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1 Introduction
The boundedness of fractional integral operators onMorrey spaces is known as theAdams
theorem. Recently, many endpoint results have been obtained for this theorem, and in this
paper we extend them to generalized Morrey spaces with variable exponent attaining the
value  over non-doubling measure spaces.
In  Morrey observed that a weaker regularity sufficed in order that the solutions

in elliptic differential equations were smooth []. This observation grew up to be a useful
tool for partial differential equations in general. Nowadays, his technique turned out to be
a wide theory of function spaces called Morrey spaces; see also []. The (original) Morrey
space Lp,λ(RN ) with  ≤ p < ∞ and  < λ ≤ N is a normed space whose norm is given by
‖f ‖Lp,λ ≡ supx∈RN ,r>( 

rN–λ

∫
B(x,r) |f (y)|p dy)


p for f ∈ Lploc(R

N ).
We are oriented to building up a theory of a metric measure space (X,d,μ) for which

the notion of dimension is not equipped with μ, where d is a distance function and μ is a
Borel measure. For example, we encounter the situation where more than one dimension
comes into play.
. In R

 consider the set X ≡ Y ∪ Z, where Y ≡ {(x, , ) : x ∈ R} and
Z ≡ {(x, y, z) : z = √

x + y}. Denote byHs the s-dimensional Hausdorff measure in
R

 for  ≤ s≤ . Consider μ ≡H|Y +H|Z. Then μ has two different dimensions.
. The above example is a little artificial. Consider the Cantor dust, which is given by

E ≡ ⋂∞
j= Ej, where Ej is given recursively by

E ≡ [, ],
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Ej+ =
⋃

e∈{,}

(


e +



Ej

)
=

{


e +



x : x ∈ Ej, e ∈ {, }

}
⊂R

.

Then the Hausdorff dimension of E is  while each Ej is a union of closed cubes in R
.

As the second example shows, when we consider the subsets in R
, it is natural to ap-

proximate them with sets having different dimension. Faced with such an inconvenience,
we work on a separable metric space X equipped with a nonnegative Radon measure μ,
where the notion of dimensions of X and μ does not come into play.
We assume that

μ
({x}) =  (.)

for all x ∈ X. By B(x, r) we denote the open ball centered at x of radius r > . We assume

 < μ
(
B(x, r)

)
<∞ (.)

for x ∈ X and r >  for simplicity. We write d(x, y) for the distance of the points x and y
in X. We are interested in the operator of the form f 	→ ∫

X K(·, y)f (y)dμ(y), where f is
a μ-measurable function with a certain μ-integrability. Note that (.) is indispensable
because we envisage examples in which K : X × X → [,∞] has singularity at the diag-
onal. Meanwhile, (.) does not lose any generality; it is just a matter of restricting X to
supp(μ).
Let G be a bounded open set in X. Our argument to follow heavily depends upon its

diameter dG. Let p≥ , ν >  and k > . Define the Morrey norm ‖f ‖Lp,ν,β ;k (G) by

‖f ‖Lp,ν,β ;k (G) ≡ sup
x,r

(
rν(log(e + /r))β

μ(B(x,kr))

∫
B(x,r)∩G

∣∣f (y)∣∣p dμ(y)
)/p

for μ-measurable functions f , where (x, r) runs over all elements in G × (,dG). The
Morrey space Lp,ν,β ;k(G) is the set of all μ-measurable functions f for which the norm
‖f ‖Lp,ν,β ;k (G) is finite. When β = , Lp,ν,β ;k(G) is denoted by Lp,ν;k(G).
In this paper, we aim to understand how the fractional integral operators behave in gen-

eralized Morrey spaces with variable exponent attaining the value  over non-doubling
measure spaces. We obtain the following constant exponent case as a corollary of a more
general theorem in non-doubling and variable exponent setting (see Theorem . below).
The result is new even for a constant exponent case.

Theorem . Let α, β , ν be constants. Define an index p* by 
p* =  – α

ν
, and let γ > .

Define

Uα,f (x)≡
∫
G

d(x, y)α

μ(B(x, d(x, y)))
f (y)dμ(y) (.)

for a positive μ-measurable function f . Then there exists a constant C >  such that


μ(B(z, r))

∫
B(z,r)

Uα,f (x)p
*(
log

(
e +Uα,f (x)

))–γ+αβp*/ν dμ(x)

≤ Cr–ν
(
log(e + /r)

)–β–γ+
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for all z ∈ G and  < r < dG, whenever f is a nonnegative μ-measurable function on G
satisfying ‖f ‖L,ν,β ;(G) ≤ .

We remark that Uα, extends naturally the fractional integral operator defined by Koki-
lashvili onRN [].We also remark that an extension to quasi-metric spaces was performed
in [].
Theorem . describes the missing part of the Adams inequality, which we recall now.

Proposition . (Adams, []) Let  < α < n,  < p,q < ∞ and  < λ ≤ N .Assume 
q =


p –

α
λ
.

Then there exists a constant C >  such that ‖Iαf ‖Lq,λ ≤ C‖f ‖Lp,λ for all f ∈ Lp,λ(RN ).

In the endpoint case, when p = , two natural questions about Proposition . arise.
. Can we prove a similar result by enlarging Lq,λ(RN ) slightly?
. Can we prove a similar result by shrinking Lp,λ(RN ) slightly?

