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Abstract
In this paper, a shrinking projection algorithm based on the prediction correction
method for equilibrium problems and weak Bregman relatively nonexpansive
mappings is introduced and investigated in Banach spaces, and then the strong
convergence of the sequence generated by the proposed algorithm is derived under
some suitable assumptions. These results are new and develop some recent results in
this field.
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1 Introduction
In this paper, without other specifications, let R be the set of real numbers, C be a
nonempty, closed and convex subset of a real reflexive Banach space E with the dual space
E∗. The norm and the dual pair between E∗ and E are denoted by ‖·‖ and 〈·, ·〉, respectively.
Let f : E → R∪ {+∞} be a proper convex and lower semicontinuous function. Denote the
domain of f by dom f , i.e., dom f = {x ∈ E : f (x) < +∞}. The Fenchel conjugate of f is the
function f ∗ : E∗ → (–∞, +∞] defined by f ∗(ξ ) = sup{〈ξ ,x〉 – f (x) : x ∈ E}. Let T : C → C
be a nonlinear mapping. Denote by F(T) = {x ∈ C : Tx = x} the set of fixed points of T .
A mapping T is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C.
In , Blum and Oettli [] firstly studied the equilibrium problem: finding x̄ ∈ C such

that

H(x̄, y) ≥ , ∀y ∈ C, (.)

where H : C × C → R is functional. Denote the set of solutions of the problem (.) by
EP(H). Since then, various equilibrium problems have been investigated. It is well known
that equilibrium problems and their generalizations have been important tools for solving
problems arising in the fields of linear or nonlinear programming, variational inequal-
ities, complementary problems, optimization problems, fixed point problems and have
been widely applied to physics, structural analysis, management science and economics
etc. One of the most important and interesting topics in the theory of equilibria is to de-
velop efficient and implementable algorithms for solving equilibrium problems and their
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generalizations (see, e.g., [–] and the references therein). Since the equilibrium prob-
lems have very close connections with both the fixed point problems and the variational
inequalities problems, finding the common elements of these problems has drawn many
people’s attention and has become one of the hot topics in the related fields in the past few
years (see, e.g., [–] and the references therein).
In , Bregman [] discovered an elegant and effective technique for using of the

so-called Bregman distance function Df (see, Section , Definition .) in the process of
designing and analyzing feasibility and optimization algorithms. This opened a growing
area of research in which Bregman’s technique has been applied in various ways in order
to design and analyze not only iterative algorithms for solving feasibility and optimization
problems, but also algorithms for solving variational inequalities, for approximating equi-
libria, for computing fixed points of nonlinear mappings and so on (see, e.g., [–] and
the references therein). In , Butnariu and Resmerita [] presented Bregman-type
iterative algorithms and studied the convergence of the Bregman-type iterative method of
solving some nonlinear operator equations.
Recently, by using the Bregman projection, Reich and Sabach [] presented the follow-

ing algorithms for finding common zeroes of maximal monotone operators Ai : E → E∗

(i = , , . . . ,N ) in a reflexive Banach space E, respectively:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E,

yin = Resf
λin
(xn + ein),

Ci
n = {z ∈ E :Df (z, yin) ≤ Df (z,xn + ein)},

Cn =
⋂N

i=Ci
n,

Qn = {z ∈ E : 〈∇f (x) –∇f (xn), z – xn〉 ≤ },
xn+ = projfCn∩Qn x, ∀n≥ 

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E,

ηi
n = ξ i

n +

λin
(∇f (yin) –∇f (xn)), ξ i

n ∈ Aiyin,

ωi
n = ∇f ∗(λi

nη
i
n +∇f (xn)),

Ci
n = {z ∈ E :Df (z, yin) ≤ Df (z,ωi

n)},
Cn =

⋂N
i=Ci

n,

Qn = {z ∈ E : 〈∇f (x) –∇f (xn), z – xn〉 ≤ },
xn+ = projfCn∩Qn x, ∀n≥ ,

where {λi
n}Ni= ⊆ (, +∞), {en}Ni= is an error sequence in E with ein →  and projfC is the

Bregman projection with respect to f from E onto a closed and convex subset C. Further,
under some suitable conditions, they obtained two strong convergence theorems of maxi-
malmonotone operators in a reflexive Banach space. Reich and Sabach [] also studied the
convergence of two iterative algorithms for finitely many Bregman strongly nonexpansive
operators in a Banach space. In [], Reich and Sabach proposed the following algorithms
for finding common fixed points of finitely many Bregman firmly nonexpansive operators
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Ti : C → C (i = , , . . . ,N ) in a reflexive Banach space E if
⋂N

i= F(Ti) �= ∅:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E,

Qi
 = E, i = , , . . . ,N ,

yin = Ti(xn + ein),

Qi
n+ = {z ∈Qi

n : 〈∇f (xn + ein) –∇f (yin), z – yin〉 ≤ },
Qn =

⋂N
i=Qi

n,

xn+ = projfQn+
x, ∀n≥ .

