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Abstract

In this paper, we prove a generalization of the strong Ekeland variational principle for
a generalized distance (i.e, u-distance) on complete metric spaces. The result present
in this paper extends and improves the corresponding result of Georgiev (J. Math.
Anal. Appl. 131:1-21, 1988) and Suzuki (J. Math. Anal. Appl. 320:788-794, 2006).
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1 Introduction
In 1974, Ekeland [1] proved the following, which is called the Ekeland variational principle
(for short, EVP).

Theorem 1.1 [1] Let (X, d) be a complete metric space with metric d and f be a function
from X into (—o0o, +00] which is proper lower semicontinuous bounded from below. Then
forue X and ) > 0, there exists v € X such that

(B) £(v) < () — A,V

Q) fw)>f(v)—rd(v,w) for every w #v.

Later, Takahashi [2] showed that this principle is equivalent to the Caristis fixed point
theorem and nonconvex minimization theorem. In 1988, Georgiev [3] proved the follow-

ing generalization of Theorem 1.1, which is called the strong Ekeland variational principle.

Theorem 1.2 [3] Let X be a complete metric space with metric d and f : X — (—00, +00]
be proper lower semicontinuous bounded from below. Then, for allu € X, > >0 and § > 0,
there exists v € X satisfying the following:

(P)Y fv) <f(u) —rd(u,v) +5;
Q) fw)>f(v)—rd(v,w) for every w € X \ {v};
(R) if a sequence {x,} in X satisfies lim,_.oc(f(x,) + Ad(v,x,)) = f(v), then {x,} converges

tov.

On the other hand, Kada et al. [4] introduced the concept of w-distance defined on a
metric space and extended the Ekeland variational principle, the Kirk-Caristi fixed point
theorem and the minimization theorem for w-distance. Recently, Suzuki [5, 6] introduced
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a more general concept than w-distance, which is called 7-distance, and established the
strong Ekeland variational principle for r-distance. Very recently, Ume [7] introduced a
more generalized concept than t-distance, which is called u-distance, and proved a new
minimization and a new fixed point theorem by using u-distance on a complete metric
space.

In this paper, we prove the strong Ekeland variational principle for u-distance on a
complete metric space. The results of this paper extend and generalize some results in
Georgiev [3], Suzuki [5], Ansari [9] and Park [10].

2 Preliminaries
Throughout the paper, we denote by N the set of all positive integers, by R the set of real
numbers, R, = [0,00). Let us recall the following well-known definition of a u#-distance.

Definition 2.1 ([8] and [7]) Let X be a complete metric space with metric d. Then a func-
tion p: X x X — R, is called a u-distance on X if there exists a function 6 : X x X x
[0,00) x [0,00) — R, such that
(W) p(x,z) < px,y) +py,z) forall x,y,z € X;
(u2) 6(x,9,0,0) =0, O(x,y,s,£) > min{s, ¢} for all x,y € X and s, t € [0, 00), and for any
x € X and for every € > 0, there exists § > 0 such that |s —so| <6, [t — o] <,
s,80,t,tp € [0,00) and y € X imply

|9(x,y,S, t) - e(x’y’SOI t0)| <€

(u3) limy, 00 %, = x and limy,—, oo SUP{O Wy, 21, PWi, X1), P(Zty X)) = 11 > 1} = 0 imply
p(,x) <lim,_, o infp(y,x,) for all y € X;

(ud) limy,_ o sup{p(x,, wy,) : m > n} = 0, lim,, o SUp{p(Y, 2mm) : m > n} = 0,
limy,;, 00 0(Xy, Wi, S ) = 0 and limy,—, 00 0 (V> 24y Sus t) = 0 imply
limy, s 00 @ W, 2y Sy £) = 0 or lim,,_s o SUP{ (W), ) : 11 > 1} = 0,
limy,— o SUP{P (2, ¥n) : M > 1} = 0, limy,— o0 O (X, Wy, S, £,) = 0 and
1imy,— 00 @ Vs 20 Sy t) = 0 imply limy,—, 00 O(Wy, 21y, S 1) = 05

(u5) lim,, oo O(Wy, 20, p(Wy, %), P21, %)) = 0 and
1imy; 00 O (Wi 21y PWiis Y1), P20, Y1) = O imply limy,, . o0 d(x, y,) = 0 or
limy,— o0 (@, by, p(Xs @), p(Xn, b)) = 0 and
1im,,, o0 0@, by PG @) PWs by)) = 0 imply lim,,, oo d(x,, y,,) = 0.