The second question is considered in []. We aim to consider the first question in the
present paper.
It is the condition on μ that counts in the present paper; we do not postulate on μ

the so-called doubling condition. Recall that a Radon measure μ is said to be doubling
if there exists a constant C >  such that μ(B(x, r))≤ Cμ(B(x, r)) for all x ∈ supp(μ) (= X)
and r > . Otherwise, μ is said to be non-doubling. In connection with the r-covering
lemma, the doubling condition had been a key condition in harmonic analysis. However,
Nazarov, Treil andVolberg showed that the doubling conditionwas not necessary by using
the modified maximal operator [, ]. The idea of replacing d(x, y) with d(x, y) in (.)
originates from these papers. In the present paper, we show that this idea works even for
Riesz potentials.
Here, we summarize the structure of the space Lp,ν;k(G) in Proposition . and Re-

mark . below. Note that the Morrey space Lp,ν;k(G) does depend upon the parameter
k, which is illustrated by the following proposition.

Proposition . ([]) There does exist a bounded separable metric space (X,d,μ) such
that Lp,ν;(G) and Lp,ν;(G) do not coincide as sets.

About the modified Morrey norm, we have the following remarks.

Remark . Let f : X → [,∞] be a μ-measurable function and G be a bounded open
subset of X.
. From the definition of the norms, we learn ‖f ‖Lp,ν;k (G) ≤ ‖f ‖Lp,ν;k (G) for all k > k > 

and p≥ .
. If p ≥ p ≥ , k ≥  and ν/p = ν/p > , then ‖f ‖Lp,ν;k (G) ≤ ‖f ‖Lp,ν;k (G) by the

Hölder inequality.
. If μ is a doubling measure, then ‖f ‖Lp,ν;k (G) and ‖f ‖Lp,ν;(G) are equivalent for all p≥ ,

k >  and ν > .

Our result can be readily translated into theMorrey space Lp,λ(G), where Lp,λ(G) is the set
of all functions f such that

‖f ‖Lp,λ(G) ≡ sup
x∈G,r∈(,dG)

(


rN–λ

∫
G∩B(x,r)

∣∣f (y)∣∣p dy)/p

.
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Keeping our fundamental result, Theorem ., in mind, let us describe our results in full
generality. We seek to establish Sobolev’s inequality for Riesz potentials of functions in
generalizedMorrey spaces with variable exponent attaining the value  over non-doubling
measure spaces, which will extend the results in our earlier papers [–]. In the present
paper, we show that amodification enables us to obtain boundedness results in generalized
Morrey spaces with variable exponent attaining the value  over non-doubling measure
spaces even when

inf
x∈X p(x) = .

We consider variable exponents p(·) and q(·) on X such that
(P)  ≤ p– ≡ infx∈X p(x) ≤ supx∈X p(x)≡ p+ < ∞;
(P) |p(x) – p(y)| ≤ C/ log(e + d(x, y)–) whenever x ∈ X and y ∈ X ;
(Q) –∞ < q– ≡ infx∈X q(x) ≤ supx∈X q(x) ≡ q+ < ∞;
(Q) |q(x) – q(y)| ≤ C/ log(e + (log(e + d(x, y)–))) whenever x ∈ X and y ∈ X .

In general, if p(·) satisfies (P) (resp. q(·) satisfies (Q)), then p(·) (resp. q(·)) is said to satisfy
the log-Hölder (resp. loglog-Hölder) condition. Observe that these conditions are much
weaker than Lipschitz continuity.
Next, we redefine the Riesz potential. Recall that we are working on a bounded subset

G of X. For a bounded μ-measurable function α(·) : X → (,∞) and a constant κ > , we
define the Riesz potential of (variable) order α(·) for a nonnegativeμ-measurable function
f on G by

Uα(·),κ f (x) ≡
∫
G

d(x, y)α(x)f (y)
μ(B(x,κd(x, y)))

dμ(y).

Here and in what follows, we tacitly assume that f =  outside G. Observe that this natu-
rally extends the Riesz potential operator

Uαf (x) ≡
∫
RN

f (y)
|x – y|N–α

dy

when (X, | · |,μ) is the N-dimensional Euclidean space and μ = dx.
We also assume

α– ≡ inf
x∈X α(x) >  (.)

for α(·) appearing in the definition of the operator Uα(·),κ .
Now, we are going to formulate our results in full generality. First of all, we set

�(x, r) = �p(·),q(·)(x, r) ≡ rp(x)
(
log(c + r)

)q(x) (x ∈ X, r > ); (.)

here we assume

(�) �p(·),q(·)(x, ·) is convex on [,∞) for every x ∈ X .

Note that (�) holds for some c≥ e if and only if there is a positive constant K such that

K
(
p(x) – 

)
+ q(x)≥  for all x ∈ X

http://www.journalofinequalitiesandapplications.com/content/2013/1/12
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(see [, Theorem .]). Observe from (�) that the function t 	→ t–�(x, t) is nondecreas-
ing on (,∞) for fixed x ∈ X.
Now, we redefine and extend the definition of Morrey norms adapted to the func-

tion �. Let k >  be a fixed parameter and let G be a bounded subset of X. Let us de-
note by dG the diameter of G. For bounded μ-measurable functions ν : X → (,∞) and
β : X → (–∞,∞), we introduce the family L�,ν,β ;k(G) of all μ-measurable functions f on
G such that for some λ ∈ (,∞),

sup
x∈G,<r<dG

rν(x)(log(c + /r))β(x)

μ(B(x,kr))

∫
G∩B(x,r)

�
(
y,

∣∣f (y)∣∣/λ)
dμ(y) ≤ . (.)