(.)

Under some suitable conditions, they proved that the sequence {xn} generated by (.)
converges strongly to

⋂N
i= F(Ti) and applied the result to the solution of convex feasibility

and equilibrium problems.
Very recently, Chen et al. [] introduced the concept of weak Bregman relatively non-

expansive mappings in a reflexive Banach space and gave an example to illustrate the ex-
istence of a weak Bregman relatively nonexpansive mapping and the difference between a
weak Bregman relatively nonexpansive mapping and a Bregman relatively nonexpansive
mapping. They also proved the strong convergence of the sequences generated by the con-
structed algorithms with errors for finding a fixed point of weak Bregman relatively non-
expansive mappings and Bregman relatively nonexpansive mappings under some suitable
conditions.
This paper is devoted to investigating the shrinking projection algorithm based on the

prediction correction method for finding a common element of solutions to the equilib-
rium problem (.) and fixed points to weak Bregman relatively nonexpansive mappings
in Banach spaces, and then the strong convergence of the sequence generated by the pro-
posed algorithm is derived under some suitable assumptions.

2 Preliminaries
Let T : C → C be a nonlinear mapping. A point ω ∈ C is called an asymptotic fixed
point of T (see []) if C contains a sequence {xn} which converges weakly to ω such
that limn→∞ ‖Txn – xn‖ = . A point ω ∈ C is called a strong asymptotic fixed point
of T (see []) if C contains a sequence {xn} which converges strongly to ω such that
limn→∞ ‖Txn – xn‖ = . We denote the sets of asymptotic fixed points and strong asymp-
totic fixed points of T by F̂(T) and F̃(T), respectively.
Let {xn} be a sequence in E; we denote the strong convergence of {xn} to x ∈ E by xn → x.

For any x ∈ int(dom f ), the right-hand derivative of f at x in the direction y ∈ E is defined
by

f ′(x, y) := lim
t↘

f (x + ty) – f (x)
t

.

f is called Gâteaux differentiable at x if, for all y ∈ E, limt↘
f (x+ty)–f (x)

t exists. In this case,
f ′(x, y) coincides with∇f (x), the value of the gradient of f at x. f is calledGâteaux differen-
tiable if it is Gâteaux differentiable for any x ∈ int(dom f ). f is called Fréchet differentiable
at x if this limit is attained uniformly for ‖y‖ = . We say that f is uniformly Fréchet differ-
entiable on a subset C of E if the limit is attained uniformly for x ∈ C and ‖y‖ = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/119
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The Legendre function f : E → (–∞, +∞] is defined in []. From [], if E is a reflex-
ive Banach space, then f is the Legendre function if and only if it satisfies the following
conditions (L) and (L):
(L) The interior of the domain of f , int(dom f ), is nonempty, f is Gâteaux differentiable

on int(dom f ) and dom f = int(dom f );
(L) The interior of the domain of f ∗, int(dom f ∗), is nonempty, f ∗ is Gâteaux

differentiable on int(dom f ∗) and dom f ∗ = int(dom f ∗).
Since E is reflexive, we know that (∇f )– = ∇f ∗ (see []). This, by (L) and (L), implies

the following equalities:

∇f =
(∇f ∗)–, ran∇f = dom∇f ∗ = int

(
dom f ∗)

and

ran∇f ∗ = dom∇f = int(dom f ).

By Bauschke et al. [, Theorem .], the conditions (L) and (L) also yield that the func-
tions f and f ∗ are strictly convex on the interior of their respective domains. From now on
we assume that the convex function f : E → (–∞, +∞] is Legendre.
We first recall some definitions and lemmas which are needed in our main results.

Assumption . Let C be a nonempty, closed convex subset of a uniformly convex and
uniformly smooth Banach space E, and letH : C ×C → R satisfy the following conditions
(C)-(C):
(C) H(x,x) =  for all x ∈ C;
(C) H is monotone, i.e., H(x, y) +H(y,x) ≤  for all x, y ∈ C;
(C) for all x, y, z ∈ C,

lim sup
t→+

H
(
tz + ( – t)x, y

) ≤ H(x, y);

(C) for all x ∈ C, H(x, ·) is convex and lower semicontinuous.