Proposition 2.2 [7] Let p be a u-distance on a metric space (X, d) and c be a positive real
number. Then a function q: X x X — R, defined by q(x,y) = ¢ - p(x,y) for every x,y € X is

also a u-distance on X.

Lemma 2.3 [7] Let (X,d) be a metric space and let p be a u-distance on X. If {x,} is a

p-Cauchy sequence, then {x,} is a Cauchy sequence.

Lemma 2.4 [7] Let (X,d) be a metric space and p be a u-distance on X. Suppose that a

sequence {x,} of X satisfies

lim sup{p(x,,,xm) m> n} =0
n—0oQ
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or

lim sup{p(xm,xn) cm > n} =0.
n— o0

Then, {x,} is a p-Cauchy sequence and {x,} is a Cauchy sequence.

3 Main theorem

Lemma 3.1 Let X be a complete metric space and p be a u-distance on X. If a sequence {x,,}
of X satisfies lim,_, o p(z,x,) = 0 for some z € X, then {x,} is a p-Cauchy sequence. More-
over, if a sequence {y,} of X also satisfies lim,_, p(z,y,) = 0, then lim,_, cc p(X,, yu) = 0. In
particular, for x,y,z € X, p(z,x) = 0 and p(z,y) = 0 imply x = y.

Proof Let 0 be a function from X x X x [0, 00) x [0, 00) into R, satisfying (ul)-(u5). From
lim, p(z,x,) = 0, it follows by (u2) that lim,,_, o 0(2, 2, p(2, x,.), p(z,%,,)) = 0. Therefore, {x,}
is a p-Cauchy sequence. d

Theorem 3.2 Let X be a complete metric space and T be a mapping from X into itself.
Suppose that there exists a u-distance p on X and r € [0,1) such that p(Tx, T*x) < r-p(x, Tx)
for all x € X. Assume that either of the following hold:
(i) Iflim,_ oo SUp{p(xy, X)) : m > 1} = 0, lim,,—, oo p(X,1x,,) = 0 and lim,,_, oo p(x,,5) = 0,
then Ty = y;

(ii) if {xu} and {Tx,} converge to y, then Ty = y;

(iii) T is continuous.
Then, there exists xy € X such that Txy = xo and p(xg,xo) = 0.

Proof 1Tt is the same as the proof of Theorem 1 in [5]. d

Lemma 3.3 Let X be a complete metric space, p be a u-distance on X and ¢ be a function
from X x X into (—00, 00] satisfying

(1) ¢(x,2) <X, ) + d(y,2) forall x,y,z € X;

(2) ¢(x,-): X — (—00,00] is lower semicontinuous for any x € X;

(3) there exists an xq such that infyex ¢ (xo,y) > —00; and

(4) ¢(x,5) = —4(,%).
Define Mx ={y € X : ¢p(x,7) + p(x,y) < 0}. Let u € X and c € R, such that ¢(x,u) < oo for all
x€X,Mu ¥ and c > ¢(x,u) —infyeprr, $(, ). Then a function q: X x X — R, defined by

o (u,x) —infyeps @(1r,y)  if x € Mu and y € Mx,

Q(x»)’) =
c+plx,y) ifx ¢ Muoryé¢ Mx

is a u-distance on X.