Denote by ‖f ‖L�,ν,β ;k (G) the smallest value of λ satisfying (.). Note that ν and β need not
be continuous.
The space L�,ν,β ;k(G) is a further generalization of generalized Morrey spaces with non-

doubling measures on RN , which are taken up in [, ]. Nowadays, generalized Morrey
spaces are not generalization for its own sake. Note that generalized Morrey spaces occur
naturally when we consider the limiting case as Proposition . below shows.

Proposition . ([, Theorem .]) Let  < p < ∞ and  < λ < N . Then there exists a
positive constant Cp,λ such that

∫
B

∣∣f (x)∣∣dx ≤ Cp,λ|B|( + |B|)– 
p log

(
e +


|B|

)∥∥( –	)λ/pf
∥∥
Lp,λ

holds for all f ∈ Lp,λ(RN ) with ( –	)λ/pf ∈ Lp,λ(RN ) and for all balls B.

In view of the integral kernel of ( –	)–α/ (see []) and the Adams theorem, we have

( –	)–α/ : Lp,λ
(
RN) → Lq,λ

(
RN)

(.)

is bounded as long as

 < p,q < ∞,  < λ ≤ N ,

q
=

p
–

α

λ
.

However, if α = λ
p , the number q not being finite, the boundedness assertion (.) is no

longer true. Hence, Proposition . can be considered as a substitute of (.). Proposi-
tion . shows that the price to pay is the factor log(e + 

|Q| ). We refer to [] for a coun-
terexample showing that (.) is no longer true for α = λ

p .
Remark that if X = RN , the parameter k is not essential as long as k >  as Proposition .

below shows.

Proposition . ([]) Let k,k >  and X = RN be the Euclidean space. Suppose that G
is a bounded open set. Assume in addition that ν and β satisfy the log-Hölder continuity
(P) and the loglog-Hölder continuity (Q), respectively. Then the spaces L�,ν,β ;k (G) and
L�,ν,β ;k (G) coincide as sets and their norms are equivalent.

http://www.journalofinequalitiesandapplications.com/content/2013/1/12
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What is different from the classical setting endowed with Lebesgue measure is that we
need to take an attentive care of the parameters k appearing in (.). For example, un-
like the doubling measure spaces, we need delicate geometric observations (see (.) for
example).
Among many other function spaces, Morrey spaces with variable exponents are worth

investigating because our result Theorem . shows that the smoothing effect that the
fractional integral operators enjoy is local. It is believed that p in the definition of Lp,ν;k(G)
measures the local integrability, while ν seems to control the global integrability.
Here we make a historical remark about the research of this field. The case μ = dx of

Theorem . is covered in [, Theorem .] and [, Corollary .]. Roughly speaking,
we seek to discuss the boundedness of the operator Uα(·), : f 	→ Uα(·),f from the Morrey
space L�,ν,β ;(G) to another Morrey space L
 ,ν,β ;(G) with suitable 
(x, r), which extends
the results in [–].When p– > , themaximal functions play a crucial tool by Hedberg’s
trick (see []). In view of [, , , ], the modified maximal operator is bounded and
this was useful for the case when p– > . In case p– = , our strategy is to give an estimate
of Uα(·),f by the use of another Riesz-type potentials of order , which plays a role of the
maximal functions. For related results, see [–].
Finally, we explain some notations used in the present paper. The function χE denotes

the characteristic function of E. Throughout the present paper, let C denote various con-
stants independent of the variables in question. In analogy with p± and q±, we define α±,
β± and ν±.

2 Sobolev’s inequality in the case p– = 1
Recall that α : X → (,∞), ν : X → (,∞) and β : X → (–∞,∞) are bounded μ-
measurable functions and α– > . Throughout this section, we additionally assume that

inf
x∈X

(
/p(x) – α(x)/ν(x)

)
> . (.)

Note that ν(x)≥ α(x)p(x) for x ∈ X. Thus, from p– ≥  and (.), we have

ν– ≥ α– > . (.)

Our first aim is to give the followingMorrey version of Sobolev-type inequality for Riesz
potentials

Uα(·),f (x)≡
∫
G

d(x, y)α(x)f (y)
μ(B(x, d(x, y)))

dμ(y). (.)

We consider the Sobolev exponent

/p*(x)≡ /p(x) – α(x)/ν(x) (x ∈ X) (.)

and the new modular function


(x, t)≡ tp
*(x)(log(c + t)

)p*(x)(q(x)/p(x)+α(x)β(x)/ν(x)) (
x ∈ X, t ∈ (,∞)

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/12
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Theorem . Assume that p(·) satisfies (P) with p– = , (P) and (.). Then, for each
ε > , there exists a constant C >  such that


μ(B(z, r))

∫
B(z,r)



(
x,Uα(·),f (x)

)(
log

(
c +Uα(·),f (x)

))–(+ε) dx

≤ Cr–ν(z)(log(c + /r)
)–β(z)–ε

for all z ∈ G and  < r < dG, whenever f is a nonnegative μ-measurable function on G
satisfying ‖f ‖L�,ν,β ;(G) ≤ .

Remark . In Theorem ., it is known that we cannot take ε =  (see [, Remark .]
and O’Neil [, Theorem .]).

Here we outline the proof of Theorem ..
For ε >  and x ∈ X, and setting

ρε(r) ≡ 
μ(B(x, r))

(
log(c + /r)

)–ε–, (.)

we consider the logarithmic potential (of order )

Jεf (x) =
∫
G

ρε

(
d(x, y)

)∣∣f (y)∣∣p(y)(log(c + ∣∣f (y)∣∣))q(y) dμ(y). (.)