Definition . [, ] Let f : E → (–∞, +∞] be a Gâteaux differentiable and convex func-
tion. The function Df : dom f × int(dom f ) → [, +∞) defined by

Df (y,x) := f (y) – f (x) –
〈∇f (x), y – x

〉
is called the Bregman distance with respect to f .

Remark . [] The Bregman distance has the following properties:
() the three point identity, for any x ∈ dom f and y, z ∈ int(dom f ),

Df (x, y) +Df (y, z) –Df (x, z) =
〈∇f (z) –∇f (y),x – y

〉
;

() the four point identity, for any y,ω ∈ dom f and x, z ∈ int(dom f ),

Df (y,x) –Df (y, z) –Df (ω,x) +Df (ω, z) =
〈∇f (z) –∇f (x), y –ω

〉
.
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Agarwal et al. Journal of Inequalities and Applications 2013, 2013:119 Page 5 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/119

Definition . [] Let f : E → (–∞, +∞] be a Gâteaux differentiable and convex func-
tion. The Bregman projection of x ∈ int(dom f ) onto the nonempty, closed and convex set
C ⊂ dom f is the necessarily unique vector projfC(x) ∈ C satisfying the following:

Df
(
projfC(x),x

)
= inf

{
Df (y,x) : y ∈ C

}
.

Remark .
() If E is a Hilbert space and f (y) = 

‖x‖ for all x ∈ E, then the Bregman projection
projfC(x) is reduced to the metric projection of x onto C;

() If E is a smooth Banach space and f (y) = 
‖x‖ for all x ∈ E, then the Bregman

projection projfC(x) is reduced to the generalized projection �C(x) (see [, ]),
which is defined by

φ
(
�C(x),x

)
=min

y∈C φ(y,x),

where φ(y,x) = ‖y‖ – 〈y, J(x)〉 + ‖x‖, J is the normalized duality mapping from E
to E∗ .

Definition . [, , ] Let C be a nonempty, closed and convex set of dom f . The
operator T : C → int(dom f ) with F(T) �= ∅ is called:
() quasi-Bregman nonexpansive if

Df (u,Tx) ≤ Df (u,x), ∀x ∈ C,u ∈ F(T);

() Bregman relatively nonexpansive if F̂(T) = F(T) and

Df (u,Tx) ≤ Df (u,x), ∀x ∈ C,u ∈ F(T);

() Bregman firmly nonexpansive if

〈∇f (Tx) –∇f (Ty),Tx – Ty
〉 ≤ 〈∇f (x) –∇f (y),Tx – Ty

〉
, ∀x, y ∈ C,

or, equivalently,

Df (Tx,Ty)+Df (Ty,Tx)+Df (Tx,x)+Df (Ty, y) ≤ Df (Tx, y)+Df (Ty,x), ∀x, y ∈ C;

() a weak Bregman relatively nonexpansive mapping with F(T) �= ∅ if F̃(T) = F(T) and

Df (u,Tx) ≤ Df (u,x), ∀x ∈ C,u ∈ F(T).

Definition . [] Let H : C × C → R be functional. The resolvent of H is the operator
ResfH : E → C defined by

ResfH (x) =
{
z ∈ C :H(z, y) +

〈∇f (z) –∇f (x), y – z
〉 ≥ ,∀y ∈ C

}
.

Definition . [] Let f : E → (–∞, +∞] be a convex and Gâteaux differentiable func-
tion. f is called:

http://www.journalofinequalitiesandapplications.com/content/2013/1/119
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() totally convex at x ∈ int(dom f ) if its modulus of total convexity at x, that is, the
function νf : int(dom f )× [, +∞)→ [, +∞) defined by

νf (x, t) := inf
{
Df (y,x) : y ∈ dom f ,‖y – x‖ = t

}
,

is positive whenever t > ;
() totally convex if it is totally convex at every point x ∈ int(dom f );
() totally convex on bounded sets if νf (B, t) is positive for any nonempty bounded

subset B of E and t > , where the modulus of total convexity of the function f on
the set B is the function νf : int(dom f )× [, +∞)→ [, +∞) defined by

νf (B, t) := inf
{
νf (x, t) : x ∈ B∩ dom f

}
.

Definition . [, ] The function f : E → (–∞, +∞] is called:
() cofinite if dom f ∗ = E∗;
() coercive if lim‖x‖→+∞(f (x)/‖x‖) = +∞;
() sequentially consistent if for any two sequences {xn} and {yn} in E such that {xn} is

bounded,

lim
n→∞Df (yn,xn) =  ⇒ lim

n→∞‖yn – xn‖ = .

Lemma . [, Proposition .] If f : E → (–∞, +∞] is Fréchet differentiable and totally
convex, then f is cofinite.