Proof Let n be a function from X x X x R, x R, into R, satisfying (u2)-(u5) for a u-
distance. We note that ¢(x,y) + ¢(y,2) + p(x,y) + p(y,2) < 0 and ¢(x,2) + p(x,z) < 0. Thus,
y € Mx and z € My imply z € Mx. If x € Mu and y € Mx, then

px,y) < d(,%) < q(x,y) = ¢(y,%) —yiel}vi;xwx,y)

< ¢(x,u) —yiergucb(x,y) <c
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Therefore, p(x,y) < q(y,x) < ¢+ p(x,y) for all x,y € X. To complete the proof, we will show
(ul)y, (u3)g,,, (ud),, and (u5),,. Let x, y and z be fixed elements in X. In the case x € Mu,
y € Mx, y € Mu and z € My, we have z € Mx and hence ¢q(x,z) = q(x,y) < q(x,y) + q(¥,2). In

the other case, we note that

qx,z) < c+px,z) <c+pxy) +p(y,z)
<2c+pxy) +py,2)
= qx,9) +q(y,2).
This shows (ul),.
We next suppose that lim,,_, o %, = x and lim,,_, o, Sup{n(wy, 2, qWy,, %), @211, X)) : 12 >
n} =0 and fix w € X. Since lim,,_, oo SUp{0 Wy, 211, PWys X11), P21, %11)) : m > n} = 0, we have
pw,x) <liminf,_, - p(w,x,) for all y € X.

In the case that w € Mu and there exists a subsequence {x,, } of {x,} such that x,, € Mw
for all k € N, we have

o(w,x) + p(w,x) < lim infp(w,x,) + lim p(w,x,)
n— 00 n—0o0

< lim inf(¢(w,x,) + p(w,x,))

< lim inf(p(w, %) + p(W, %))

<0,
and so x € Mu. Hence
qw,x) = p(u, w) — xielgwd)(u,x) = kll)rrolo qw,x,,) = nll)rgo infg(w, x,).
In the other case, we obtain

q(w,x) < c+p(w,x) < lim inf(c + p(w, x,,))
n— 00

= lim infg(w,x,).
n—oQ0

This shows (u3),,,. We will show that g satisfies (u4),,,.

Case I: Suppose that lim,,_, o, sup{g(x,,, wy,) : m > n} = 0, lim,,_, oo SUp{q(V, 2,,) : M > 1} =
0, limy,—, oo 9(%y, Wy, Sis £,) = 0, and limy,—, oo NV, 211, Sy £4) = 0.

In the case x,, € Mu and w,,, € Mx,,, we note that g(x,, w,) = ¢(u, x,) —infy,, eptx, (4 Win).

Since ¢(x,,, Wy) + p(x,, wy,) < 0, it follows that

p(xm Wm) =< _¢(xn’ Wn) = ¢(Wm1xn)
< oW, u) + (1, x,,)
= ¢(urxn) - ¢(M7 Wm)

=< ¢(ern) - inf ¢(”» Wm) = q(xm Wm)'
Wi EMxy,
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Thus, we have p(x,,, w,,) < q(%,,, wy,,). This implies that sup,,., p(x,, W) < sup,,.-.,, (%, Wpn).

Take n — o0, so
0 < lim supp(xy,, wy,) < lim supg(x,, w,,) =0
n—oQ n— 00

and therefore lim,,_, », sup p(x,, w,,) = 0
Similarly, if y, € Mu and z,, € My,, then lim,,_, oo SUp p(¥4, zin) = 0
We note that lim,,_, o, 0%, Wy, Sy, £,) = 0 = limy,—, o 6 (¥, 24> Sy, ) and hence

lim T](szn; Sn» tn) =0.
n—00

In the case x,, # Mu or w,, # Mx,, we note that p(x,, w,,) < ¢ + p(x, Wi) = q(x1, Wpr)-
Thus, we have p(x,, w,,) < q(x,,, w,,,). This implies that Sup,,s.,y P, wy) < SUp,,;s., q(xy,

Wwy,). Taking n — 0o, we obtain
0 < lim supp(x,, wy,) < lim supq(x,, wy,) =0
n—00 Hn— 00

and therefore lim,_, o sup p(x,, w,) = 0. Similarly as above, if y, # Mu and z,, # My,, then
lim,,—, oo SUP PV, Z1) = 0. We note that lim,,_, oo 0 (%, Wy, Sy, £,) = 0 = 1imy,—, 00 O Vs Zuy S E)
and hence lim,,_, oo N(Wy;, 21, S, ) = 0