Decompose

Uα(·),f (x) =
∫
B(x,δ)

d(x, y)α(x)f (y)
μ(B(x, d(x, y)))

dμ(y) +
∫
G\B(x,δ)

d(x, y)α(x)f (y)
μ(B(x, d(x, y)))

dμ(y)

= I(δ) + I(δ), say. (.)

Following the Hedberg trick [], we plan to control I(δ) by Jεf (x) not by maximal func-
tions (Lemma .). Next, we estimate I(δ) by the use of Young’s inequality (Lemma .).
Finally, an optimization (see (.) below), together with the boundedness property of Jε
(Lemma .), yields the desired estimate Uα(·),f (x) in terms of Jεf (x).

Lemma . For  < δ < dG, x ∈G and a nonnegative μ-measurable function f on G, set

I(δ)≡
∫
B(x,δ)

d(x, y)α(x)f (y)
μ(B(x, d(x, y)))

dμ(y).

Let ε >  be fixed. Then there exists a constant C >  such that

I(δ) ≤ C
{
δα(x)–ν(x)/p(x)(log(c + δ–

))–(q(x)+β(x))/p(x)

+ δα(x)+(p(x)–)ν(x)/p(x)(log(c + δ–
))β(x)–(q(x)+β(x))/p(x)+(+ε)Jεf (x)

}
,

whenever f is a nonnegative μ-measurable function on G satisfying ‖f ‖L�,ν,β ;(G) ≤ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/12
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Proof Recall that μ does not charge a point x (see (.) above) and that α– >  by virtue of
(.). We thus have

∫
B(x,δ)

d(x, y)α(x)

μ(B(x, d(x, y)))
dμ(y)

=
∞∑
j=

∫
B(x,–j+δ)\B(x,–jδ)

d(x, y)α(x)

μ(B(x, d(x, y)))
dμ(y)

≤
∞∑
j=

∫
B(x,–j+δ)

(–j+δ)α(x)

μ(B(x, –j+δ))
dμ(y)

≤
∞∑
j=

(
–j+δ

)α(x) =


 – –α(x) δ
α(x) ≤ 

 – –α–
δα(x) = Cδα(x).

Consequently,

∫
B(x,δ)

d(x, y)α(x)

μ(B(x, d(x, y)))
dμ(y) ≤ Cδα(x). (.)

From (�), observe that the function t 	→ t–�(x, t) is nondecreasing on (,∞) for fixed
x ∈ X. With this in mind, for k > , which we specify in (.), we decompose and estimate
the integral defining I(δ) according to the level set {|f | > k}:

I(δ) ≤ k
∫
B(x,δ)

d(x, y)α(x)

μ(B(x, d(x, y)))
dμ(y)

+
∫
B(x,δ)

d(x, y)α(x)

μ(B(x, d(x, y)))
f (y)

(
f (y)
k

)p(y)–( log(c + f (y))
log(c + k)

)q(y)

dμ(y).

The first term is estimated by (.):

k
∫
B(x,δ)

d(x, y)α(x)

μ(B(x, d(x, y)))
dμ(y) ≤ Ckδα(x).

Recall also that ρε is defined by (.). Inserting them, we have

I(δ) ≤ C
{
kδα(x) +

∫
B(x,δ)

d(x, y)α(x)

μ(B(x, d(x, y)))
g(y)

(

k

)p(y)–( 
log(c + k)

)q(y)

dμ(y)
}

≤ C
{
kδα(x) + δα(x)(log(c + δ–

))+ε

×
∫
B(x,δ)

ρε

(
d(x, y)

)
g(y)k–p(y)

(


log(c + k)

)q(y)

dμ(y)
}
,

where g(y) = f (y)p(y)(log(c + f (y)))q(y). We set

k ≡ k(x) = δ–ν(x)/p(x)(log(c + δ–
))–(q(x)+β(x))/p(x). (.)

For y ∈ B(x, δ), from (P) and the boundedness of logp,q,β and ν , we deduce

∣∣(p(x) – p(y)
)
logk

∣∣ ≤ C

http://www.journalofinequalitiesandapplications.com/content/2013/1/12
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so that

k–p(y) ≤ Ck–p(x). (.)

Similarly, by (Q) we have

(
log(c + k)

)–q(y) ≤ C
(
log(c + k)

)–q(x). (.)

Consequently, it follows from (.) and (.) that

I(δ) ≤ C
{
kδα(x)

+ δα(x)(log(c + δ–
))+εk–p(x)

(


log(c + k)

)q(x) ∫
B(x,δ)

ρε

(
d(x, y)

)
g(y)dμ(y)

}
.

Recall now that Jεf (x) is given by (.). Observe also that

log(c + k) = log
(
c + δ–ν(x)/p(x)(log(c + δ–

))–(q(x)+β(x))/p(x)) ∼ log
(
c + δ–

)
,

since ν– > , p– ≥  and p, q, β are all bounded. Thus,

I(δ) ≤ C
{
δα(x)–ν(x)/p(x)(log(c + δ–

))–(q(x)+β(x))/p(x)

+ δα(x)(log(c + δ–
))+ε–q(x)(

δν(x)/p(x)(log(c + δ–
))(q(x)+β(x))/p(x))p(x)–Jεf (x)}

≤ C
{
δα(x)–ν(x)/p(x)(log(c + δ–

))–(q(x)+β(x))/p(x)

+ δα(x)+(p(x)–)ν(x)/p(x)(log(c + δ–
))β(x)–(q(x)+β(x))/p(x)+(+ε)Jεf (x)

}
.