Lemma . [, Theorem .] Let f : E → (–∞, +∞] be a convex function whose domain
contains at least two points. Then the following statements hold:
() f is sequentially consistent if and only if it is totally convex on bounded sets;
() If f is lower semicontinuous, then f is sequentially consistent if and only if it is

uniformly convex on bounded sets;
() If f is uniformly strictly convex on bounded sets, then it is sequentially consistent and

the converse implication holds when f is lower semicontinuous, Fréchet differentiable
on its domain and the Fréchet derivative ∇f is uniformly continuous on bounded sets.

Lemma . [, Proposition .] Let f : E → R be uniformly Fréchet differentiable and
bounded on bounded subsets of E. Then ∇f is uniformly continuous on bounded subsets of
E from the strong topology of E to the strong topology of E∗.

Lemma . [, Lemma .] Let f : E → R be a Gâteaux differentiable and totally convex
function. If x ∈ E and the sequence {Df (xn,x)} is bounded, then the sequence {xn} is also
bounded.

Lemma . [, Proposition .] Let f : E → R be a Gâteaux differentiable and totally
convex function, x ∈ E and let C be a nonempty, closed convex subset of E. Suppose that
the sequence {xn} is bounded and any weak subsequential limit of {xn} belongs to C. If
Df (xn,x) ≤ Df (proj

f
C(x),x) for any n ∈N , then {xn}∞n= converges strongly to projfC(x).

http://www.journalofinequalitiesandapplications.com/content/2013/1/119
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Lemma . [, Proposition .] Let f : E → (–∞, +∞] be the Legendre function. Let
C be a nonempty, closed convex subset of int(dom f ) and T : C → C be a quasi-Bregman
nonexpansive mapping with respect to f . Then F(T) is closed and convex.

Lemma. [, Lemma .] Let f : E → (–∞, +∞] beGâteaux differentiable and proper
convex lower semicontinuous. Then, for all z ∈ E,

Df

(
z,∇f ∗

( N∑
i=

ti∇f (xi)

))
≤

N∑
i=

tiDf (z,xi),

where {xi}Ni= ⊂ E and {ti}Ni= ⊂ (, ) with
∑N

i= ti = .

Lemma . [, Corollary .] Let f : E → (–∞, +∞] be Gâteaux differentiable and to-
tally convex on int(dom f ). Let x ∈ int(dom f ) and C ⊂ int(dom f ) be a nonempty, closed
convex set. If x̂ ∈ C, then the following statements are equivalent:
() the vector x̂ is the Bregman projection of x onto C with respect to f ;
() the vector x̂ is the unique solution of the variational inequality:

〈∇f (x) –∇f (z), z – y
〉 ≥ , ∀y ∈ C;

() the vector x̂ is the unique solution of the inequality:

Df (y, z) +Df (z,x) ≤ Df (y,x), ∀y ∈ C.

Lemma . [, Lemmas  and ] Let f : E → (–∞, +∞] be a coercive Legendre function.
Let C be a nonempty, closed and convex subset of int(dom f ). Assume that H : C × C → R
satisfies Assumption .. Then the following results hold:
() ResfH is single-valued and dom(ResfH ) = E;
() ResfH is Bregman firmly nonexpansive;
() EP(H) is a closed and convex subset of C and EP(H) = F(ResfH );
() for all x ∈ E and for all u ∈ F(ResfH ),

Df
(
u,ResfH (x)

)
+Df

(
ResfH (x),x

) ≤ Df (u,x).

Lemma . [, Proposition ] Let f : E → R be a Legendre function such that ∇f ∗ is
bounded on bounded subsets of int dom f ∗. Let x ∈ E. If {Df (x,xn)} is bounded, then the
sequence {xn} is bounded too.

3 Main results
In this section, we will introduce a new shrinking projection algorithm based on the pre-
diction correction method for finding a common element of solutions to the equilibrium
problem (.) and fixed points to weak Bregman relatively nonexpansive mappings in
Banach spaces, and then the strong convergence of the sequence generated by the pro-
posed algorithm is proved under some suitable conditions.
Let {αn} and {βn} be the sequences in [, ] such that limn→∞ αn =  and lim infn→∞( –

αn)βn > . We propose the following shrinking projection algorithm based on the predic-
tion correction method.

http://www.journalofinequalitiesandapplications.com/content/2013/1/119
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Algorithm . Step : Select an arbitrary starting point x ∈ C, let Q = C and C = {z ∈
C :Df (z,u) ≤ Df (z,x)}.
Step : Given the current iterate xn, calculate the next iterate as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = ∇f ∗(βn∇f (T(xn)) + ( – βn)∇f (xn)),

yn = ∇f ∗(αn∇f (x) + ( – αn)∇f (zn)),

un = ResfH (yn),

Cn = {z ∈ Cn– ∩Qn– :Df (z,un) ≤ αnDf (z,x) + ( – αn)Df (z,xn)},
Qn = {z ∈ Cn– ∩Qn– : 〈∇f (x) –∇f (xn), z – xn〉 ≤ },
xn+ = projfCn∩Qn x, ∀n≥ .