Case II: Suppose that lim,_, o sup{g(W,, %) : m > n} = 0, limy,—, oo SUP{G (21, V) : 1 >
n} =0, limy,— o0 7%, Wy, Su, £) = 0 and imy,—, o (Y, Zus S £) = 0. Similarly as in Case I, we
can show that lim,—, o 7(Wy, Zs, S, £n) = 0. This shows (u4),, . We will show that g satisfies
(u5),,,-

Case I: Suppose that lim,,_, oo (W), 211, §(%1, Wi), q(%11, 2,)) = 0 and limy,—, oo N(Wy, 211, GV
Wy), 4V, 2,)) = 0. In the case x,, € Mu and w,, z, € Mx,,, we note that g(x,,, w,) = ¢(u,x,,) —

inf,, emx, ¢ (1, w,) and hence q(x,,,z,,) = ¢(u,x,,) — inf,, ey, $(1,2,). Thus, we have

O (Wis Zs D(Ens W) DX 2n)) < O (W Zir (20 X)s D (210 %))
Q(W s Zny @ (Wi, 1) + (14, %), B2, 1) + qﬁ(u,x,,))
9(W 2 Zny @ ” Xn) (}5(%, Wn)r o(u, xn) - ¢(ur Zn))

9<szm¢(u Xn) — IQVfI o(u, wy), (U, x,)
- znlel}\;xﬂ ¢(u’ Zn))

= W(Wm Zyy q(xm Wn)’ q(xnv Zn))'
Taking n — oo, we have
0 < 1im 0(Wy, Zus P W) PK120)) < im0 (Win, Zss @Kt W), (% 20)) =
n—oQ n— 00
Therefore lim,,—, oo 0 (Wy,, 2,1, (X, W), (X1, 2,,)) = 0. Similarly, if y,, € Mu and z,,, w, € My,,

then limy,—, o0 O Wy, 21, POV Wi), P> 24)) = 0. In the case x, # Mu or wy,z, # Mx,, we
have g(x,, w,) = ¢ + p(x,, w,) and q(x,,z,) = ¢ + p(x,,z,). Since p is a u-distance, we have
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lim,,, oo d(x,,, ¥,) = 0. Hence

O (Wins Zns € + P(ns W), € + P(Kns Zn)) < 0 (Wiss Zus € + P(6ns Win)s € + (s Z1))

= U(Wm Zy, q(xm Wn)r q(xm Zn))~
Take n — oo, thus
0 < 1im 6/(Wy, Zus Pt W), DX 20)) < im0 (Winy 20y (X1 W), 4 (%1 20)) = 0.

Therefore lim,,—, oo 0 (Wy, 241, P(X 1, W), P(X11, 24)) = 0. Simiilarly, if y,, # Mu or wy,z, # My,,
then lim,,—, oo O (Wy, 2y, PV W), P> 2)) = 0. Since p is a u-distance, we have lim,,_, o, d(x,,,
yn) =0.

Case IL: Suppose that lim,,_, oo n(Wy, 21, q(Wi, X1), (2, %)) = 0 and lim,,—, oo (W, 21, g(Ws,
Y)> q(Zu>¥n)) = 0. Similarly as in Case I, we can show that lim,,_, o d(x,, y,) = 0. This shows
(u5)g,,- O

Proposition 3.4 Let X be a complete metric space, p be a u-distance on X and ¢ be a
function from X x X into (—o00, 00] satisfying

(1) ¢(x,2) <dx,y) + d(y,2) forall x,y,z € X;

(2) ¢, -): X — (—00,00] is lower semicontinuous for any x € X;

(3) there exists an xq such that infyex ¢ (xo,y) > —00; and

(4) ¢(x,y) =-9(y,x).
Define Mx = {y € X : ¢(x,y) + p(x,y) < 0} for all x € X. Then, for each u € X with Mu # 0,
there exists xo € Mu such that Mxy C {xo}. In particular, there exists yo € X such that
Myo C {yo}.