Now, the result follows. �

In our earlier work, we obtained the following lemma, whose proof is simple; we do not
recall the proof.
The quantity I(δ) will be taken care of by using the next lemma.

Lemma . ([, Lemma .]) Let f be a nonnegative μ-measurable function on G such
that

‖f ‖L�,ν,β ;(G) ≤ . (.)

Then

I(δ) ≡
∫
G\B(x,δ)

d(x, y)α(x)f (y)
μ(B(x, d(x, y)))

dμ(y)

≤ Cδα(x)–ν(x)/p(x)(log(c + δ–
))–(q(x)+β(x))/p(x) (.)

for x ∈ G and  < δ < dG.
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What remains to show for the proof of Theorem . is to give a boundedness property
on Morrey spaces for Jεf (x).

Lemma . There exists a constant C >  such that


μ(B(z, r))

∫
B(z,r)

Jεf (x)dμ(x)≤ Cr–ν(z)(log(c + /r)
)–β(z)–ε (.)

∀z ∈G,  < r < dG and nonnegative μ-measurable functions f satisfying ‖f ‖L�,ν,β ;(G) ≤ .

Proof For z ∈G and  < r < dG, write

Jεf (x) =
∫
B(z,r)

ρε

(
d(x, y)

)
g(y)dμ(y) +

∫
G\B(z,r)

ρε

(
d(x, y)

)
g(y)dμ(y)

= J(x) + J(x), (.)

where g(y) = f (y)p(y)(log(c + f (y)))q(y). Then we have

∫
B(z,r)

J(x)dμ(x) =
∫
B(z,r)

(∫
B(z,r)

ρε

(
d(x, y)

)
dμ(x)

)
g(y)dμ(y)

≤
∫
B(z,r)

(∫
B(y,r)

ρε

(
d(x, y)

)
dμ(x)

)
g(y)dμ(y)

by the Fubini theorem and a geometric observation. Since we are assuming (.), we can
use a routine dyadic decomposition to obtain

∫
B(z,r)

J(x)dμ(x)≤
∫
B(z,r)

( ∞∑
j=

∫
B(y,–j+r)\B(y,–j+r)

ρε

(
d(x, y)

)
dμ(x)

)
g(y)dμ(y).

We now insert the definition of ρε (see (.) above) and we have
∫
B(z,r)

J(x)dμ(x)

≤
∫
B(z,r)

( ∞∑
j=

∫
B(y,–j+r)\B(y,–j+r)

(log(c + /(–j+r)))–ε–

μ(B(x, –j+r))
dμ(x)

)
g(y)dμ(y).

A geometric observation shows that μ(B(x, –j+r)) ≥ μ(B(y, –j+r)) provided d(x, y) ≤
–j+r. Thus, we have

∫
B(z,r)

J(x)dμ(x)≤
∫
B(z,r)

( ∞∑
j=

(
log

(
c + /

(
–j+r

)))–ε–
)
g(y)dμ(y).

Now, we invoke the assumption that ε >  and that r < dG. From these conditions, (.)
and the definition of g , we deduce

∫
B(z,r)

J(x)dμ(x) ≤ C
(
log(c + /r)

)–ε

∫
B(z,r)

g(y)dμ(y)

≤ Cr–ν(z)(log(c + /r)
)–β(z)–ε

μ
(
B(z, r)

)
,
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so that


μ(B(z, r))

∫
B(z,r)

J(x)dμ(x)≤ Cr–ν(z)(log(c + /r)
)–β(z)–ε . (.)

Next, we claim that x ∈ B(z, r) and y /∈ B(z, r) imply that



d(x, y)≤ d(y, z) ≤ d(x, y) (.)

and that

B
(
x, d(x, y)

) ⊃ B
(
z, d(z, y)

)
. (.)

Here we check only (.). When w ∈ B(z, d(z, y)), we have

d(w,x) ≤ d(z,x) + d(w, z) ≤ d(z,x) + d(z, y) ≤ 

d(y, z) + d(z, y) =



d(z, y) ≤ d(y,x).

We use (.), (.) and (.) for J(x) to obtain

J(x) =
∫
G\B(z,r)

ρε

(
d(x, y)

)
g(y)dμ(y)

≤ C
∫
G\B(z,r)

(log(c + /d(z, y)))–ε–

μ(B(x, d(z, y)))
g(y)dμ(y)

= C
∞∑
j=

∫
B(z,j+r)\B(z,jr)

(log(c + /d(z, y)))–ε–

μ(B(z, d(z, y)))
g(y)dμ(y).

Consequently, from (.), (.) and the assumption that β is a bounded function, we ob-
tain

J(x) ≤ C
∞∑
j=

(log(c + /(j+r)))–ε–

μ(B(z, j+r))

∫
B(z,j+r)

g(y)dμ(y)

≤ C
∞∑
j=

(
j+r

)–ν(z)(
log

(
c + /

(
j+r

)))–β(z)–ε–.

Recall that ν– >  and that β is bounded. Therefore, it follows that

J(x) ≤ C
∫ dG

r
t–ν(z)(log(c + /t)

)–β(z)–ε dt
t

≤ Cr–ν(z)(log(c + /r)
)–β(z)–ε

for x ∈ B(z, r). Hence, we see that


μ(B(z, r))

∫
B(z,r)

J(x)dμ(x)≤ Cr–ν(z)(log(c + /r)
)–β(z)–ε. (.)