(.)

Theorem . Let C be a nonempty, closed and convex subset of a real reflexive Banach
space E, f : E → R be a coercive Legendre function which is bounded, uniformly Fréchet dif-
ferentiable and totally convex on a bounded subset of E, and ∇f ∗ be bounded on bounded
subsets of E∗. Let H : C × C → R satisfy Assumption . and T : C → C be a weak
Bregman relatively nonexpansive mapping such that EP(H)∩ F(T) �= ∅. Then the sequence
{xn} generated by Algorithm . converges strongly to the point projfEP(H)∩F(T)(x), where
projfEP(H)∩F(T)(x) is the Bregman projection of C onto EP(H)∩ F(T).

To prove Theorem ., we need the following lemmas.

Lemma . Assume that EP(H)∩ F(T)⊆ Cn ∩Qn for all n ≥ . Then the sequence {xn} is
bounded.

Proof Since 〈∇f (x) – ∇f (xn), v – xn〉 ≤  for all v ∈ Qn, it follows from Lemma . that
xn = projfQn (x) and so, by xn+ = projfCn∩Qn (x) ∈Qn, we have

Df (xn,x) ≤ Df (xn+,x). (.)

Let ω ∈ EP(H)∩ F(T). It follows from Lemma . that

Df
(
ω,projfQn (x)

)
+Df

(
projfQn (x),x

) ≤ Df (ω,x)

and so

Df (xn,x) ≤ Df (ω,x) –Df (ω,xn) ≤ Df (ω,x).

Therefore, {Df (xn,x)} is bounded. Moreover, {xn} is bounded and so are {T(xn)}, {yn},
{zn}. This completes the proof. �

Lemma . Assume that EP(H)∩ F(T) ⊆ Cn ∩Qn for all n ≥ . Then the sequence {xn} is
a Cauchy sequence.

Proof By the proof of Lemma ., we know that {Df (xn,x)} is bounded. It follows from
(.) that limn→∞ Df (xn,x) exists. From xm ∈Qm– ⊆Qn for allm > n and Lemma ., one
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has

Df
(
xm,proj

f
Qn (x)

)
+Df

(
projfQn (x),x

) ≤ Df (xm,x)

and so Df (xm,xn) ≤ Df (xm,x) –Df (xn,x). Therefore, we have

lim
n→∞Df (xm,xn) ≤ lim

n→∞
(
Df (xm,x) –Df (xn,x)

)
= . (.)

Since f is totally convex on bounded subsets of E, by Definition ., Lemma . and (.),
we obtain

lim
n→∞‖xm – xn‖ = . (.)

Thus {xn} is a Cauchy sequence and so limn→∞ ‖xn+ – xn‖ = . This completes the proof.
�

Lemma . Assume that EP(H) ∩ F(T) ⊆ Cn ∩ Qn for all n ≥ . Then the sequence {xn}
converges strongly to a point in EP(H)∩ F(T).

Proof From Lemma ., the sequence {xn} is a Cauchy sequence. Without loss of gener-
ality, let xn → ω̂ ∈ C. Since f is uniformly Fréchet differentiable on bounded subsets of E,
it follows from Lemma . that ∇f is norm-to-norm uniformly continuous on bounded
subsets of E. Hence, by (.), we have

lim
n→∞

∥∥∇f (xm) –∇f (xn)
∥∥ = 

and so

lim
n→∞

∥∥∇f (xn+) –∇f (xn)
∥∥ = . (.)

Since xn+ ∈ Cn, we have

Df (xn+,un) ≤ αnDf (xn+,x) + ( – αn)Df (xn+,xn).

It follows from limn→∞ αn =  and limn→∞ Df (xn+,xn) =  that {Df (xn+,un)} is bounded
and

lim
n→∞Df (xn+,un) = .

By Lemma ., {un} is bounded. Hence, limn→∞ ‖xn+ – un‖ =  and so

lim
n→∞

∥∥∇f (xn+) –∇f (un)
∥∥ = . (.)