Proof Let u € X with Mu # (). We have u; € Mu by ¢(u,u;) < co. If Mu = ), the assertion
holds. Suppose that My # ) and Mx N (X{x}) # @ for all x € Mu,. Let uy € Mu;. We know
that ¢(x,y) <0 for all x € X and y € Mx, we define a mapping T : X — X as follows: For
each x € Mu;, Tx satisfies Tx € Mx, Tx # x and

@ (u1, %) + infyepre dur, y)

¢(ulx Tx) < 9

For each x ¢ Mu;, define Tx = uy # x. We also define a function g: X x X — R* by

& (u,x) — infyepre P (41, ) if x € Mu; and y € Mx,
2¢(u, ) — 2infyepny, ¢, w) + 1+ p(x,y)  if x &€ Muy or y & Mx.

Q(x:)’) =

By Lemma 3.3, we have g is a u-distance on X. Since y € My and z € My, it follows by
Lemma 3.3 that z € Mx. Hence Tx € Mu; and MTx C Mx for all x € Mu;. If x € Mu,, we
obtain

2 _ o
q(Tx, T*x) = ¢(uy, Tx) yel&foqb(ul,y)

) i f X ’ 1
- P (uy,x) +in yeM. o (u1,y) — inf ¢(u1,y)
2 yeMx
q(x, Tx)
TE
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If x ¢ Muy,

q(Tx, sz) = q(uy, Tuy) = ¢(uy, uy) — Tugigl{:/luzqs(ul, Tu,)
= ¢, u1) — inf o (u, Tonr)
u1

- qlx,uz)  qx, Tx)

2 2

We will show (i) in Theorem 3.2. Suppose that lim,,_, . sup{g(x,,x,,) : m > n} = 0 and
lim,, oo g(x4,y) = 0. We may assume x,, € Mu; and y € Mx,, for all n € N by the definition
of g. Then y € Mu, and hence Ty € My C Mx,. By Lemma 2.4 we have lim,,_, o q(x,, Ty) =
lim,_, o0 q(x4,y) = 0 and Ty = y. Hence, by Theorem 3.2, T has a fixed point. This is a con-
tradiction. So, there is xg € Mu; C Mu such that Mxy C {xo}. O

Theorem 3.5 Let X be a complete metric space, p be a u-distance on X and ¢ be a function
from X x X into (—00, 00] satisfying
(1) ¢(x,2) <dx,9) + d(y,2) forall x,y,z € X;
(2) ¢x,-): X — (—00,00] is lower semicontinuous for any x € X;
(3) there exists an xq such that infyex ¢ (xo,y) > —00; and
(4) ¢(x’y) = —¢’()’:x)~
Then the following hold.:
(A) Foreach u € X, there exists v € X such that ¢(u,v) <0 and ¢(v,w) + p(v,w) > 0 for
allwe X\ {v};
(B) Foreach A >0 and u € X with p(u,u) = 0, there exists v € X such that
¢, v) + Ap(u,v) <0 and ¢(v,w) + Ap(v,w) > 0 forallw € X \ {v}.

Proof We will show that (A). For each x € X, we define Mx as in Proposition 3.4. If Mu =
@, we have u that satisfies ¢(u, w) + p(u,w) > 0 for all w € X with w # u. If Mu # @ and
there exists v € Muy, then it follows by Proposition 3.4 that Mv C {v}. Since v € Mu implies
¢ (u,v) <0 and My C {v}, this shows that ¢(v,w) + p(v,w) > 0 for all w € X with w #v.