From (.), (.) and (.), we conclude (.). �

Now we are ready to prove Theorem ..
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Proof of Theorem . We may assume that f ≥ . For δ > , write

Uα(·),f (x) = I(δ) + I(δ)

according to (.). In view of Lemma ., we find

I(δ) ≤ C
{
δα(x)–ν(x)/p(x)(log(c + δ–

))–(q(x)+β(x))/p(x)

+ δα(x)+(p(x)–)ν(x)/p(x)(log(c + δ–
))β(x)–(q(x)+β(x))/p(x)+(+ε)J

}
with J = Jεf (x). Moreover, Lemma . yields

I(δ) ≤ Cδα(x)–ν(x)/p(x)(log(c + δ–
))–(q(x)+β(x))/p(x), (.)

so that

Uα(·),f (x) ≤ C
{
δα(x)–ν(x)/p(x)(log(c + δ–

))–(q(x)+β(x))/p(x)

+ δα(x)+(p(x)–)ν(x)/p(x)(log(c + δ–
))β(x)–(q(x)+β(x))/p(x)+(+ε)J

}
.

Now, letting

δ ≡min
{
dG, J–/ν(x)

(
log(c + J)

)–(β(x)+(+ε))/ν(x)}, (.)

we obtain

Uα(·),f (x)≤ C
{
 + J/p

*(x)(log(c + J)
)–α(x)β(x)/ν(x)–q(x)/p(x)+(+ε)/p∗(x)}.

By Lemma ., we obtain


μ(B(z, r))

∫
B(z,r)



(
x,Uα(·),f (x)

)(
log

(
c +Uα(·),f (x)

))–(+ε) dμ(x)

≤ C


μ(B(z, r))

∫
B(z,r)

( + J)dμ(x) ≤ Cr–ν(z)(log(c + /r)
)–β(z)–ε

for z ∈G and  < r < dG, which completes the proof of Theorem .. �

Remark . [, Example .] shows that Theorem . is best possible to exponents ap-
pearing in the Morrey condition.

3 Sobolev’s inequality in the case p– = 1 and q– > 0
Let p– =  and q– > . In this section, we assume that there exists a constant q >  such that

sp(x)–
(
log(c + s)

)q(x)–q ≤ Ctp(x)–
(
log(c + t)

)q(x)–q , (.)

whenever  < s < t < ∞ and x ∈ X. A direct consequence of (.) is that

sp(x)–
(
log(c + s)

)q(x)–ρ ≤ Ctp(x)–
(
log(c + t)

)q(x)–ρ (.)

for  < ρ ≤ q. Let p* and 
 be as in (.) and (.), respectively. Under this assumption,
Theorem . is shown to be valid even for ε = .
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Theorem . Let p– =  and q– > . Define 
 by (.). Assume that p(·), q(·), α(·) and ν(·)
satisfy (.) and (.). Then there exists a constant C >  such that


μ(B(z, r))

∫
B(z,r)



(
x,Uα(·),f (x)

)(
log

(
c +Uα(·),f (x)

))– dμ(x)

≤ Cr–ν(z)(log(c + /r)
)–β(z)

for all z ∈ G and  < r < dG, whenever f is a nonnegative μ-measurable function on G
satisfying ‖f ‖L�,ν,β ;(G) ≤ .

For ε >  and x ∈ X, we let

ρ–ε(r) ≡ 
μ(B(x, r))

(
log(c + /r)

)ε– (.)

as before.
Note that this definition extends naturally (.). For a nonnegative μ-measurable func-

tion f on G, we define the (non-linear) logarithmic potential

Lεf (x) ≡
∫

{y∈G:d(x,y)–ε<f (y)}
ρ–ε

(
d(x, y)

)(
log

(
c + f (y)

))–ε

× f (y)p(y)
(
log

(
c + f (y)

))q(y) dμ(y). (.)

To prove Theorem ., we modify Lemmas . and . in the following manner, respec-
tively.

Lemma . Let  < ε ≤ q/ and define

F(δ)≡
∫

{y∈B(x,δ):d(x,y)–ε<f (y)}
d(x, y)α(x)

μ(B(x, d(x, y)))

(
log(c + f (y))

log(c + /d(x, y))

)ε

f (y)dμ(y)

for  < δ < dG and a nonnegative μ-measurable function f on G. Then there exists a con-
stant C >  such that

F(δ) ≤ C
{
δα(x)–ν(x)/p(x)(log(c + δ–

))–(q(x)+β(x))/p(x)

+ δα(x)+(p(x)–)ν(x)/p(x)(log(c + δ–
))β(x)–(q(x)+β(x))/p(x)+Lεf (x)

}
.

Proof We abbreviate {y ∈ B(x, δ) : d(x, y)–ε < f (y)} to E. For a constant k > , which will be
specified in (.), we let

E
k ≡ {

y ∈ B(x, δ) : d(x, y)–ε < f (y) ≤ k
}
, E

k ≡ E \ E
k .

On E
k , using (.) and the dyadic decomposition, we estimate f very crudely to obtain

∫
Ek

d(x, y)α(x)

μ(B(x, d(x, y)))

(
log(c + f (y))

log(c + /d(x, y))

)ε

f (y)dμ(y)

≤ k
(
log(c + k)

)ε

∫
B(x,δ)

d(x, y)α(x)

μ(B(x, d(x, y)))
(
log

(
c + /d(x, y)

))–ε dμ(y)
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= k
(
log(c + k)

)ε
∞∑
j=

∫
B(x,–j+δ)\B(x,–jδ)

d(x, y)α(x)

μ(B(x, d(x, y)))
(
log

(
c + /d(x, y)

))–ε dμ(y)

≤ k
(
log(c + k)

)ε
∞∑
j=

∫
B(x,–j+δ)

(–j+δ)α(x)

μ(B(x, –j+δ))
(
log

(
c + /

(
–j+δ

)))–ε dμ(y)

≤ k
(
log(c + k)

)ε
∞∑
j=

(
–j+δ

)α(x)(
log

(
c + /

(
–j+δ

)))–ε .