Taking into account ‖xn – un‖ ≤ ‖xn – xn+‖ + ‖xn+ – un‖, we obtain

lim
n→∞‖xn – un‖ = 
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and so un → ω̂ as n→ ∞. For any ω ∈ EP(H)∩ F(T), from Lemma ., we get

Df (un, yn)

≤ Df (ω, yn) –Df (ω,un)

=Df
(
ω,∇f ∗(αn∇f (x) + ( – αn)∇f (zn)

))
–Df (ω,un)

≤ αnDf (ω,x) + ( – αn)Df
(
ω,∇f ∗(βn∇f

(
T(xn)

)
+ ( – βn)∇f (xn)

))
–Df (ω,un)

≤ αnDf (ω,x) + ( – αn)Df (ω,xn) –Df (ω,un)

= αn
[
Df (ω,x) –Df (ω,xn)

]
+Df (ω,xn) –Df (ω,un).

By the three point identity of the Bregman distance, one has

Df (ω,xn) –Df (ω,un)

= –Df (xn,un) +
〈∇f (un) –∇f (xn),ω – xn

〉
≤ –f (xn) + f (un) +

〈∇f (un),xn – un
〉
+

〈∇f (un) –∇f (xn),ω – xn
〉
.

Since f is a coercive Legendre function which is bounded, uniformly Fréchet differentiable
and totally convex on a bounded subset ofE, it follows fromLemma. that f is continuous
on E and ∇f is uniformly continuous on bounded subsets of E from the strong topology
of E to the strong topology of E∗. Therefore, we have

lim
n→∞Df (un, yn)

≤ lim
n→∞

{
αn

[
Df (ω,x) –Df (ω,xn)

]
– f (xn) + f (un)

+
〈∇f (un),xn – un

〉
+

〈∇f (un) –∇f (xn),ω – xn
〉}

≤ lim
n→∞

{
αn

[
Df (ω,x) –Df (ω,xn)

]
– f (xn) + f (un)

}
+ lim

n→∞
[〈∇f (un),xn – un

〉
+

〈∇f (un) –∇f (xn),ω – xn
〉]

= ,

that is, limn→∞ Df (un, yn) = . Furthermore, one has limn→∞ ‖un – yn‖ =  and thus

lim
n→∞

∥∥∇f (un) –∇f (yn)
∥∥ = .

Since un → ω̂ as n→ ∞, we have yn → ω̂ as n→ ∞. Further, in the light of un = ResfH (yn)
and Definition ., it follows that, for each y ∈ C,

H(un, y) +
〈∇f (un) –∇f (yn), y – un

〉 ≥ 

and hence, combining this with Assumption .,

〈∇f (un) –∇f (yn), y – un
〉 ≥ –H(un, y) ≥ H(y,un).
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Consequently, one can conclude that

H(y, ω̂) ≤ lim inf
n→∞ H(y,un)

≤ lim inf
n→∞

〈∇f (un) –∇f (yn), y – un
〉

≤ lim inf
n→∞

∥∥∇f (un) –∇f (yn)
∥∥ · ‖y – un‖

= .

For any y ∈ C and t ∈ (, ], let yt = ty + ( – t)ω̂ ∈ C. It follows from Assumption . that
H(yt , ω̂) ≤  and

 =H(yt , yt)≤ tH(yt , y) + ( – t)H(yt , ω̂)≤ tH(yt , y)

and so H(yt , y) ≥ . Moreover, one has

 ≤ lim sup
t→+

H(yt , y) = lim sup
t→+

H
(
ty + ( – t)ω̂, y

) ≤ H(ω̂, y), ∀y ∈ C,

which shows that ω̂ ∈ EP(H).
Next, we prove that ω̂ ∈ F(T). Note that

∥∥∇f (xn) –∇f (yn)
∥∥

=
∥∥∇f (xn) –∇f

(∇f ∗(αn∇f (x) + ( – αn)∇f (zn)
))∥∥

=
∥∥∇f (xn) –

(
αn∇f (x) + ( – αn)∇f (zn)

)∥∥
=

∥∥αn
(∇f (xn) –∇f (x)

)
+ ( – αn)

(∇f (xn) –∇f (zn)
)∥∥

=
∥∥αn

(∇f (xn) –∇f (x)
)
+ ( – αn)

(∇f (xn) –∇f
(∇f ∗(βn∇f

(
T(xn)

)
+ ( – βn)∇f (xn)

)))∥∥
=

∥∥αn
(∇f (xn) –∇f (x)

)
+ ( – αn)βn

(∇f (xn) –∇f
(
T(xn)

))∥∥
≥ ( – αn)βn

∥∥∇f (xn) –∇f
(
T(xn)

)∥∥ – αn
∥∥∇f (xn) –∇f (x)

∥∥.
This implies that

( – αn)βn
∥∥∇f (xn) –∇f

(
T(xn)

)∥∥ ≤ ∥∥∇f (xn) –∇f (yn)
∥∥ + αn

∥∥∇f (xn) –∇f (x)
∥∥. (.)