We will show that (B). By Proposition 2.2, we note that Ap is a u-distance. We define
Mx ={y € X:¢xy) + Ap(x,y) <0} for all x € X. Since p(u, u) = 0, we have Mu # (4, and
hence there exists v € Mu such that Mv C {v} by Proposition 3.4. Therefore v satisfies
& (u,v) + Ap(u,v) <0 and ¢(v, w) + Ap(v, w) > 0 for all w € X with w # v. This completes the
proof. O

Remark 3.6 By setting ¢(x,y) = f(y) — f(x), where f : X — R is lower semicontinuous
bounded below, and letting p be a t-distance in Theorem 3.5, we obtain the Ekeland vari-

ational principle proved by Suzuki [5].

Theorem 3.7 Let X be a complete metric space, p be a u-distance on X and ¢ be a function
from X x X into (—o0, 00] satisfying

(1) ¢(x,2) <dx,y) + d(y,2) forall x,y,z € X;

(2) ¢(x,-): X — (—00,00] is lower semicontinuous for any x € X;

(3) there exists an xq such that infyex ¢ (xo,y) > —00; and

4) o(x,y) =-p(3,%).
Let u € X with p(u,u) = 0. Then A > 0 and § > 0, there exists v € X satisfying the following:
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@) ¢(u,v)<0;

(i) @(u,v) + Ap(u,v) < 9;

(ili) ¢(v,w)+Ap(v,w) >0 forallw e X \ {v};

(iv) if a sequence {x,} in X satisfies lim, (¢ (v,x,) + Ap(v,x,,)) = 0, then {x,} is p-Cauchy,
lim,, x, = v and p(v,v) = lim, p(v,x,,) =

Proof In the case ¢ (v, u) = 00, (i) and (ii) hold for all v € X. We also note that (iii) and (iv)
do not depend on ¢ (v, ). In the case ¢(v, u) < 00, set A" € (0, A) satisfying

~ ;/A/ (q’)(u, V) — ilel)f(qb(v, x)) < 8.

By Theorem 3.5(B), there exists v € X such that ¢(u,v) + M'p(u,v) < 0 and ¢(v,w) +
AMp(v,w) >0 for all w € X \ {v}. Thus, we have

’

p(u,v) = <1+ G )¢(u,v>— <)L;,N>¢(u,v)

- (1 L ;/y>(_k/p(% V) - (A ;/N)¢>(u, )

= -Ap(u,v) (A K/)(p(u v (A;,N)MM,V)
= —ap(u,v) - ()\ N)(j)(u, V)
A‘/
<t + (255 o+ (57 inpotn
= —Ap(u,v) + <)L N)L,> ¢)(u V) — 1n)f(¢(v,x)>
< =Ap(u,v) +34.

Therefore, ¢(u,v) + Ap(u,v) < 8. For w € X \ {v}, we note that
d)(V, W) > _)‘/p(vr W) = —)\P(V: W)
So, ¢(v,w) + Ap(v,w) > 0. Finally, we will show that (iv). Suppose that a sequence {x,} in X

satisfies lim, (¢ (v, x,) + Ap(v,x,)) = 0. We note that ¢(v,w) + X' p(v,w) > 0 for all w € X. We
have

n—00

A=A
lim supp(v,x,) = lim sup< )J )p(v,xn)

rp(v,x,) = Mp(v,x,)

= lim
n—00 A=)\
< lim rp(v, %) — d(v, %)
n—00 A=)\
. Ap(v,x,) + BV, x,)
< lim
n—00 A=)\

=0.

Page 8 of 9
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By Lemma 3.1, {x,} is a p-Cauchy sequence. From Lemma 2.3, therefore {x,} is a Cauchy
sequence. By the completeness of X, {x,} converges to some point x € X. From (u3), we

have p(v,x) = 0 and so

(v, x)

IA

lim info(v,x,)
n— 00

IA

lim (q)(v,xn) + Ap(v,xn)) =0.
n— 00
Thus, if v # x, then we have

(v, x) > =A'p(v,x) > (v, x).
This is a contradiction. Hence, we obtain v = x. O

Remark 3.8 By setting ¢(x,y) = f(y) — f(x), where f : X — R is lower semicontinuous
bounded below. Let p be a t-distance in Theorem 3.7, we obtain the strong Ekeland vari-
ational principle proved by Suzuki [6].
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