the vertex and edge sets given by V (G) = {v, v, . . . , vn} and
E(G) = {vivj | vi and vj are adjacent}, respectively. The adjacency matrix of G on n vertices
is an n× nmatrix A(G) whose entries aij are given by

aij =

⎧⎨
⎩; if vivj ∈ E(G),

; otherwise.

Since A(G) is symmetric, all the eigenvalues of A(G) are real. In fact, the eigenvalues of
A(G) are called eigenvalues of the graph G. We can list the eigenvalues of the graph G in a
non-increasing order as follows:

λ(G)≥ λ(G) ≥ · · · ≥ λn–(G) ≥ λn(G).

The largest eigenvalue λ(G) is often called the spectral radius of G.
Throughout this paper, we will consider only finite, simple, undirected, bipartite graphs.

So, let us suppose that G = (U ∪V ,E) is such a bipartite graph, where U = {u,u, . . . ,up},
V = {v, v, . . . , vq} are two sets of vertices and E is the set of edges defined as a subset of

© 2013 Das et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2013/1/121
mailto:cangul@uludag.edu.tr
http://creativecommons.org/licenses/by/2.0


Das et al. Journal of Inequalities and Applications 2013, 2013:121 Page 2 of 5
http://www.journalofinequalitiesandapplications.com/content/2013/1/121

U × V . As a usual notation, the degrees of vertices ui ∈ U and vj ∈ V will be denoted by
degui and deg vj, respectively. For the integers p,q, r, s, t ∈ Z

+ satisfying rt ≤ p and st ≤ q,
let us denote the bipartite graphG byG(p,q; r, s; t) with the above partite setsU andV such
that ui ∈ U and vj ∈ V are not adjacent if and only if there exists a k ∈ Z

+ with  ≤ k ≤ t
such that (k – )r +  ≤ i ≤ kr and (k – )s +  ≤ j ≤ ks.
In the literature, upper bounds for the spectral radius in terms of various parameters

for unweighted and weighted graphs have been widely investigated [–]. As a special
case, in [], Chen et al. studied the spectral radius of bipartite graphs which are close to
a complete bipartite graph. For partite sets U and V having |U| = p, |V | = q and p ≤ q,
in the same reference, the authors also gave an affirmative answer to the conjecture [,
Conjecture .] by taking |E(G)| = pq –  into account of a bipartite graph. Furthermore,
refining the same conjecture for the number of edges is at least pq– p+ , there still exists
the following conjecture.

Conjecture  [] For positive integers p, q and k satisfying p ≤ q and k < p, let G be a
bipartite graph with partite sets U and V having |U| = p and |V | = q, and |E(G)| = pq – k.
Then

λ(G) ≤ λ
(
G(p,q;k, ; )

)
=

√
pq – k +

√
pq – pqk + pk + qk – k


.

We note that similar conjectures in this topic have been resolved by the first author in
the papers [–]. In here, as the main goal, we present the proof of Conjecture  for the
range minvh∈V {deg vh} ≤ � p–

 �.

2 Main result
The following lemma will be needed for the proof of our main result.

Lemma  [] Let λ be the spectral radius of the bipartite graph G(p,q;k, ; ). Then

λ =

√
pq – k +

√
pq – pqk + pk + qk – k


.

We now present an upper bound on the spectral radius of the bipartite graph G.

Theorem  For positive integers p, q and k satisfying p ≤ q and k < p, let G be a bipar-
tite graph with partite sets U and V having |U| = p and |V | = q, and |E(G)| = pq – k. If
minvh∈V {deg vh} ≤ � p–

 �, then

λ(G) ≤
√
pq – k +

√
pq – pqk + pk + qk – k


()

with equality if and only if G ∼= G(p,q;k, ; ).

Proof Let Z = (x,x, . . . ,xp, y, y, . . . , yq)T be an eigenvector of A(G) corresponding to an
eigenvalue λ(G). For the sets U and V , let xi =max≤h≤p xh and yj =max≤h≤q yh, respec-
tively. Also, let us suppose that v is the vertex having minimum degree in V . Then we
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have
⌊
p – 


⌋
≥ min

vh∈V{deg vh} = deg v = d (say).

Now,

A(G)Z = λ(G)Z. ()

Considering (), we get

λ(G)xi ≤ (q – )yj + y for ui ∈U ()

and

λ(G)y ≤ dxi for v ∈ V . ()

However, from () and (), we clearly obtain

λ
 (G)y ≤ d

[
(q – )yj + y

]
,

which can be written shortly as

(
λ
 (G) – d

)
y ≤ (q – )dyj. ()

Since v is the vertex with the minimum degree d in V and the total number of edges
in bipartite graph G is pq – k, we have

p∑
h=

λ(G)xh ≤ (pq – k – d)yj + dy. ()

For vj ∈ V , from () we get

λ(G)yj =
∑

uh :uhvj∈E
xh.

In other words, by (),

λ
 (G)yj =

∑
uh :uhvj∈E

λ(G)xh ≤
p∑

h=

λ(G)xh ≤ (pq – k – d)yj + dy,

that is,

(
λ
 (G) – pq + k + d

)
yj ≤ dy. ()

From () and (), we get

λ
 (G) – (pq – k)λ

 (G) + d(pq – k – qd)≤ ,
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that is,

λ(G) ≤
√
pq – k +

√
pq – pqk + k – pqd + kd + qd




. ()

Let us consider a function

f (x) = qx + kx – pqx, where x ≤
⌊
p – 


⌋
.

Then

f ′(x) = –q
(
p –

k
q
– x

)
< , as x≤

⌊
p – 


⌋
and k < p≤ q.

Thus f (x) is a decreasing function on ≤ x≤ � p–
 �. Since p– k ≤ d ≤ � p–

 � , from (), we
get the required result ().
Suppose now that equality holds in (). Then all inequalities in the above argumentmust

become equalities. Thus we have d = p – k. From the equality in (), we get

yh = yj, h = , , . . . ,q and

uivh ∈ E, h = , , . . . ,q.

From the equality in (), we get

xh = xi, h = p – d + ,p – d + , . . . ,p and

uhv ∈ E, h = p – d + ,p – d + , . . . ,p.

From the equality in (), we get

yh = yj, h = , , . . . ,q and

uhvj ∈ E, h = , , . . . ,p, j = , , . . . ,q.

Hence we conclude that G ∼= G(p,q;k, ; ).
Conversely, by Lemma , one can easily see that the equality holds in () for the graph

G(p,q;k, ; ). �

Remark  In Theorem , we proved Conjecture  for the range minvh∈V {deg vh} ≤ � p–
 �.

However, this conjecture is still open for the range � p–
 � <minvh∈V {deg vh} < p.
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