Letting n → ∞ in (.), it follows from lim infn→∞( – αn)βn >  and limn→∞ αn =  that

lim
n→∞

∥∥∇f (xn) –∇f
(
T(xn)

)∥∥ = .

Moreover, we have that limn→∞ ‖xn – T(xn)‖ = . This together with xn → ω̂ implies that
ω̂ ∈ F̃(T). In view of F̃(T) = F(T), one has ω̂ ∈ EP(H) ∩ F(T). Therefore, the sequence
{xn} generated by Algorithm . converges strongly to a point ω̂ in EP(H) ∩ F(T). This
completes the proof. �

Now, we prove Theorem . by using lemmas.
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Proof of Theorem . From Lemmas . and ., it follows that EP(H) ∩ F(T) is a
nonempty, closed and convex subset of E. Clearly, Cn and Qn are closed and convex and
so Cn ∩Qn are closed and convex for all n≥ .
Now, we show that EP(H) ∩ F(T) ⊆ Cn ∩Qn for all n ≥ . Take ω ∈ EP(H) ∩ F(T) arbi-

trarily. Then

Df (ω,un) = Df
(
ω,ResfH (yn)

)
≤ Df (ω, yn) –Df

(
ResfH (yn), yn

)
≤ Df (ω, yn)

= Df
(
ω,∇f ∗(αn∇f (x) + ( – αn)∇f (zn)

))
≤ αnDf (ω,x) + ( – αn)Df (ω, zn)

= αnDf (ω,x) + ( – αn)Df
(
ω,∇f ∗(βn∇f

(
T(xn)

)
+ ( – βn)∇f (xn)

))
≤ αnDf (ω,x) + ( – αn)

[
βnDf

(
ω,T(xn)

)
+ ( – βn)Df (ω,xn)

]
≤ αnDf (ω,x) + ( – αn)Df (ω,xn),

which implies that ω ∈ Cn and so EP(H)∩ F(T) ⊆ Cn for all n≥ .
Next, we prove that EP(H) ∩ F(T) ⊆ Qn for all n ≥ . Obviously, EP(H) ∩ F(T) ⊆ Q

(Q = C). Suppose that EP(H)∩ F(T) ⊆ Qk for all k ≥ . In view of xk+ = projfCk∩Qk
(x), it

follows from Lemma . that

〈∇f (x) –∇f (xk+),xk+ – v
〉 ≥ , ∀v ∈ Ck ∩Qk .

Moreover, one has

〈∇f (x) –∇f (xk+),xk+ –ω
〉 ≥ , ∀ω ∈ EP(H)∩ F(T)

and so, for each ω ∈ EP(H)∩ F(T),

〈∇f (x) –∇f (xk+),ω – xk+
〉 ≤ .

This implies that EP(H)∩ F(T) ⊆Qk+. To sum up, we have EP(H)∩ F(T) ⊆Qn and so

EP(H)∩ F(T)⊆ Cn ∩Qn, ∀n≥ .

This together with EP(H) ∩ F(T) �= ∅ yields that Cn ∩ Qn is a nonempty, closed convex
subset of C for all n ≥ . Thus {xn} is well defined and, from both Lemmas . and ., the
sequence {xn} is a Cauchy sequence and converges strongly to a point ω̂ of EP(H)∩ F(T).
Finally, we now prove that ω̄ = projfEP(H)∩F(T)(x). Since proj

f
EP(H)∩F(T)(x) ∈ EP(H)∩F(T),

it follows from xn+ = projf(Cn∩Qn)(x) that

Df (xn+,x) ≤ Df
(
projfEP(H)∩F(T)(x),x

)
.

Thus, by Lemma ., we have xn → projfEP(H)∩F(T)(x) as n → ∞. Therefore, the sequence
{xn} converges strongly to the point projfEP(H)∩F(T)(x). This completes the proof. �
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Remark . () If f (x) = 
‖x‖ for all x ∈ E, then the weak Bregman relatively nonexpan-

sive mapping is reduced to the weak relatively nonexpansive mapping defined by Su et al.
[], that is, T is called aweak relatively nonexpansive mapping if the following conditions
are satisfied:

F̃(T) = F(T) �= ∅, φ(u,Tx) ≤ φ(u,x), ∀x ∈ C,u ∈ F(T),

where φ(y,x) = ‖y‖ – 〈y, J(x)〉 + ‖x‖ for all x, y ∈ E and J is the normalized duality map-
ping from E to E∗ ;
() If f (x) = 

‖x‖ for all x ∈ E, then Algorithm . is reduced to the following iterative
algorithm.