If we pass to a continuous variable and keep in mind that α– > , then we obtain

∫
Ek

d(x, y)α(x)

μ(B(x, d(x, y)))

(
log(c + f (y))

log(c + /d(x, y))

)ε

f (y)dμ(y)

≤ Ck
(
log(c + k)

)ε

∫ δ


tα(x)–

(
log(c + /t)

)–ε dt

≤ Ck
(
log(c + k)

)ε
δα(x)–α–/

(
log

(
c + δ–

))–ε

∫ δ


tα–/– dt

= Ck
(
log(c + k)

)ε
δα(x)(log(c + δ–

))–ε .

In summary, we obtained

∫
Ek

d(x, y)α(x)

μ(B(x, d(x, y)))

(
log(c + f (y))

log(c + /d(x, y))

)ε

f (y)dμ(y)

≤ Ck
(
log(c + k)

)ε
δα(x)(log(c + δ–

))–ε . (.)

On E
k , we use (.) and ε ≤ q/.

∫
Ek

d(x, y)α(x)

μ(B(x, d(x, y)))

(
log(c + f (y))

log(c + /d(x, y))

)ε

f (y)dμ(y)

≤ C
∫
Ek

d(x, y)α(x)

μ(B(x, d(x, y)))

(
log(c + f (y))

log(c + /d(x, y))

)ε

f (y)

×
(
f (y)
k

)p(y)–( log(c + f (y))
log(c + k)

)q(y)–ε

dμ(y)

= C
∫
Ek

d(x, y)α(x)(log(c + /d(x, y)))–ε(log(c + f (y)))–ε

μ(B(x, d(x, y)))
g(y)

k–p(y)

(log(c + k))q(y)–ε
dμ(y)

≤ Cδα(x)(log(c + δ–
))–ε

×
∫
E
ρ–ε

(
d(x, y)

)(
log

(
c + f (y)

))–εg(y)
k–p(y)

(log(c + k))q(y)–ε
dμ(y)

for all x ∈G, where g(y) = f (y)p(y)(log(c + f (y)))q(y). Hence, from (.), we deduce

F(δ) ≤ C
{
k
(
log(c + k)

)ε
δα(x)(log(c + δ–

))–ε + δα(x)(log(c + δ–
))–ε

×
∫
E
ρ–ε

(
d(x, y)

)(
log

(
c + f (y)

))–εg(y)
k–p(y)

(log(c + k))q(y)–ε
dμ(y)

}
.
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We set

k ≡ δ–ν(x)/p(x)(log(c + δ–
))–(q(x)+β(x))/p(x). (.)

Then we have for y ∈ B(x, δ),

k–p(y) ≤ Ck–p(x)

and

(
log(c + k)

)–q(y) ≤ C
(
log(c + k)

)–q(x)
as we did in (.) and (.). Consequently, it follows that

F(δ) ≤ C
{
δα(x)–ν(x)/p(x)(log(c + δ–

))–(q(x)+β(x))/p(x)

+ δα(x)+(p(x)–)ν(x)/p(x)(log(c + δ–
))β(x)–(q(x)+β(x))/p(x)+Lεf (x)

}
.

Now the result follows. �

The next lemma is a counterpart for Lemma ..

Lemma . Let f be a nonnegative μ-measurable function satisfying ‖f ‖L�,ν,β ;(G) ≤  and
define Lεf (x) by (.). If � is given by (.), then there exists a constant C >  independent
of z ∈G,  < r < dG and f such that


μ(B(z, r))

∫
B(z,r)

Lεf (x)dμ(x)≤ Cr–ν(z)(log(c + /r)
)–β(z). (.)

Proof Let f be a nonnegative μ-measurable function on G satisfying ‖f ‖L�,ν,β ;(G) ≤ .
Write

Lεf (x) =
∫

{y∈B(z,r):d(x,y)–ε<f (y)}
ρ–ε

(
d(x, y)

)(
log

(
c + f (y)

))–εg(y)dμ(y)

+
∫

{y∈G\B(z,r):d(x,y)–ε<f (y)}
ρ–ε

(
d(x, y)

)(
log

(
c + f (y)

))–εg(y)dμ(y)

= L(x) + L(x), (.)

where g(y) ≡ f (y)p(y)(log(c + f (y)))q(y). Let us estimate

∫
B(z,r)

L(x)dμ(x)

=
∫
B(z,r)

(∫
{x∈G:d(x,y)–ε<f (y)}

ρ–ε

(
d(x, y)

)
dμ(x)

)(
log

(
c + f (y)

))–εg(y)dμ(y).

For each y ∈G, we decompose

{
x ∈G : d(x, y)–ε < f (y)

}
=

∞⋃
j=

(
B
(
y, j+f (y)–/ε

) \ B(
y, jf (y)–/ε

))
. (.)
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Then, using (.), (.) and a crude estimate of the integrand, we obtain

∫
B(z,r)

L(x)dμ(x)

≤ C
∫
B(z,r)

( ∞∑
j=

∫
B(y,j+f (y)–/ε)

(log(c + /(jf (y)–/ε)))ε–

μ(B(x, j+f (y)–/ε))
dμ(x)

)

× (
log

(
c + f (y)

))–εg(y)dμ(y)

≤ C
∫
B(z,r)

( ∞∑
j=

(
log

(
c + /

(
jf (y)–/ε

)))ε–
)(

log
(
c + f (y)

))–εg(y)dμ(y).