Algorithm . Step : Select an arbitrary starting point x ∈ C, let Q = C and C = {z ∈
C : φ(z,u) ≤ φ(z,x)}.
Step : Given the current iterate xn, calculate the next iterate as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = J–(βnJ(T(xn)) + ( – βn)J(xn)),

yn = J–(αnJ(x) + ( – αn)J(zn)),

un = ResfH (yn),

Cn = {z ∈ Cn– ∩Qn– : φ(z,un) ≤ αnφ(z,x) + ( – αn)φ(z,xn)},
Qn = {z ∈ Cn– ∩Qn– : 〈J(x) – J(xn), z – xn〉 ≤ },
xn+ = �Cn∩Qnx, ∀n≥ .

(.)

() Particularly, if EP(H) = C, then Algorithm . is reduced to the following iterative
algorithm.

Algorithm . Step : Select an arbitrary starting point x ∈ C, let Q = C and C = {z ∈
C : φ(z,u) ≤ φ(z,x)}.
Step : Given the current iterate xn, calculate the next iterate as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = J–(βnJ(T(xn)) + ( – βn)J(xn)),

yn = J–(αnJ(x) + ( – αn)J(zn)),

Cn = {z ∈ Cn– ∩Qn– : φ(z, yn) ≤ αnφ(z,x) + ( – αn)φ(z,xn)},
Qn = {z ∈ Cn– ∩Qn– : 〈J(x) – J(xn), z – xn〉 ≤ },
xn+ = �Cn∩Qnx, ∀n≥ .

(.)

() If Tx = x for all x ∈ C, then, by Algorithm ., we can get the following modified
Mann iteration algorithm for the equilibrium problem (.).

Algorithm . Step : Select an arbitrary starting point x ∈ C, let Q = C and C = {z ∈
C : φ(z,u) ≤ φ(z,x)}.

http://www.journalofinequalitiesandapplications.com/content/2013/1/119


Agarwal et al. Journal of Inequalities and Applications 2013, 2013:119 Page 14 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/119

Step : Given the current iterate xn, calculate the next iterate as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = J–(αnJ(x) + ( – αn)J(xn)),

un = ResfH (yn),

Cn = {z ∈ Cn– ∩Qn– : φ(z,un) ≤ αnφ(z,x) + ( – αn)φ(z,xn)},
Qn = {z ∈ Cn– ∩Qn– : 〈J(x) – J(xn), z – xn〉 ≤ },
xn+ = �Cn∩Qnx, ∀n≥ .

(.)

If f (x) = 
‖x‖ for all x ∈ E, then, by Theorem . and Remark ., the following results

hold.

Corollary . Let C be a nonempty, closed convex subset of a real reflexive Banach space E.
Suppose that H : C × C → R satisfies Assumption . and T : C → C is a weak relatively
nonexpansive mapping such that EP(H) ∩ F(T) �= ∅. Then the sequence {xn} generated by
Algorithm . converges strongly to the point �EP(H)∩F(T)(x), where �EP(H)∩F(T)(x) is the
generalized projection of C onto EP(H)∩ F(T).

Corollary . Let C be a nonempty, closed convex subset of a real reflexive Banach space E.
Let T : C → C be a weak relatively nonexpansive mapping such that F(T) �= ∅. Then the
sequence {xn} generated by Algorithm . converges strongly to the point �

f
F(T)(x), where

�F(T)(x) is the generalized projection of C onto F(T).

Corollary . Let C be a nonempty, closed convex subset of a real reflexive Banach space E.
Suppose that H : C × C → R satisfies Assumption . such that EP(H) �= ∅. Then the se-
quence {xn} generated by Algorithm . converges strongly to the point �EP(H)(x), where
�EP(H)(x) is the generalized projection of C onto EP(H).

Remark .
() It is well known that any closed and firmly nonexpansive-type mapping (see [, ])

is a weak Bregman relatively nonexpansive mapping whenever f (x) = 
‖x‖ for all

x ∈ E. If βn ≡  for all n≥  and E is a uniformly convex and uniformly smooth
Banach space, then Corollary . improves [, Corollary .];

() If αn ≡  for all n≥  and E is a uniformly convex and uniformly smooth Banach
space, then Corollary . is reduced to [, Theorem .];

() If βn ≡  – β ′
n for all n≥ , β ′

n ∈ [, ], f (x) = 
‖x‖ for all x ∈ E and E is a uniformly

convex and uniformly smooth Banach space, then Corollary . improves
[, Theorem .].
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