From this and the fact that ‖f ‖L�,ν,β ;(G) ≤ , we deduce

∫
B(z,r)

L(x)dμ(x)≤ C
∫
B(z,r)

g(y)dμ(y) ≤ Cr–ν(z)(log(c + /r)
)–β(z)

μ
(
B(z, r)

)
,

so that


μ(B(z, r))

∫
B(z,r)

L(x)dμ(x)≤ Cr–ν(z)(log(c + /r)
)–β(z). (.)

Note that x ∈ B(z, r) and y /∈ B(z, r) imply that



d(x, y)≤ d(y, z) ≤ d(x, y)

and that

B
(
x, d(x, y)

) ⊃ B
(
z, d(z, y)

)
.

For L, we insert (.) directly to obtain a pointwise estimate for x ∈ B(z, r):

L(x) ≤ C
∫
G\B(z,r)

(log(c + /d(x, y)))–

μ(B(x, d(x, y)))
g(y)dμ(y)

≤ C
∫
G\B(z,r)

(log(c + /d(z, y)))–

μ(B(z, d(z, y)))
g(y)dμ(y).

As before, we decompose G \ B(z, r) dyadically to estimate L(x) from above. The result
is

L(x) ≤ C
∞∑
j=

∫
B(z,j+r)\B(z,jr)

(log(c + /d(z, y)))–

μ(B(z, d(z, y)))
g(y)dμ(y)

≤ C
∞∑
j=

∫
B(z,j+r)\B(z,jr)

(log(c + /(j+r)))–

μ(B(z, j+r))
g(y)dμ(y)

≤ C
∞∑
j=

(log(c + /(j+r)))–

μ(B(z, j+r))

∫
B(z,j+r)

g(y)dμ(y).
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From this and the fact that ‖f ‖L�,ν,β ;(G) ≤ , we deduce

L(x) ≤ C
∞∑
j=

(
j+r

)–ν(z)(
log

(
c + /

(
j+r

)))–β(z)–

≤ C
∫ dG

r
t–ν(z)(log(c + /t)

)–β(z)– dt
t

≤ Cr–ν(z)(log(c + /r)
)–β(z)–

for x ∈ B(z, r). Hence, we see that


μ(B(z, r))

∫
B(z,r)

L(x)dμ(x)≤ Cr–ν(z)(log(c + /r)
)–β(z)–. (.)

Thus, putting (.), (.) and (.) together, we obtain (.). �

Proof of Theorem . We may assume that f ≥  by considering |f | if necessary. Unlike
Theorem ., we have freedom to choose ε, so that we define ε ≡ min{α–/,q/}. Let us
obtain a pointwise estimate of Uα(·),f (x) for x ∈G.
For δ > , where δ is specified in (.) below, we decompose

Uα(·),f (x) =
∫
B(x,δ)

d(x, y)α(x)f (y)
μ(B(x, d(x, y)))

dμ(y)

+
∫
G\B(x,δ)

d(x, y)α(x)f (y)
μ(B(x, d(x, y)))

dμ(y)

= I(δ) + I(δ).

As in the proof of (.), we have

∫
B(x,δ)

d(x, y)α(x)–ε

μ(B(x, d(x, y)))
dμ(y) ≤ Cδα(x)–ε ≤ C

since α– – ε = α– –min{α–/,q/} =max{α–/,α– – q/} > .
Note that ε ≤ q/. In view of Lemma ., we find

I(δ) ≤
∫
B(x,δ)

d(x, y)α(x)–ε

μ(B(x, d(x, y)))
dμ(y)

+
∫

{y∈B(x,δ):d(x,y)–ε<f (y)}
d(x, y)α(x)f (y)

μ(B(x, d(x, y)))

(
(log(c + f (y)))

log(c + d(x, y)–ε)

)ε

f (y)dμ(y)

≤ C
{
δα(x)–ν(x)/p(x)(log(c + δ–

))–(q(x)+β(x))/p(x)

+ δα(x)+(p(x)–)ν(x)/p(x)(log(c + δ–
))β(x)–(q(x)+β(x))/p(x)+L

}

with L = Lεf (x). Moreover, Lemma . yields

I(δ) ≤ Cδα(x)–ν(x)/p(x)(log(c + δ–
))–(q(x)+β(x))/p(x), (.)
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so that

Uα(·),f (x) ≤ C
{
δα(x)–ν(x)/p(x)(log(c + δ–

))–(q(x)+β(x))/p(x)

+ δα(x)+(p(x)–)ν(x)/p(x)(log(c + δ–
))β(x)–(q(x)+β(x))/p(x)+L

}
.

Now, letting

δ ≡min
{
dG,L–/ν(x)

(
log(c + L)

)–(β(x)+)/ν(x)}, (.)

we obtain

Uα(·),f (x)≤ C
{
 + L/p

*(x)(log(c + L)
)–α(x)β(x)/ν(x)–q(x)/p(x)+/p∗(x)}.

In view of Lemma ., we find


μ(B(z, r))

∫
B(z,r)



(
x,Uα(·),f (x)

)(
log

(
c +Uα(·),f (x)

))– dμ(x)

≤ C


μ(B(z, r))

∫
B(z,r)

( + L)dμ(x) ≤ Cr–ν(z)(log(c + /r)
)–β(z),

which completes the proof of Theorem .. �

Remark . [, Example .] shows that Theorem . is best possible to exponents ap-
pearing in the Morrey condition.
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